

Migrating a MySQL Database to SQL Anywhere 10
A whitepaper from Sybase iAnywhere

CONTENTS

Contents 2
Introduction 3
Differences between MySQL 5 and SQL Anywhere 10 3

Data types 3
MySQL function mappings to SQL Anywhere 5
String Functions 6
Numeric Functions 7
Date and Time Functions 7
Syntax Mappings 8
Operators 8
Data Manipulation Language 8
Miscellaneous Syntax 9
Other migration issues 10

Migrating a MySQL database to a SQL Anywhere database 10
Requirements 11
Creating a SQL Anywhere database 11
Creating a data source for the MySQL database 11
Migrating the MySQL database to SQL Anywhere 11
Connecting to the SQL Anywhere Database 11
Creating a Remote Server and External Login 12
Migrating the MySQL database 13

Tweaking the new SQL Anywhere database 14
Migrating applications from MySQL to SQL Anywhere 15

Migrating a Perl application from MySQL to SQL Anywhere 15
Migrating a PHP application from MySQL to SQL Anywhere 16
Function mapping 16
PHP migration notes 17

Summary 17

www.Sybase.com/iAnywhere 3

INTRODUCTION

Migrating data from MySQL to SQL Anywhere can be a straightforward process if there are not a lot

of MySQL extensions in use within your database and application. SQL Anywhere simplifies migration

by including built-in tools that facilitate a smooth transition from MySQL (and other RDBMS’s) to SQL

Anywhere.

The first part of this document discusses in detail differences between SQL Anywhere and MySQL,

including data type differences, feature differences, and syntax differences. Some of the features that

are unique to MySQL can hinder migration. Approaches to how you might choose to deal with these

issues are provided. The second part of this document includes a systematic explanation of how to

migrate data from a MySQL database into a SQL Anywhere database using the Sybase Central Data

Migration wizard. Finally, the third part of this document supplies an example of how you might

migrate an existing application running against MySQL to one that runs against SQL Anywhere.

This document was written for SQL Anywhere Studio version 10 and later, and MySQL version 4.1

and later. For SQL Anywhere version 9, see http://www.sybase.com/detail?id=1030300.

DIFFERENCES BETWEEN MYSQL 5 AND SQL ANYWHERE 10

The following sections describe some of the differences between MySQL and SQL Anywhere that

you may encounter during migration, along with some suggested solutions that can be used as starting

points to resolve any issues that arise during migration. There are many ways to optimize your code

with SQL Anywhere features that are missing from MySQL.

It is highly recommended that you review the SQL Anywhere documentation as well as the

developer resources, including samples and technical documents, available on the iAnywhere Solutions

website at http://www.sybase.com/developer/library/sql-anywhere-techcorner when moving to SQL

Anywhere.

DATA TYPES

In most cases, the MySQL data types can map directly to SQL Anywhere data types. The following

table lists some examples:

MySQL data type Equivalent SQL

Anywhere data type

Notes

SMALLINT [UNSIGNED] [UNSIGNED] SMALLINT

TINYINT UNSIGNED TINYINT

BOOL/BOOLEAN TINYINT or BIT

DOUBLE(m,n) DOUBLE(n) The ‘m’ argument in MySQL

represents the total number of

digits.

FLOAT(m,n) UNSIGNED FLOAT(n) The ‘m’ argument in MySQL

represents the total number of

digits.

DECIMAL(m,d), FIXED(m,d) DECIMAL(m,d)

VARCHAR(32) BINARY BINARY(32)

CHAR/VARCHAR CHAR/VARCHAR

TEXT VARCHAR

TINYBLOB BINARY(255)

BLOB/MEDIUMBLOB/LONGBLOB LONG BINARY SQL Anywhere stores only what is

required to hold the BLOB value, so

www.Sybase.com/iAnywhere 4

the extra requirement of specifying

BLOB size via different BLOB types is

not required

Note: In addition to the differences in data types themselves, there is also a difference in the

declaration of data types. MySQL provides an optional parameter for its numeric types that allows you

to specify the maximum display width for integer types. For example, an INT(4) column would return

the value ‘1’ as ‘<s><s><s>1’, where <s> is a space. The optional ZEROFILL modifier on the type

definition would replace the spaces in the previous example with zeros and add the UNSIGNED

attribute to the column. For example, ‘1’ is returned as ‘0001’. The merge of display format and data

values in the type definition is not supported by SQL Anywhere. The CAST and CONVERT functions,

along with the various string manipulation functions are available to format data values when they are

retrieved from the database.

The following data types differ from SQL Anywhere more substantially than by syntax:

MEDIUMINT: These are 3-byte integer values. They can easily be simulated using an INTEGER (4

bytes) or SMALLINT (2 bytes) in SQL Anywhere, depending on the expected range of values for the

column.

YEAR: Year is a 2 or 4 digit value. The SQL Anywhere DATE data type can be used to hold year

values, but uses slightly more storage space. Date arithmetic and conversion can be performed using

the SQL Anywhere built-in functions listed under “Date and Time Functions” in the “SQL Functions”

chapter of the “SQL Anywhere Server - SQL Reference” manual.

The following data types do not match exactly, and will require some work to migrate to SQL

Anywhere:

NCHAR/NVARCHAR: As of MySQL 4.1, an NCHAR value is stored in MySQL using the UTF8

character set. SQL Anywhere supports a variety of character sets, including UTF8. With a database

created using the proper collation, the use of a special data type to store international values is not

required, though SQL Anywhere does support the NCHAR datatype. To learn more about the latest

international character set support in SQL Anywhere, see the chapter “International Language and

Character Sets” in the “SQL Anywhere Server - Database Administration” manual.

ENUM: An ENUM value is a string object whose value must be chosen from a list of supplied values

enumerated in the column definition when a table is created. The enumerated values can also be

inserted or retrieved by their index position in the ENUM definition. The index value 0 is reserved for

the empty string. The ENUM data type is represented in SQL Anywhere by a TINYINT column. There

are a few options to accomplish the same behavior as the MySQL ENUM, but changes to the client

application will almost certainly be required. Some options are:

• Altering the client side application to remove the need for ENUM values

• Translating the ENUM values on the client side

• Adding some logic to the server side to attempt to mimic the MySQL behavior of ENUM

values by using stored procedures, triggers, computed columns, view, and/or a mapping

table for the ENUM types

For example, a view could be created on the table containing the ENUM fields to allow for the return

of the values as a string, while a regular SELECT could be used to return them as a number. Here is an

example of a view that could be used:

CREATE TABLE enumtbl (pkey INTEGER NOT NULL PRIMARY KEY, enumval

TINYINT);

CREATE VIEW v_enumtable AS

 SELECT pkey

www.Sybase.com/iAnywhere 5

 CASE WHEN 0 then ‘’

 WHEN 1 then ‘val1’

 WHEN 2 then ‘val2’

 WHEN 3 then ‘val3’

 ELSE NULL

 END

FROM enumtbl;

Then, a query may look something like this:

SELECT pkey, enumval FROM v_enumtable;

Alternatively, a mapping table could be created for the ENUM vales and whenever you retrieve data

from enumtbl, a join can be made to the mapping table containing the ENUM strings.

CREATE TABLE enummap(enumval TINAY INT NOT NULL PRIMARY KEY, enumstr

CHAR(16));

Then a query may look something like this:

SELECT pkey, enumval FROM enumtbl, enummap

WHERE enumtbl.enumval = enummap.enumval;

An insert on the table can be done directly if you are using the index values of the ENUM;

otherwise, a stored procedure could be used to insert a row into any table containing an ENUM. The

stored procedure would contain the logic to decode the ENUM values. Following is a sample stored

procedure implementation to deal with an ENUM column equivalent in SQL Anywhere (using the same

table definition as above):

CREATE PROCEDURE sp_insert_enumval (IN pkeyval int, IN enum CHAR(16))

BEGIN

 DECLARE enum_map TINYINT;

 IF enum IS NOT NULL THEN

 CASE enum

 WHEN ‘’ THEN SET enum_map = 0

 WHEN ‘val1’ THEN SET enum_map = 1

 WHEN ‘val2’ THEN SET enum_map = 2

 WHEN ‘val3’ THEN SET enum_map = 3

 ELSE SET enum_map = 0

 END CASE

 END IF;

 INSERT INTO enumtbl VALUES(pkeyval, enum_map);

END

SET: A SET value is a string object whose value must be chosen from a list of values supplied when

the column is defined. It is different from the ENUM type in that 0 or more values from the list can be

combined to create a valid value for the column. Each value in the set is assigned a binary value and

data can be assigned or retrieved by using a number representing the combination of values to be set.

For example, specifying a value of 9 would insert the first and fourth value from the set into the

column. Depending on how many values are in the set (64 is maximum), anything from a TINYINT to

a BIGINT is required to map a SET value from MySQL to SQL Anywhere. To achieve the same behavior

as MySQL, methods similar to those demonstrated above with the ENUM data type can be used.

MYSQL FUNCTION MAPPINGS TO SQL ANYWHERE

Many of the functions in both MySQL and SQL Anywhere have the same name. Most MySQL

functions that have different names have an equivalent SQL Anywhere version. MySQL contains a few

built-in functions that do not exist in SQL Anywhere. Most of these functions can be created in SQL

www.Sybase.com/iAnywhere 6

Anywhere as user-defined functions that perform the same activity. If you give these functions the

same name in the SQL Anywhere database, you will not need to modify the existing client application’s

SQL statements. Here are some examples of how SQL Anywhere user-defined functions can supply the

same functionality as their MySQL built-in counterparts:

CREATE FUNCTION FROM_UNIXTIME (IN fromdt bigint default 0, IN fmt

varchar(32) default ‘Mmm dd, yyyy hh:mm:ss’) RETURNS datetime

BEGIN

 RETURN(dateformat(dateadd(second, fromdt, ‘1970/01/01 00:00:00’,

fmt))

END;

CREATE FUNCTION SEC_TO_TIME (IN sec bigint default 0) RETURNS time

BEGIN

 RETRUN (dateadd(second, sec, ‘1970/01/01 00:00:00’))

END;

The following sections detail many of the MySQL functions along with their SQL Anywhere

equivalents. The list is extensive, but not exhaustive, as the list of function in both SQL Anywhere and

MySQL changes with each release.

STRING FUNCTIONS

MySQL function Equivalent SQL

Anywhere function

Notes

IFNULL(a,b) IFNULL(a,b,a) or

ISNULL(a,b)

The SQL Anywhere IFNULL function

behaves slightly different from the

MySQL version.

IF(cond, a, b) IF cond THEN a ELSE b Both MySQL and SQL Anywhere

support the IF statement in procedural

and embedded logic.

CONCAT(a, b, …) STRING (a, b, …) In MySQL, if any of a, b … is NULL the

return value is NULL, SQL Anywhere

returns NULL only if all arguments are

NULL. Otherwise NULLS are treated as

empty strings for the purpose of

concatenation.

CONCAT_WS(sep, str1, str2

…)

STRING(str1, sep, str2, sep

…)

See CONCAT note.

CONV(N, frombase, tobase) INTTOHEX(N),

HEXTOINT(N)

SQL Anywhere only provides functions

that allow you to convert to and from

hexadecimal. Other conversions have

to be manually implemented using

user defined functions.

HEX(arg) INTTOHEX(numeric arg),

HEXTOINT (string arg)

CHAR(N, …) CHAR(N) SQL Anywhere function only supports

on argument.

STRCMP(expr1, expr2) COMPARE(expr1, expr2)

LENGTH(str) BYTE_LENGTH(str) The SQL Anywhere LENGTH() function

returns character length, not byte

length.

BIT_LENGTH(str) BYTE_LENGTH(str) * 8 BIT_LENGTH for SQL Anywhere

www.Sybase.com/iAnywhere 7

returns the number of bits stored in a

bit array. In SQL Anywhere,

BIT_LENGTH(‘1001’) would be 4. In

MySQL, BIT_LENGTH(‘1001’) would be

32.

LOCATE(substr, str [,pos]) LOCATE (str, substr [,pos]) The order of the arguments differs in

SQL Anywhere.

POSITION(substr IN str) LOCATE(str, substr)

INSTR(str, substr) LOCATE(str, substr)

SUBSTINRG(str FROM pos

[FOR len])

SUBSTIRNG(str, pos [,len])

TRIM(str) TRIM(str) SQL Anywhere does not support the

other forms of the MySQL TRIM()

function.

INSERT(str, pos, len, newstr) STUFF(str, pos, len, newstr)

ELT(N, str1, str2, …) ARGN(N, str1, str2,…)

NUMERIC FUNCTIONS

MySQL function Equivalent SQL

Anywhere function

Notes

ROUND(x) ROUND(x,0)

x DIV y FLOOR (x/y)

LN(x) LOG(x)

LOG(x,b) LOG(x)/LOG(b)

LOG2(x) LOG(x)/LOG(2)

ATAN(x,y) ATAN2(x,y)

DATE AND TIME FUNCTIONS

MySQL function Equivalent SQL

Anywhere function

Notes

TIME(expr) CAST(expr as TIME) The CONVERT function could also be

used.

TIMESTAMP(expr) DATETIME(expr)

DAYOFWEEK(expr) DOW(expr)

WEEKOFYEAR(expr) DATEPART

(Calweekofyear,expr)

PERIOD_ADD(expr,N) DATEFORMAT(DATEADD

(month,N,expr || ‘01’),

‘YYYYMM’)

PERIOD_DIFF(P1,P2) ABS(DATEDIFF(month,

P1||’01’, P2||’01’))

ADDATE(date, numdays) DATEADD(day, numdays,

date)

SUBDATE(date, numdays) DATEADD(day, -numdays,

date)

EXTRACT(type FROM date) DATEPART(type, date) The ‘type’ argument differs between

SQL Anywhere and MySQL and must

be adjusted accordingly.

www.Sybase.com/iAnywhere 8

TO_DAYS(date) DAYS(date) – 58 SQL Anywhere measures differences in

date from ‘0000/02/29’ instead of

‘0000/01/01’

MAKEDATE(year, dayofyear) YMD(year, 0, dayofyear)

UNIX_TIMESTAMP(date) DATEDIFF(second,

‘1979/01/01’, date)

SYNTAX MAPPINGS

Most of the syntax features of MySQL are available in SQL Anywhere, but occasionally the syntax for

accessing those features is different. The following charts detail many of these statements along with

their SQL Anywhere equivalents. For specific examples of SQL Anywhere syntax listed below, see the

“SQL Statements” chapter of the “SQL Anywhere Server - SQL Reference” manual.

OPERATORS

MySQL operator Equivalent SQL

Anywhere operator

Notes

!= <>

<=> (expr1 = expr2 OR ((expr1

IS NULL) AND (expr2 IS

NULL)))

The <=> operator represents equality

including NULL values (NULL=NULL is

true).

ISNULL(expr) IS NULL expr

INTERVAL(N, N1, N2,…) None built in A user defined function could easily be

used to achieve the same functionality.

For example: if (N < N1) then 0 elseif

(N < N2) then 1 elseif…

! NOT

&& AND

|| OR

A XOR B ((a AND (NOT b)) OR ((NOT

a) AND b))

The SQL Anywhere expression is

complex for large numbers of XOR

arguments, so an alternative migration

technique is recommended dependent

on the application scenario.

DATA MANIPULATION LANGUAGE

MySQL statement Equivalent SQL

Anywhere statement

Notes

INSERT … INSERT …

ON DUPLICATE KEY UPDATE ON EXISTING UPDATE SQL Anywhere also offers the options

ERROR and SKIP for existing rows.

SELECT …. INTO OUTFILE UNLOAD SELECT

DBISQL OUTPUT TO

SELECT/UPDATE/DELETE …

LIMIT

FIRST or TOP n

DEFAULT ‘0’ NOT NULL

auto_increment

NOT NULL DEFAULT

AUTOINCREMENT

LIMIT offset, numRows TOP numRows START AT

offset

www.Sybase.com/iAnywhere 9

Insert IGNORE INSERT … ON EXISTING

SKIP

Replace … INSERT … ON EXISTING

UPDATE

GROUP_CONCAT LIST

INSERT INTO … DEFAULT

VALUES

INSERT INTO … VALUES

(DEFAULT)

LOAD DATA INFILE LOAD TABLE

MISCELLANEOUS SYNTAX

The following is a miscellaneous list of compatibility items that do not fit into the aforementioned

categories. It also includes mappings between functions that are not exactly the same, but are

designed to provide the same functionality.

MySQL syntax Equivalent SQL

Anywhere syntax

Notes

VERSION() @@version global variable

mysql_insert_id() @@identity global variable

LAST_INSERT_ID variable @@identity global variable

mysql_affected_rows() @@rowcount global variable

ANALYZE TABLE sa_table_page_usage,

sa_table_fragmentation

SQL Anywhere also offers access to

other properties via the property()

function.

OPTIMIZE TABLE CREATE STATISTICS SQL Anywhere has a self-tuning

optimizer that automatically maintains

statistics, so statistics do not need to

be updated manually.

CHECK TABLE sa_validate () procedure

USE database-name There is no equivalent in SQL

Anywhere. Each database running on

a server requires its own connection.

LOCK TABLES (name) WRITE LOCK TABLES table-name IN

EXCLUSIVE MODE

SQL Anywhere supports row-level

locking, so table locks are generally

not required.

UNLOCK TABLES COMMIT A COMMIT releases all locks, unless a

cursor is opened using the WITH HOLD

clause.

Create table(KEY …) CREATE TABLE…

CREATE INDEX

SQL Anywhere requires two

statements.

DO CALL

FLUSH/RESET sa_flush_cache,

sa_flush_statistics

Most of the other flushable elements in

MySQL are automatically managed by

SQL Anywhere and do not need to be

flushed.

REGEXP/RLIKE SIMILAR SIMILAR works differently from the

mysql REGEX syntax, but performs the

same function. It may suit the needs

where the MySQL REGEXP expression

is being used.

www.Sybase.com/iAnywhere 10

BINARY str CAST str AS BINARY

CURDATE() |

CURRENT_DATE()

CURRENT DATE

CURTIME() |

CURRENT_TIME()

CURRENT TIME

SYSDATE() | LOCALTIME() |

CURRENT_TIMESTAMP() |

NOW()

NOW(),

CURRENT TIMESTAMP

UTC_DATE() CURRENT UTC TIMESTAMP

DATABASE() CURRENT DATABASE

LOAD_FILE(file) xp_read_file(file) In SQL Anywhere, the contents of a

file are returned as a long binary field,

while in MySQL they are returned as a

string.

CONNECTION_ID() CONNECTION_PROPERTY

(‘Number’)

OTHER MIGRATION ISSUES

The following is a list of miscellaneous notes to keep in mind when migrating from MySQL to SQL

anywhere:

• The identifiers in MySQL are optionally enclosed with the back quote (‘), while SQL

Anywhere uses the double quote (“) or , alternatively, square brackets ([]).

• Some words that are keywords in SQL Anywhere are not in MySQL, such as ‘comment’ and

‘session’. These keywords must be enclosed in double quotes in order to be used with SQL

Anywhere. Alternatively, you can use the SQL Anywhere NON_KEYWORDS option to

change the list of recognized keywords. For information about the NON_KEYWORDS

option, see “NON_KEYWORDS option [compatibility]” in the “Database Options” chapter of

the “SQL Anywhere Server - Database Administration” manual.

• The minimum timestamp value in SQL Anywhere is ‘0001-01-01 00:00:00’, while it is

‘0000-0000-00 00:00:00’ in MySQL.

• Timestamps in MySQL have the format of YYYY-MM-DD hh:mm:ss. SQL Anywhere

includes fractions of a second as part of the timestamp value. The TIME_FORMAT option

allows you to specify the exact format used to return datetime value. For information

about the TIME_FORMAT option, see “TIME_FORMAT option [compatibility]” in the

“Database Options” chapter of the “SQL Anywhere Server - Database Administration”

manual.

• While MySQL allows the use of single or double quotes around string literals, by default

single quotes must be used to enclose string values in SQL Anywhere and double quotes

signify the use of a database object identifier. This behavior can be changed by setting

the QUOTED_IDENTIFIER option in the database. For information about the

QUOTED_INDENTIFIER option, see “QUOTED_IDENTIFIER option [compatibility]” in the

“Database Options” chapter of the “SQL Anywhere Server - Database Administration”

manual.

MIGRATING A MYSQL DATABASE TO A SQL ANYWHERE DATABASE

Migrating data from MySQL to SQL Anywhere is a straightforward process, with minor issues

occurring only if you are using the MySQL-specific data types mentioned previously. Data migration

can be accomplished using the Data Migration wizard that is part of Sybase Central. Alternatively, a

www.Sybase.com/iAnywhere 11

more customized migration can be done using the sa_migrate set of stored procedures in SQL

Anywhere. The mysqldump utility, coupled with the SQL Anywhere LOAD TABLE statement, could also

be used to migrate the data. Note that if the MySQL SET or ENUM data types are used in the MySQL

database, you may have some additional considerations when migrating your MySQL database to SQL

Anywhere. For information about these data types and the differences from SQL Anywhere, see “Data

types” on page 3.

REQUIREMENTS

• This document assumes you have a MySQL database running on any of its supported

platforms and SQL Anywhere 10 installed on any of the supported Windows platforms.

• If you have not created a MySQL database, you can create a few tables in the MySQL test

database to walk through the migration steps.

• The MySQL ODBC 3.51 (or later) driver must also be installed on the computer running the

SQL Anywhere database.

CREATING A SQL ANYWHERE DATABASE

You must first create a SQL Anywhere database to migrate the MySQL database to. The following

steps explain how to create a new database using Sybase Central.

1. Start Sybase Central. From the Start Menu, choose Program Files � SQL Anywhere 10�

Sybase Central.

2. Create a new SQL Anywhere 10 database. Choose Tools � SQL Anywhere 10 � Create

Database. Follow the instruction in the wizard to create a new database.

CREATING A DATA SOURCE FOR THE MYSQL DATABASE

The migration process requires an ODBC connection to the source database. Therefore, you need

to create an ODBC data source (DSN) for the MySQL database.

1. Download and install the MySQL ODBC 3.51 driver if you have not already done so. The

most recent driver is located at

http://dev.mysql.com/downloads/connector/odbc/3.51.html.

2. From Sybase Central, choose Tools � SQL Anywhere 10 � Open ODBC Administrator.

The ODBC Data Source Administration dialog appears.

3. Click Add to add a new DSN. The Create New Data Source wizard appears.

4. Select the MySQL ODBC 3.51 Driver from the list of available drivers and then click Finish.

The MySQL ODBC 3.51 Driver - DSN Configuration dialog appears.

5. Type a name for the data source in the Data Source Name field. For example, name the

data source ‘MySQL migrate’.

6. Supply the server name, user ID, password, and database name on the logic page of the

MySQL ODBC Connector dialog.

7. Click the Advanced tab and ensure that the options ‘Don’t Optimize Column Width’ and

‘Return Matching Rows’ are selected.

8. Click the Test Data Source button to ensure you have configured the data source correctly.

9. Click OK.

MIGRATING THE MYSQL DATABASE TO SQL ANYWHERE

The steps to migration are outlined below.

Connecting to the SQL Anywhere Database

In order to migrate the new SQL Anywhere database, you must first connect to the SQL Anywhere

database.

www.Sybase.com/iAnywhere 12

1. If you are not already connected, from Sybase Central, choose Connects � Connect with

SQL Anywhere 10. The Connect dialog appears.

2. On the Identification tab, type a valid User ID and password for your database. By default,

there is a user ‘DBA’ with password ‘SQL’.

3. On the Database tab, click the Browse button and then select the SQL Anywhere database

file you created.

4. Click OK. The SQL Anywhere database server starts automatically.

Creating a Remote Server and External Login

The next step is to tell Sybase Central where to find the MySQL database. This is done by creating

a remote server.

1. In the left pane of Sybase Central, expand your database server and database icons. In

the example below, the database named migrate is running on a database server that is

also named migrate.

2. In Sybase Central, select the Remote Servers folder in the left pane.

3. From the File men, choose New � Remote Server. The Remote Server Creation wizard

appears.

4. Follow the instructions in the wizard to create a remote server that connects to your

MySQL database.

a. On the first page of the wizard, type a name for the remote server, for example

‘MySQL migrate’ and then click Next.

www.Sybase.com/iAnywhere 13

b. Choose Generic as the type of remote server. Click Next.

c. Select the Open Database Connectivity (ODBC) Option and type the name of the

ODBC data source for your MySQL database in the connection information field.

For example, if you named your ODBC data source ‘MySQL migrate’ when you

created it, type ‘MySQL migrate’ in the connection information field.

5. Click Next.

6. Do not choose to make the server read only. Click Next.

7. If the remote server does not define a user that is the same as the user ID you are

connected to the SQL Anywhere database with, you must create an external login for your

current user. For example, if you connected to the SQL Anywhere database with the user

ID DBA, and your MySQL database does not contain a user ID DBA, then you must create

an external login. Type a user name from the MySQL database in the Login Name field.

Type the password for this user in the Password and Confirm Password fields.

8. Use the “Test Connection” button to ensure you can connect. Then, click Finish.

Migrating the MySQL database

Now you are ready to migrate your MySQL database: SQL Anywhere is running, connected and able

to communicate to the MySQL database via ODBC. The next step is to use the Migration wizard to

perform the migration.

1. From Sybase Central, choose Tools � SQL Anywhere 10 � Migrate database. The

Database Migration Wizard appears.

2. Click Next on the introductory page.

3. Select the current database and then click Next.

4. Select the MySQL remote server you create, for example, MySQL migrate, and then click

Next.

5. Click the Add All button and then click Next to migrate all the MySQL tables to the SQL

Anywhere database.

www.Sybase.com/iAnywhere 14

6. Select the SQL Anywhere database user you wish to own the tables. Click Next.

7. Select the options you wish to use. Note: Even for InnoDB users, the MySQL ODBC

driver does not fully support inspecting foreign key relationships. For this reason, choose

not to migrate foreign keys. After the data has been migrated, restore referential integrity

as explained in ‘Tweaking the New SQL Anywhere Database’.

8. Click Finish to start the migration. The Migration Database window appears. You can

close this window when the status changes to ‘Completed’.

TWEAKING THE NEW SQL ANYWHERE DATABASE

Now that you have migrated the MySQL schema and data to the SQL Anywhere database, you can

start enjoying the benefit SQL Anywhere brings. One immediate benefit is transactional support.

Since not all MySQL tables support referential integrity, your MySQL schema may not have foreign

keys. Even with InnoDB, in step 7 of ‘Migrating the MySQL Database’ we chose to ignore foreign key

relationships. To add referential integrity support:

1. List the foreign keys in my MySQL database by issuing the following SQL statement against

the MySQL database:

 SHOW TABLE STATUS FROM database_name

Alternatively, SHOW CREATE TABLE table_name will also reveal any foreign key

relationships. The referential constraints are listed under the comment column for each

table in the form.

 (column_name) REFER ref_db_name/ref_table_name(ref_column_name)

2. Specify referential integrity constraints:

a. You can use Sybase Central to add foreign keys to your database.

b. Alternatively, for each of the foreign keys, issue the following SQL statement

against the SQL Anywhere database (using the Interactive SQL utility: dbisql):

ALTER TABLE “table-name”

 ADD FOREIGN KEY “foreign_key_name” (“column_name”)

www.Sybase.com/iAnywhere 15

 REFERENCES “ref_table_name” (“ref_column_name”);

With the new foreign key constraints in place, the SQL Anywhere database checks

for referential integrity automatically and greatly improves data integrity.

Properly placed indexes improve database performance significantly, while poorly placed ones

hinder performance with equal significance. SQL Anywhere 10 offers the Index Consultant that

inspects database usage and workload and recommends changes to the indexing structure as needed.

MySQL dictates that foreign key columns must have indexes explicitly defined, but this is not the case in

SQL Anywhere. Also, for each Primary key, MySQL creates a primary index that is redundant in SQL

Anywhere. The Index Consultant will likely recommend removing the redundant indexes that are

copied from the MySQL database during the migration process. The Index Consultant can prove to be

a useful tool to boost the performance of the migrated SQL Anywhere database. For information about

optimizing your schema, refer to your SQL Anywhere Studio documentation and the iAnywhere

developer resources available online at www.ianywhere.com/developer.

MIGRATING APPLICATIONS FROM MYSQL TO SQL ANYWHERE

Application migration from MySQL to SQL Anywhere depends on the interface used to access your

MySQL application. The following are some of the more popular interfaces that should required only

minimal work to migrate:

• ODBC: Both SQL Anywhere and MySQL support the ODBC 3.51 API specification.

Generally, migration of these applications involves changes the ODBC data source to point

to SQL Anywhere instead of MySQL. There may be some specific differences in terms of

the implementations of creating API functions, but given the maturity of the ODBC

specification, these should be minor.

• JDBC: MySQL has a type 4 JDBC Driver (100% Java implementation). To migrate to the

SQL Anywhere equivalent, the Sybase jConnect driver should be used. However, to

achieve the maximum performance benefits of SQL Anywhere, it is recommended that you

use the iAnywhere JDBC driver. The iAnywhere JDBC driver is a type 2 JDBC driver. The

SQL Anywhere JDBC drivers support all of the core elements of the JDBC 2.0 specification

and some of the optional ones.

• Perl: For information about migrating Perl applications, see “Migrating a Perl application

from MySQL to SQL Anywhere” on page 22.

• PHP: For information about migrating PHP applications, see “Migrating a PHP application

from MySQL to SQL Anywhere” on page 23.

Applications written using the other interfaces supported by MySQL will require more work to

migrate as there is no support for these drivers in SQL Anywhere. This includes the MySQL C/C++

API and the Python, Tcl, and Eiffel access drivers. In some cases, a third-party driver may be found

that allows you to bridge to ODBC and natively access SQL Anywhere.

MIGRATING A PERL APPLICATION FROM MYSQL TO SQL ANYWHERE

Migrating Perl applications from MySQL to SQL Anywhere is very simple. You have the option of

using ODBC to connect using the DBD::ODBC driver or using the native SQL Anywhere driver (called

DBD:SQLAnywhere) that is included with SQL Anywhere.

If you are already using the DBD::ODBC driver, application migration is simply a matter of changing

your connection string to refer to SQL Anywhere. Once that is complete, there may be some minor

tweaks required to deal with the differences between SQL Anywhere and MySQL as discussed in

pervious sections of this paper, but minimal work is required to complete the migration.

Some MySQL-specific methods can be migrated to SQL Anywhere equivalents by using queries or

standard DBD functionality. For example:

www.Sybase.com/iAnywhere 16

MySQL Equivalent SQL

Anywhere

Note

mysql_insertid SELECT @@identity

is_blob, is_num, is_not_null,

length, name, table, type

NAME, TYPE, SCALE,

PRECISION, NULLABLE

All of these property items are DBD

standard elements.

is_key, is_pri_key SELECT .. FROM syscolumn

WHERE

Detection of indexes/keys can be done

by looking at the table and column

definitions in the system tables.

MIGRATING A PHP APPLICATION FROM MYSQL TO SQL ANYWHERE

Migrating a PHP application from MySQL to SQL anywhere is simple. You have the option of using

ODBC to connect to SQL Anywhere or using the SQL Anywhere PHP module.

Windows users may prefer to migrate to the ODBC API. Setting up a DSN in Windows for use with

ODBC is simple. In addition, the Windows binary for PHP already has built-in ODBC support.

Linux users, on the other hand, may find the PHP module more convenient to set up. SQL

Anywhere support can be compiled into PHP using the –with sqlanywhere=[path_to_sa] flag when

calling the configure script. Details about the module can be found in the “SQL Anywhere PHP API”

chapter of the “SQL Anywhere Server – Programming” manual.

If the PHP application is already using ODBC to connect to the MySQL database, then there is no

need to change the function calls. You can skip the section below and go directly to “PHP migration

notes” on page 25.

Function mapping

The MySQL, ODBC and SQL Anywhere APIs are very similar. It is often possible to map one

function directly to another. Sometimes, when a function has no equivalent counterpart, you must be

creative and write alternative code that achieves the same result. In certain cases, you may be better

off rewriting small portions of the code to take advantage of advanced features provided by SQL

Anywhere. For example, with transaction support, the application can efficiently maintain atomicity and

easily ensure data integrity.

The following table lists some commonly used MySQL functions and their ODBC and SQL Anywhere

equivalents:

MySQL Equivalent SQL Anywhere

(ODBC)

Equivalent SQL Anywhere

(PHP Module)

mysql_close odbc_close sqlanywhere_disconnet

mysql_connect odbc_connect sqlanywhere_connect

mysql_errno odbc_error See “mysql_errno” note.

mysql_error odbc_errormsg none

mysql_escape_string See “mysql_escape_string” note. See “mysql_escape_string” note.

mysql_fetch_row odbc_fetch_row sqlanywhere_fetch_row

mysql_insert_id See “mysql_insert_id” note. See “mysql_insert_id” note.

mysql_num_fields odbc_num_fields sqlanywhere_num_fields

mysql_num_rows odbc_num_rows sqlanywhere_num_rows

mysql_query odbc_exec sqlanywhere_query

mysql_select_db none none

Notes:

mysql_connect: Connecting via ODBC is straight forward. The odbc_connect function takes, at a

minimum, the DSN, user ID, and password. Connecting via the PHP module requires a SQL Anywhere
connection string. Usually this can be done with the following function call:

www.Sybase.com/iAnywhere 17

sqlanywhere_connect(“uid=DBA;pwd=SQL;eng=eng_name”)

mysql_errno: This function returns the error number of the previous query. The same result can be

obtained by issuing the following SQL statement:

SELECT @@error

mysql_escape_string: Neither ODBC nor the PHP module provides a way to escape a SQL string.

However, this can be easily done by replacing each single quote with two single quotes.

mysql_insert_id: This function returns the last inserted ID of an autoincrement column. The same

result can be obtained by issuing the following SQL statement:

SELECT @@identity

As you can see, many MySQL functions translate directly into ODBC and SQL Anywhere calls. For the

remaining functions, simple alternatives can be found. As with any migration job, there are,

unfortunately, differences between MySQL and SQL Anywhere that require more attention. These

points are discussed in the following section.

PHP migration notes

These are subtle differences in the way SQL strings are treated by the various database vendors.

For example, timestamps in MySQL have the format YYYY-MM-DD hh:mm:ss, while SQL Anywhere

supports timestamps with fractions of a second. The strtotime function in PHP fails to recognize SQL

Anywhere timestamps. Extra work must be done to remove the fractional second portion of the SQL

Anywhere timestamp.

SQL Anywhere via ODBC also provides support for transactions and prepared statements. The

odbc_commit and odbc_rollback functions terminate a transaction as you would expect. One point to

notice is that PHP defaults to autocommit, meaning every statement is committed as soon as it is

successfully executed. The odbc_autocommit function is used to set the autocommit behavior to

enable the use of large transactions. Prepared statements are useful if the same queries, possibly with

different parameters, are to be executed many times. This can help create efficiency as each dynamic

SQL statement is built within the engine once only. The odbc_prepare and odbc_execute functions are

used to execute prepared statements.

SUMMARY

Migrating from MySQL to SQL Anywhere involves migrating the database, changing MySQL function

calls to SQL Anywhere calls, and tweaking the schema and SQL statements to resolve any differences

between the databases. Typically, some performance gains can be achieved by utilizing advanced

features available in SQL Anywhere.

COPYRIGHT © 2007 IANYWHERE SOLUTIONS, INC. ALL RIGHTS RESERVED. SYBASE, AFARIA, SQL ANYWHERE,

ADAPTIVE SERVER ANYWHERE, MOBILINK, ULTRALITE, AND M-BUSINESS ANYWHERE ARE TRADEMARKS OF

SYBASE, INC. ALL OTHER TRADEMARKS ARE PROPERTY OF THEIR RESPECTIVE OWNERS.

