
PUBLIC
SQL Anywhere - UltraLite
Document Version: 17.01.0 – 2021-10-15

UltraLite Administration

©
 2

02
2

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 UltraLite - Database Management and Developer Guide. 7
1.1 UltraLite Overview. 8

UltraLite Architecture. 9
UltraLite Synchronization Client Features. 10
UltraLite Supported Platforms. 11
UltraLite and SQL Anywhere Feature Comparisons. 11
UltraLite Database Limitations. 15
CustDB Sample Application Overview. 17
UltraLite Solution Considerations for Microsoft Windows Mobile. 20

1.2 UltraLite Security Considerations. 23
1.3 Configuring UltraLite Clients to Use Transport Layer Security. 25
1.4 UltraLite Database Creation Approaches. .26

Creating an UltraLite Database with the Create Database Wizard . 28
UltraLite Database Creation Using a Command Prompt. .29
UltraLite Database Creation Using a MobiLink Synchronization Model. 29
UltraLite Database Creation Through Central Administration of Remote Databases. 30
Creating an UltraLite Database from an XML File. 30
UltraLite Database Creation on a First Connection. 32
How to Access Creation Option Values. 32
UltraLite Character Sets. 32
Database Security. 35

1.5 Conversion from a SQL Anywhere Database to an UltraLite Database. 37
1.6 UltraLite Database Connections. .39

UltraLite Connection Strings and Parameters. 39
UltraLite Connection Parameters and the ULSQLCONNECT Environment Variable. 41
UltraLite File Path Formats in Connection Parameters. 42

1.7 UltraLite Database Tasks and Features. 43
Reading Database Properties. 43
Accessing Database Options. .45
UltraLite Event Notifications. 46
Isolation Levels. 48
Validating an UltraLite Database. 51
UltraLite Database Back up and Recovery. 52

1.8 UltraLite Database Schemas. 52
UltraLite Tables and Columns. 53
UltraLite Indexes. 62

2 PUBLIC
UltraLite Administration

Content

UltraLite Users. 66
1.9 UltraLite as a MobiLink Client. .72

UltraLite Clients. .73
Microsoft ActiveSync Synchronization Overview. 92
UltraLite Synchronization Parameters. 93
UltraLite Network Protocol Options. 122

1.10 UltraLite Deployment. .123
UltraLite Application Build and Deployment Specifications. 124
UltraLite Database Deployment Techniques. 130
Deploying UltraLite Database Schema Upgrades. 131
UltraLite Engine Startup. 133
Registering Applications with the Microsoft ActiveSync Manager. 134

1.11 Tutorial: Building the UltraLite CustDB Sample Application. 135
Lesson 1: Building and Running the CustDB Application. 136
Lesson 2: Starting the MobiLink Server and Performing an Initial Synchronization.137
Lesson 3: Updating Data in the UltraLite Database. .138
Lesson 4: Synchronizing the UltraLite Database with the Consolidated Database. 140
Lesson 5: Browsing MobiLink Synchronization Scripts. 141

1.12 UltraLite Database Reference. 143
UltraLite Options. 143
UltraLite Connection Parameters. 181
UltraLite Database Properties. 203
UltraLite Database Options. .206
UltraLite Utilities. 212
UltraLite System Tables. 248

1.13 UltraLite SQL reference. 254
UltraLite SQL Language Elements. 255
SQL Data Types. 288
Spatial Data Types. 320
User-defined Data Types and Their Equivalents. .322
SQL Functions. 323
UltraLite SQL Statements. 516

1.14 UltraLite Performance Tips. 569
Cache Size Adjustment for an UltraLite Database. 569
Query Performance Tips. 570
Insert and Update Performance Tips. 582
UltraLite Benchmark Tips. 587

1.15 UltraLite Troubleshooting. 592
Unable to Start the UltraLite Engine. .593
Unable to Connect to Databases After Upgrade. 593
UltraLite Database Corruption. 594

UltraLite Administration
Content PUBLIC 3

Database Size Not Stabilizing. 595
Importing ASCII Data into a New UltraLite Database. 596
Utilities Still Running as the Previous Version. 597
Result Set Changes Unpredictably. .598
UltraLite Engine Client Fails with Error -764. 598

2 UltraLite.NET Application Development. 600
2.1 UltraLite .NET System Requirements and Supported Platforms. .601
2.2 SQL Anywhere Tools in Microsoft Visual Studio. 602
2.3 Connection Setup for an UltraLite Database. 602

Connecting to an UltraLite Database Using UltraLite.NET. 603
2.4 Data Creation and Modification in UltraLite.NET Using SQL Statements. .604

Data Modification in UltraLite.NET Using INSERT, UPDATE, and DELETE.605
Retrieving Data in UltraLite.NET Using SELECT. .608
Result Set Schema Description. 609
SQL Result Set Navigation in UltraLite.NET. 609

2.5 Data creation and modification in UltraLite.NET using the ULTable Class. 610
Row Navigation in UltraLite.NET. 611
UltraLite Modes. 612
Row Insertion in UltraLite.NET. 612
Row Updates. 613
Row Searches. 614
Row Retrieval. .616
Row Deletions in UltraLite.NET. 617

2.6 Transaction Management in UltraLite.NET. 618
2.7 Schema Information in UltraLite.NET. 618
2.8 Error Handling in UltraLite.NET. .619
2.9 MobiLink Data Synchronization in UltraLite.NET. 620

Synchronization Initiation in a C# Application. .620
Microsoft ActiveSync Synchronization Setup in UltraLite.NET. .621

2.10 How to Deploy UltraLite.NET Applications. 621
Deploying an UltraLite.NET Application for Microsoft Windows Mobile. 622
Deploying an UltraLite.NET Application for Windows Mobile (UltraLite Engine). 623

2.11 Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET. 625
Lesson 1: Creating a Microsoft Visual Studio Project. 626
Lesson 2: Creating an UltraLite Database. 629
Lesson 3: Adding Database Connection Controls to the Application. .631
Lesson 4: Inserting, Updating, and Deleting Data. 633
Lesson 5: Building and Deploying the Application. 637
Code Listing for C# Tutorial. 639
Code Listing for Microsoft Visual Basic Tutorial. 641

4 PUBLIC
UltraLite Administration

Content

3 UltraLite - C++ Programming. 643
3.1 System Requirements and Supported Platforms. 643
3.2 UltraLite Application Development Using C++. 644

UltraLite C++ Application Development. 644
UltraLite C++ Application Development Using Embedded SQL. 676
UltraLite Application Development for Microsoft Windows Mobile. .708

3.3 Tutorial: Building a Windows Application using the C++ API. 717
Lesson 1: Creating and Connecting to a Database. 718
Lesson 2: Inserting Data into the Database. 721
Lesson 3: Selecting and Listing Rows from the Table. 723
Lesson 4: Adding Synchronization to Your Application. 725
Reviewing the Code Listing for the Tutorial. 726

3.4 API Reference. .728
UltraLite C++ Common API Reference. 729
UltraLite C++ API Reference. 731
UltraLite Embedded SQL API Reference. 731

4 UltraLite - Java Programming. 734
4.1 System Requirements and Supported Platforms. 734
4.2 UltraLiteJ Application Development. 734

Quick Start Guide to UltraLiteJ Application Development. 736
Android Setup Considerations. .736
UltraLite Database Creation and Connection Approaches. .737
Quick Start Guide to Schema Operations and Data Management. 739
Schema Information in UltraLiteJ. 748
Error Handling in UltraLiteJ. 749
MobiLink Data Synchronization Using UltraLiteJ. 750
Deploying an UltraLiteJ application for Android. 751
Code Examples. 753

4.3 Tutorial: Building an Android Application. 753
Lesson 1: Setting up a New Android Project. .755
Lesson 2: Starting the MobiLink Server. .757
Lesson 3: Running Your Android Application. 758
Lesson 4: Testing Your Android Application and Synchronizing. 759
Lesson 5: Cleaning up. 761

4.4 UltraLiteJ API Reference. 761

5 UltraLite - UWP Programming. 763
5.1 System Requirements and Supported Platforms. 763
5.2 UltraLite for UWP Application Development. .764

Quick Start Guide to UltraLite for UWP Application Development. 765
UltraLite for UWP Setup Considerations. 765

UltraLite Administration
Content PUBLIC 5

Quick Start Guide to Schema Operations and Data Management. 766
Deploying an UltraLite Application for Windows Phone or Windows Store Apps. 769

5.3 Tutorial: Building a Windows Phone Application. 770
Lesson 1: Setting up a New Windows Phone Application. 771
Lesson 2: Starting the MobiLink Server. .772
Lesson 3: Running Your Windows Phone Application and Synchronizing. 773
Lesson 4: Cleaning up. 774

5.4 UltraLite for UWP API Reference. 775

6 PUBLIC
UltraLite Administration

Content

1 UltraLite - Database Management and
Developer Guide

This book describes the UltraLite database systems for small devices.

In this section:

UltraLite Overview [page 8]
UltraLite is a compact relational database management system with many of the same features as SQL
Anywhere. It can be used to create mobile databases for small-footprint devices such as smartphones,
handheld computers, and tablet PCs.

UltraLite Security Considerations [page 23]
Because databases may contain proprietary, confidential, or private information, ensuring that the
database, the data, and communications over networks are designed for security is very important.

Configuring UltraLite Clients to Use Transport Layer Security [page 25]
UltraLite clients can be configured to use transport layer security over a TCP/IP or HTTPS protocol.

UltraLite Database Creation Approaches [page 26]
There are three common types of database creation methods:

Conversion from a SQL Anywhere Database to an UltraLite Database [page 37]
Create an UltraLite database from a SQL Anywhere reference database by running the ulinit utility with
the -a option. The new database is created with the same settings as those in the reference database
where possible.

UltraLite Database Connections [page 39]
Applications that use a database must establish a connection to that database before transactions can
occur. By connecting to an UltraLite database, you form a channel through which all activity from the
application takes place.

UltraLite Database Tasks and Features [page 43]
There are many tasks you perform and features you can use to manage UltraLite databases.

UltraLite Database Schemas [page 52]
The logical framework of the database is known as a schema.

UltraLite as a MobiLink Client [page 72]
You can configure UltraLite to act as a MobiLink client.

UltraLite Deployment [page 123]
In the majority of cases, development occurs on a Windows desktop or macOS with the final release
target for UltraLite being the mobile device.

Tutorial: Building the UltraLite CustDB Sample Application [page 135]
In this tutorial you learn how to run the MobiLink server to carry out data synchronization between the
consolidated database and the UltraLite remote, use SQL Central to browse the data in the UltraLite
remote, and manage UltraLite databases with UltraLite utilities.

UltraLite Database Reference [page 143]
UltraLite provides many tools and features to help you run, manage, and configure UltraLite databases.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 7

UltraLite SQL reference [page 254]
UltraLite supports many SQL language features and elements.

UltraLite Performance Tips [page 569]
Several topics are provided to help improve performance of UltraLite databases.

UltraLite Troubleshooting [page 592]
Several topics are provided to help you troubleshoot problems with your UltraLite database.

1.1 UltraLite Overview

UltraLite is a compact relational database management system with many of the same features as SQL
Anywhere. It can be used to create mobile databases for small-footprint devices such as smartphones,
handheld computers, and tablet PCs.

UltraLite includes a built-in synchronization client that tracks changes made in UltraLite databases, and
exchanges updates with a MobiLink server over a network. As a MobiLink client, UltraLite ensures that mobile
applications can stay synchronized with a central database and with other UltraLite databases.

In UltraLite, the database management systems that are typically found in a database server are implemented
as an in-process runtime library. The runtime library and the application are part of the same process.

In this section:

UltraLite Architecture [page 9]
UltraLite supports several mobile platforms and consists of API development, database management,
and database layers.

UltraLite Synchronization Client Features [page 10]
UltraLite includes a built-in bi-directional synchronization client that causes all data in an UltraLite
database to be synchronized by default.

UltraLite Supported Platforms [page 11]
UltraLite supports various mobile platforms. Third-party software is required for UltraLite database
development.

UltraLite and SQL Anywhere Feature Comparisons [page 11]
The availability and functionality of features can differ between UltraLite and SQL Anywhere.

UltraLite Database Limitations [page 15]
There are several hard limits that apply to UltraLite databases.

CustDB Sample Application Overview [page 17]
The CustDB sample is a multi-tiered database management solution that implements MobiLink
synchronization with a SQL Anywhere consolidated database.

UltraLite Solution Considerations for Microsoft Windows Mobile [page 20]
There are several UltraLite design options that are available for Microsoft Windows mobile
development.

8 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.1.1 UltraLite Architecture

UltraLite supports several mobile platforms and consists of API development, database management, and
database layers.

Mobile platform support

Your target mobile platform determines which UltraLite API is available for application development.
API development layer

Refer to the diagram above to determine which API to use for your target mobile platform.
Database management layer and synchronization client

Use the UltraLite APIs to interface with the UltraLite database management system. This system allows
you to create and connect to an UltraLite database.

A comprehensive set of administration tools is provided to help you maintain your UltraLite project. You
can run these tools as either command line utilities or wizards in the UltraLite plug-in for SQL Central.
Database layer

This layer is the local data repository stored as a file. UltraLite databases are stored as UDB files. UDB files
are portable across all mobile platforms. UltraLite database don't contain information about the
distribution of data within the database. UltraLite keeps track of its transactions internally, not in a
separate log file.The UltraLite temporary file is stored in the same directory as the database file.

Related Information

UltraLite C++ Application Development [page 644]
UltraLite.NET Application Development [page 600]
UltraLite for UWP Application Development [page 764]
UltraLite Utilities [page 212]
UltraLite Database Limitations [page 15]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 9

UltraLite Synchronization Client Features [page 10]
Supported Platforms

1.1.2 UltraLite Synchronization Client Features

UltraLite includes a built-in bi-directional synchronization client that causes all data in an UltraLite database to
be synchronized by default.

Users new to MobiLink synchronization may use this default behavior until business requirements necessitate
a custom synchronization design to alter what UltraLite data gets synchronized to the consolidated database.
Unlike SQL Anywhere remote databases, you do not need to increase the size of the UltraLite footprint to
include synchronization functionality.

Important synchronization features built into the UltraLite runtime include a row state tracking mechanism and
a synchronization state tracking mechanism.

The Row State Tracking Mechanism

Tracking the state of tables and rows is particularly important for data synchronization. Each row in an UltraLite
database has an associated row state structure. In addition to synchronization, UltraLite also uses the row
states to control transaction processing and data recovery.

Synchronization State Tracking

UltraLite uses a progress counter to ensure robust synchronization. Each upload is given a unique number to
identify it. This allows UltraLite to determine whether an upload was successful when a communication error
occurs.

When you first create a new database, UltraLite always sets the synchronization progress counter to zero. A
progress counter value of zero identifies the database as a new UltraLite database, which tells the MobiLink
server to reset its state information for this client.

 Caution
Because UltraLite increments the progress counter each time a synchronization occurs, you cannot
synchronize an UltraLite database to different consolidated databases. If the progress counter value is not
zero and does not match that sequence number stored in the consolidated database, MobiLink
synchronization reports an offset mismatch and synchronization fails. You cannot replace an UltraLite
database with a backup copy if the progress counter is older than the current value.

10 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/8155387d6ce21014937df18c3511be8f.html

Related Information

UltraLite Database Row State Management [page 584]
MobiLink Synchronization
Tutorial: Using MobiLink with a SQL Anywhere Consolidated Database
UltraLite as a MobiLink Client [page 72]

1.1.3 UltraLite Supported Platforms

UltraLite supports various mobile platforms. Third-party software is required for UltraLite database
development.

Related Information

UltraLite Network Protocol Options [page 122]
Supported Platforms
UltraLite as a MobiLink Client [page 72]
UltraLite Synchronization Utility (ulsync) [page 238]

1.1.4 UltraLite and SQL Anywhere Feature Comparisons

The availability and functionality of features can differ between UltraLite and SQL Anywhere.

 Note
The UltraLite database management system adds 750-1500 KB to the size of your application. The SQL
Anywhere database, database server, and synchronization client add approximately 6 MB.

Feature SQL Anywhere UltraLite Considerations

Transaction processing, and
multi-table joins

X X

Triggers, stored procedures,
and views

X

External stored procedures
(callable external DLLs)

X

Built-in referential and entity
integrity

X X

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 11

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b8fc5d6ce21014b869ce9a77d9c7df.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bc99f96ce210148d2ff57dcb4bb789.html
https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/8155387d6ce21014937df18c3511be8f.html

Feature SQL Anywhere UltraLite Considerations

Cascading updates and dele
tes

X Limited Declarative referential integ
rity, where deletes and up
dates are cascaded, is a fea
ture that is not supported in
UltraLite databases, except
during synchronization when
deletes are cascaded for this
purpose.

Dynamic, multiple database
support

X X

Multithreaded application
support

X X

Row-level locking X X

XML unload and load utilities X UltraLite uses ulload, ulun
load, uljload, and uljunload
administration tools to com
plete XML load and unloads.

SQLX functionality X

SQL functions X X Not all SQL functions are
available for use in UltraLite
applications. If you use an
unsupported function, you
trigger an error.

SQL statements X X The scope of SQL state
ments is different compared
to SQL Anywhere.

Integrated HTTP server X

Strong encryption for data
base files and network com
munications

X X

Event scheduling and han
dling

X X An UltraLite event model dif
fers from SQL Anywhere.

High-performance, self-tun
ing, cost-based query opti
mizer

X UltraLite has a query opti
mizer that is not as extensive
as that of SQL Anywhere.

Choice of several thread-safe
APIs

X X UltraLite gives application
developers a uniquely flexible
architecture that allows for
the creation of applications
for changing and/or varied
deployment environments.

Cursor support X X

12 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Feature SQL Anywhere UltraLite Considerations

Dynamic cache sizing X X UltraLite allows you to set an
initial, minimum, and maxi
mum cache size for a data
base using the CACHE_SIZE,
CACHE_MIN_SIZE, and
CACHE_MAX_SIZE connec
tion parameters, respec
tively. The size of the cache is
optimized by UltraLite on an
ongoing basis, up to the max
imum size (if specified).

Database recovery after sys
tem or application failure

X X

Binary Large Object (BLOB)
support

X X UltraLite cannot index or
compare BLOBs.

Microsoft Microsoft Windows
Performance Monitor inte
gration

X

Online table and index de
fragmentation

X

Online backup X

Direct device connections to
a Microsoft Windows Mobile
device from the desktop.

X SQL Anywhere databases
need a database server be
fore allowing desktop con
nections to the database that
you deploy on a Microsoft
Windows Mobile device. On
UltraLite, you prefix the con
nection string with WCE:\.

High-performance updates
and retrievals through the
use of indexes

X X UltraLite uses a mechanism
to determine whether each
table is searched using an in
dex or by scanning the rows
directly.

Additionally, you can hash in
dexes to speed up data re
trieval.

You can use the
max_hash_size creation pa
rameter to set the maximum
hash size.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 13

Feature SQL Anywhere UltraLite Considerations

Synchronizing to SAP HANA,
Oracle, DB2, SAP Adaptive
Server Enterprise, Microsoft
SQL Server, MySQL, or SQL
Anywhere

X X

Built-in synchronization X Unlike SQL Anywhere deploy
ments, UltraLite does not re
quire a client agent for syn
chronization. Synchroniza
tion is built into the UltraLite
runtime to minimize the
components you must de
ploy.

In-process execution X

Computed columns X

Declared temporary tables/
global temporary tables

X

System functions X

Timestamp columns X X SQL Anywhere supports the
DEFAULT TIMESTAMP de
fault.

UltraLite only supports the
DEFAULT CURRENT TIME
STAMP default. Therefore,
UltraLite can not automati
cally update the timestamp
when the row is updated.

User-based permission
scheme to determine object-
based ownership and access

X UltraLite is primarily de
signed for single user data
bases in which an authoriza
tion system is not needed.
However, you can include up
to four user IDs and pass
words, which are used for au
thentication purposes only.
These users have access to
all database objects.

Spatial data X Limited UltraLite supports point data
only.

Full text data X

Related Information

Avoiding Synchronization Issues with Foreign Key Cycles [page 85]

14 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite SQL Statements [page 516]
Benefits of UltraLite APIs for Microsoft Windows Mobile [page 21]
UltraLite Database Limitations [page 15]
UltraLite File Path Formats in Connection Parameters [page 42]
UltraLite Users [page 66]
UltraLite Load XML to Database Utility (ulload) [page 234]
UltraLite Database Unload Utility (ulunload) [page 243]
UltraLite max_hash_size Creation Option [page 161]

1.1.5 UltraLite Database Limitations

There are several hard limits that apply to UltraLite databases.

In some cases, the limits are beyond the maximum capabilities of mobile devices. Performance considerations
and device capabilities impose other limitations.

Item UltraLite database limitations

Database and file size 16 GB for 4, 8, or 16 KB page size. 8 GB for 2 KB page size. 1
GB for 1 KB page size. Less if there is an operating system
limit on file size.

Temporary file size 16 GB for 4, 8, or 16 KB page size. 8 GB for 2 KB page size. 1
GB for 1 KB page size. Less if there is an operating system
limit on file size.

Cache size Limited by the available memory on the device, up to 64 K
pages.

Dynamic cache sizing UltraLite allows you to set an initial, minimum, and/or maxi
mum cache size for a database. The size of the cache is opti
mized by UltraLite on an ongoing basis, up to the maximum
size (if specified).

The CACHE_SIZE, CACHE_MIN_SIZE, CACHE_MAX_SIZE
connection parameters can be used to set and adjust the
cache size.

Maximum number of concurrent open connections sup
ported by a database

Up to 14.

Maximum number of concurrent open connections to all da
tabases

Limited only by memory.

Maximum number of databases that can run concurrently Limited only by memory.

Maximum number of applications that can connect to a da
tabase concurrently

Use the UltraLite engine to handle multiple concurrent appli
cations connecting to the database. Otherwise, only one ap
plication can connect to a database at one time.

Returned SQL function values In some cases, UltraLite limits expression results to 2000
bytes.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 15

Item UltraLite database limitations

Rows per table Up to 16 million.

Sometimes changes to the row (deletes and updates) and
other state information are maintained with the row data.
This information allows those changes to be synchronized.
So, the actual row limit can be smaller than 16 million, de
pending on the number of transactions on a table between
synchronization.

Row size The length of each packed row must not exceed the page
size.

Character strings are stored without padding when they are
shorter than the column size. This restriction excludes col
umns declared as LONG BINARY and LONG VARCHAR as
these strings are stored separately.

Rows per database Limited by database size.

Table size Limited by the database size.

Tables per database Limited by the database size.

Columns per table Row size is limited by page size, so the practical limit on the
number of columns per table is derived from this size. Typi
cally, this practical limit is much less than 4000.

Indexes per table Limited by the database size.

Number of publications Up to 63.

Database page size Minimum 1 KB; up to 16 KB.

Cursors per connection The maximum number of allowable cursors on a given con
nection to an UltraLite database is 64 (all platforms).

Strings The row must fit on a page.

Binary data types The row must fit on a page.

Long binary/long varchar size Limited only by database size.

Blob size Limited by file size.

Available Isolation levels 0 (read uncommitted) or 1 (read committed).

Cascading updates and deletes Declarative referential integrity, where deletes and updates
are cascaded, is a feature that is not supported in UltraLite
databases, except during synchronization when deletes are
cascaded for this purpose.

Event scheduling and handling An UltraLite event model differs from SQL Anywhere.

Related Information

UltraLite Transaction Processing [page 585]
Row Packing and Table Definitions [page 54]

16 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Physical Limitations on Size and Number of Databases
UltraLite CACHE_SIZE Connection Parameter [page 187]
UltraLite CACHE_MIN_SIZE Connection Parameter [page 186]
UltraLite CACHE_MAX_SIZE Connection Parameter [page 185]
UltraLite Database Unload Utility (ulunload) [page 243]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.1.6 CustDB Sample Application Overview

The CustDB sample is a multi-tiered database management solution that implements MobiLink
synchronization with a SQL Anywhere consolidated database.

CustDB is installed with SQL Anywhere and consists of the following:

• A consolidated SQL Anywhere database. The database is pre-populated with sales status data.
• A remote UltraLite database. This database is initially empty.
• An UltraLite client application.
• MobiLink server synchronization scripts.

 Note
You can only run one instance of CustDB at a time. Trying to run more than one instance brings the first
instance to the foreground.

CustDB allows sales personnel to track and monitor transactions and then pool information from two types of
users:

• Sales personnel that authenticate with user IDs 51, 52, and 53.
• Mobile managers that authenticate with user ID 50.

Information gathered by these different users can be synchronized with the consolidated database.

Both the consolidated and remote databases contain a table named ULOrder. While the consolidated database
holds all orders (approved and those pending approval), the UltraLite remote database only displays a subset
of rows according to the user that has authenticated.

Columns in the table appear as fields in the client application. When you add an order, you must populate the
Customer, Product, Quantity, Price, and Discount fields. You can also append other details such as Status or
Notes. The timestamp column identifies whether the row needs to be synchronized.

The synchronization logic for CustDB is held in the consolidated database as MobiLink synchronization scripts.
Synchronization logic allows you to determine how much of the consolidated database you need to download
and/or upload. You can download complete tables or partial tables (with either row or column subsets) using
such techniques as timestamp-based synchronization or snapshot synchronization.

You can use SQL Central to browse the synchronization scripts that are stored in the consolidated database.
SQL Central is the primary tool for adding scripts to the database.

The custdb.sql file adds each synchronization script to the consolidated database by calling
ml_add_connection_script or ml_add_table_script. Connection scripts control high-level events that are not
associated with a particular table. Use these events to perform global tasks that are required during every

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 17

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813836f16ce210149e89f219dc353b7e.html

synchronization. Table scripts allow actions at specific events relating to the synchronization of a specific table,
such as the start or end of uploading rows, resolving conflicts, or selecting rows to download.

SQL Anywhere CustDB database

This is the consolidated database. During installation, an ODBC data source called SQL Anywhere 17 CustDB is
created for this database. The database file is located at %SQLANYSAMP17%\UltraLite\CustDB\.

You can erase changes that were synchronized into the consolidated CustDB.db file, so you have a clean
version to work with using this script: %SQLANYSAMP17%\UltraLite\CustDB\makedbs.cmd.

The UltraLite CustDB Database

This is the remote version of the consolidated database that contains only a subset of the information,
depending on which user synchronizes the database.

The file name and location can vary depending on the platform, programming language, or even device.

• For UltraLite.NET: %SQLANYSAMP17%\UltraLite.NET\CustDB\Common\custdb.udb
• For all other platforms and APIs: %SQLANYSAMP17%\UltraLite\CustDB\custdb.udb

RDBMS-Specific Build Scripts

The SQL scripts rebuild a CustDB consolidated database for any one of the supported RDBMSs.

In the %SQLANYSAMP17%\MobiLink\CustDB directory, you can find the following files:

• For SQL Anywhere: custdb.sql
• For Adaptive Server Enterprise: custase.sql
• For Microsoft Azure: custmss.sql
• For Microsoft SQL Server: custmss.sql
• For Oracle: custora.sql
• For IBM DB2: custdb2.sql

 Note
Support for IBM DB2 consolidated databases is deprecated.

• For MySQL: custmys.sql

18 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite CustDB Client Applications and ReadMe Files

These are the end-user applications that provide a user-friendly interface to the UltraLite remote database.
There is a sample client installed for each supported platform.

Each client application also contains a ReadMe.html or ReadMe.txt file. Each file includes an outline of the
steps that are required to build and run the sample.

The location of the application and its ReadMe depends on your development environment.

Synchronization Logic

The UltraLite database SQL statements and synchronization calls are located in custdbcpp.cpp for the C++
API.

In this section:

CustDB File Locations for UltraLite [page 19]
The CustDB application is built for many development environments.

Related Information

CustDB Sample for MobiLink
CustDB Consolidated Database Setup
MobiLink Consolidated Databases
Lesson 1: Building and Running the CustDB Application [page 136]

1.1.6.1 CustDB File Locations for UltraLite

The CustDB application is built for many development environments.

UltraLite for Microsoft Windows 32-Bit Desktop

You do not need to build the CustDB application before running it.

You can find the CustDB executable file in the %SQLANY17%\UltraLite\Windows\x86 directory.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 19

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b90f576ce21014975d83610206f34a.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bbecdc6ce21014a115c82cd0b6d01a.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c21d826ce21014b474ee67358e9be5.html

UltraLite for C++

All versions of C++

You can find multiple versions of the C++ CustDB project file because of the many C++ development
environments. Most versions use the generic files. These files are located in the C:\Program Files\SQL
Anywhere 17\UltraLite\Custdb directory.

For information about all versions of C++ CustDB applications, see C:\Program Files\SQL Anywhere
17\UltraLite\Custdb\readme.txt.
Microsoft Visual Studio

You can find project files in the %SQLANYSAMP17%\UltraLite\CustDB directory.

UltraLite.NET

You can find project files specific to Microsoft Visual Studio in the C:\Users\Public\Documents\SQL Anywhere
17\Samples\UltraLite.NET\CustDB directory.

1.1.7 UltraLite Solution Considerations for Microsoft
Windows Mobile

There are several UltraLite design options that are available for Microsoft Windows mobile development.

UltraLite API Selection

The benefits of using each of the following APIs for Microsoft Windows Mobile development are described:

• UltraLite C++
• UltraLite Embedded SQL
• UltraLite.NET

Data Management Component Selection

The benefits of using each of the following data management components for Microsoft Windows Mobile
development are described:

• UltraLite in-process runtime environment
• UltraLite database engine

In this section:

Benefits of UltraLite APIs for Microsoft Windows Mobile [page 21]
The UltraLite C++, Embedded SQL, and .NET APIs offer several data access models, including a simple
table-based data access interface and dynamic SQL for more complex queries.

UltraLite Data Management Components for Microsoft Windows Mobile [page 21]
UltraLite allows you to build a small-footprint relational database solution without requiring the
additional overhead of setting up a separate database server.

20 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.1.7.1 Benefits of UltraLite APIs for Microsoft Windows
Mobile

The UltraLite C++, Embedded SQL, and .NET APIs offer several data access models, including a simple table-
based data access interface and dynamic SQL for more complex queries.

By combining these benefits, UltraLite gives application developers a flexible architecture for creating
applications for their varied deployment environments.

UltraLite.NET API Benefits

The UltraLite.NET API is usually recommended for Microsoft Windows Mobile development because the SQL
Anywhere .NET API provides common programming models that are shared between UltraLite components
and SQL Anywhere, and because of the .NET programming compared C++.

UltraLite C++ and Embedded SQL API Benefits

While UltraLite provides high performance in a variety of environments and use cases, Embedded SQL and the
UltraLite C++ API are the lowest level APIs and generally deliver the highest performance.

Use the UltraLite C++ API when you are trying to create the smallest application footprint. These applications
typically yield the best performance and still maintain a small application file size.

Related Information

Appendix - .NET Framework
UltraLite C++ Application Development [page 644]
UltraLite C++ Application Development Using Embedded SQL [page 676]
UltraLite.NET Application Development [page 600]

1.1.7.2 UltraLite Data Management Components for
Microsoft Windows Mobile

UltraLite allows you to build a small-footprint relational database solution without requiring the additional
overhead of setting up a separate database server.

UltraLite programming interfaces use one of two approaches: the UltraLite in-process runtime library and the
UltraLite database engine. Both approaches control connection and data access requests.

Both components include a built-in bi-directional synchronization client that links UltraLite databases with the
MobiLink synchronization server.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 21

https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/3bda4b606c5f1014b0e2ef3d159299a2.html

UltraLite In-Process Runtime Library

The UltraLite in-process runtime is recommended when only one application needs to access a database at a
time.

The runtime and the application are part of the same process, which makes the database specific to the
application. The runtime library manages UltraLite databases and built-in synchronization operations.

Linking to the runtime requires a different import library/DLL pair from that of the engine.

UltraLite supports both static and dynamic linkage.

Static linking

Static linking requires less device memory and is more effective when only a single UltraLite application is
used on the device.
Dynamic linking

Dynamic linking may be more economical with device memory when multiple UltraLite applications are
used on the device.

UltraLite Database Dngine (The uleng17.exe Utility)

The UltraLite engine is only available for Microsoft Windows desktop and Microsoft Windows Mobile platforms.
The engine is a separate executable that uses the UltraLite runtime library and supports concurrent access
from multiple applications. Each application must use a client library to communicate with the UltraLite engine.

The UltraLite engine requires more system resources than the UltraLite runtime and may yield lower
performance when large amounts of data are moved between the client and database.

Connecting to the engine requires that you specify a different import library/DLL pair than that of the runtime.

The UltraLite engine is required under the following conditions:

• Multiple processes access the same database file at potentially the same time (same time means multiple
processes have connections open to the same database at the same time).

• Central Administration is used to manage the UltraLite application database.

Related Information

UltraLite Synchronization Client Features [page 10]
How to Build and Deploy UltraLite C++ Applications [page 667]
UltraLite Engine Startup [page 133]
UltraLite Concurrency [page 583]
UltraLite and SQL Anywhere Feature Comparisons [page 11]
UltraLite Database Limitations [page 15]
UltraLite Application Build and Deployment Specifications [page 124]
UltraLite Engine Utility (uleng17) [page 223]

22 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.2 UltraLite Security Considerations

Because databases may contain proprietary, confidential, or private information, ensuring that the database,
the data, and communications over networks are designed for security is very important.

Several features are included to assist in building a secure environment for your data.

Database Encryption

By default, databases are not encrypted or obfuscated when they are created. Text and binary columns can be
read when using a viewing tool such as a hex editor. UltraLite provides the following database creation
methods:

AES 256-bit encryption

This option encrypts databases with an AES 256-bit algorithm. Strong encryption provides security against
skilled and determined attempts to gain access to the data. You do not need any special configuration to
use AES encryption on your device.
FIPS 140-2 certified AES 256-bit encryption

Encryption libraries certified to comply to the FIPS 140-2 computer security standard Security
Requirements for Cryptographic Modules are provided under a separate license. FIPS-certified AES
encryption requires that you configure your device appropriately.

Encryption keys should contain a combination of characters, numbers, and special symbols to be effective.
Long encryption keys reduce the chances of someone guessing the key.

 Note
After the database is encrypted, the encryption key cannot be recovered.

Using SQL Central wizards, you can specify UltraLite database encryption options during creation by clicking
the Encrypt the database option and then clicking Use strong encryption. Select one of the AES algorithms and
then enter an encryption key.

Using the ulinit utility, you can specify encryption using the -e option. Use the --fips option to specify whether
to use FIPS-certified encryption. Specify the encryption key with the -k (--key) option.

UltraLite API encryption options are available when creating a database.

 Caution
You can change the encryption key after the database has been created but only under extreme caution.

This operation is costly and is non-recoverable. You can lose your database entirely if your operation
terminates mid-course.

For strongly encrypted databases, store a copy of the key in a safe location. If you lose the encryption key,
there is no way to access the data, even with the assistance of Technical Support. The database must be
discarded and you must create a new database.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 23

The DBKEY parameter must be supplied when connecting to the database; otherwise, the connections fail.
Encryption keys should be treated as sensitive information.

Database Obfuscation

This option provides protection against casual attempts to access data in the database but does not provide as
much security as strong encryption. Obfuscation has a minimal performance impact. You do not need any
special configuration to use simple obfuscation on your device.

 Note
Consider the effects of database cache size when choosing to encrypt or obfuscate databases. There is an
overhead increase between 5-10%, which can result in decreased performance. The precise effect on
performance depends on the size of your cache. If your cache is too small, encryption can add significant
overhead. However, if your cache is sufficiently large, you may not experience any difference at all.

To obfuscate data, specify obfuscate=1 as a database creation parameter when you create your database.
End users do not need to supply a corresponding connection parameter.

To obfuscate data with the UltraLiteJ API, use the ConfigPersistent.enableObfuscation method during
database creation.

Transport Layer Security (TLS)

MobiLink transport layer security is an inherent feature of the MobiLink HTTPS protocol. When using HTTPS
and UltraLite clients, you can specify trusted certificates and certificate fields using network protocol options.
There are two ways to specify trusted root certificates: using the UltraLite Initialize Database utility (ulinit) or
the trusted_certificates protocol option. You can also specify client-side certificate information when using the
UltraLite Load XML to Database utility (ulload).

End-to-End Encryption for macOS and iOS

To use end-to-end encryption when synchronizing macOS and iOS UltraLite clients with a MobiLink server, you
must encapsulate your public keys in a PEM encoded X509 certificate (as opposed to a PEM public key file)
and supply an E2EE private key. To create a PEM encoded X509 certificate with an E2EE private key, use the
certificate creation utility, createcert.

Related Information

UltraLite Database Creation Approaches [page 26]
Cache Size Adjustment for an UltraLite Database [page 569]

24 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite Network Protocol Options [page 122]
Apple iOS and macOS Considerations [page 646]
Separately Licensed Components
Configuring UltraLite Clients to Use Transport Layer Security [page 25]
UltraLite obfuscate Creation Option [page 165]
UltraLite fips Creation Option [page 159]
UltraLite Database Properties [page 203]
UltraLite DBKEY Connection Parameter [page 192]
UltraLite Initialize Database Utility (ulinit) [page 227]
Certificate Creation Utility (createcert)
UltraLite Load XML to Database Utility (ulload) [page 234]

1.3 Configuring UltraLite Clients to Use Transport Layer
Security

UltraLite clients can be configured to use transport layer security over a TCP/IP or HTTPS protocol.

Prerequisites

You must be using a TCP/IP or HTTPS protocol.

Context

MobiLink transport layer security is an inherent feature of the MobiLink HTTPS protocol. If you use HTTPS and
UltraLite clients, you can specify trusted certificates and certificate fields directly as network protocol options.
There are two ways to specify trusted root certificates: using the UltraLite Initialize Database utility or the
trusted_certificates protocol option.

Procedure

1. Specify the TCP/IP or HTTPS protocol for synchronization. The keyword for secure TCP/IP is tls.
2. Specify TCP/IP or HTTPS protocol options.

The certificate_company, certificate_unit, and certificate_name protocol options are used to verify
certificate fields.

You can also specify the trusted_certificates HTTPS protocol option, which overrides any trusted
certificate information embedded in the UltraLite database.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 25

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/81552fcf6ce21014b634eaf8cdc2b48a.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8141d1926ce21014b400d0c51435d3d3.html

Results

The UltraLite client is configured to use transport layer security over either an HTTPS or TCP/IP protocol.

Example

The following example is in C/C++ UltraLite. To specify tls, change HTTPS to tls.

auto ul_sync_info synch_info; conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("ul_default");
...
synch_info.stream = "https"; ...

auto ul_sync_info synch_info; ...
synch_info.stream = "https";
synch_info.stream_parms = TEXT(
 "port=9999;
 certificate_company=SAP;
 certificate_unit=IAS; certificate_name=MobiLink");

auto ul_sync_info synch_info; ...
synch_info.stream = "https";
synch_info.stream_parms = TEXT(
 "port=9999;
 trusted_certificates=\rsaroot.crt;
 certificate_company=SAP;
 certificate_unit=IAS; certificate_name=MobiLink");

Related Information

MobiLink Client/Server Communications Encryption
MobiLink Client Configuration to Use Transport Layer Security

1.4 UltraLite Database Creation Approaches

There are three common types of database creation methods:

• Desktop creation methods with UltraLite administration tools designed for database creation.
• On-device creation methods with UltraLite APIs.

On-device creation methods are primarily described in each API specific UltraLite programming book.

26 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81a4e9306ce21014aca18bb61eea6e96.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81a4cf556ce21014992fffdd28e9b161.html

• A Central Administration remote task, configured to create an UltraLite database on a device.

Once the database is created, you can connect to it and build tables and other database objects.

In this section:

Creating an UltraLite Database with the Create Database Wizard [page 28]
Create a database using SQL Central.

UltraLite Database Creation Using a Command Prompt [page 29]
There are several utilities you can use to create a database at a command prompt.

UltraLite Database Creation Using a MobiLink Synchronization Model [page 29]
To simplify development, MobiLink includes a Create Synchronization Model Wizard to create your
UltraLite database and server-side synchronization logic.

UltraLite Database Creation Through Central Administration of Remote Databases [page 30]
MobiLink provides a create database command that allows you to create an UltraLite database.

Creating an UltraLite Database from an XML File [page 30]
Use XML as an intermediate format for managing your UltraLite database.

UltraLite Database Creation on a First Connection [page 32]
You can program your application to create a new UltraLite database if one cannot be detected at
connection time. The application can then use SQL to create tables, indexes, foreign keys, and so on. To
populate the database, synchronize with a consolidated database.

How to Access Creation Option Values [page 32]
You cannot change creation option values after you have created a database. However, you can view the
corresponding database properties in SQL Central.

UltraLite Character Sets [page 32]
The results of comparisons on strings, and the sort order of strings, in part depends on the character
set, collation, and encoding properties of the database.

Database Security [page 35]
You can encrypt or obfuscate your databases. Encryption provides secure representation of the data in
the database whereas obfuscation only prevents casual observation of the contents of the database.

Related Information

Accessing Database Options [page 45]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 27

1.4.1 Creating an UltraLite Database with the Create Database
Wizard

Create a database using SQL Central.

Context

Choose this method if you want help navigating the available database creation options. This wizard simplifies
your choices by restricting what you can configure based on the target platform(s) you select. Once the
database is created, it displays the command line syntax that you can record and use with the ulinit utility.

Procedure

1. Click Start Programs SQL Anywhere 17 Administration Tools SQL Central .

2. Click Tools UltraLite 17 Create Database .
3. Follow the instructions in the Create Database Wizard.

Results

The database is created.

Next Steps

You can now connect to the database and build tables and other database objects.

Related Information

UltraLite Initialize Database Utility (ulinit) [page 227]

28 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.4.2 UltraLite Database Creation Using a Command Prompt

There are several utilities you can use to create a database at a command prompt.

• Use the ulinit utility to create a new, empty UltraLite database or one sourced from a SQL Anywhere
reference database schema. With this utility, you can include utility options to configure the database.

• Use the ulload utility if you have an XML file that will serve as the source point for the schema and/or data
of your new UltraLite database.

• Central Administration: Choose this method if you have a deployment where the MobiLink Agent is
configured on all your deployed devices, or you are unable to deploy your initial UltraLite database with
your application. You can configure a remote task to create a new UltraLite database on the device. This
database can then be managed centrally by an administrator.s

Create a New UltraLite Database (Command Line)

Run the ulinit utility specifying the new UltraLite database file to accept the defaults:

ulinit test.udb

Related Information

Conversion from a SQL Anywhere Database to an UltraLite Database [page 37]
Manage Remote Databases
Creating an UltraLite Database from an XML File [page 30]
UltraLite Initialize Database Utility (ulinit) [page 227]

1.4.3 UltraLite Database Creation Using a MobiLink
Synchronization Model

To simplify development, MobiLink includes a Create Synchronization Model Wizard to create your UltraLite
database and server-side synchronization logic.

Choose this method if you are creating a synchronization system with remote UltraLite databases and a
centralized consolidated database.

Once you have created your model, you can work in MobiLink Model mode in SQL Central to customize your
synchronization model before you deploy it. When the model is ready, you can then deploy it to generate the
scripts and tables required for your synchronization application.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 29

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c1eba76ce210148f1dfa74aa587775.html

Related Information

MobiLink Plug-in for SQL Central

1.4.4 UltraLite Database Creation Through Central
Administration of Remote Databases

MobiLink provides a create database command that allows you to create an UltraLite database.

Related Information

Manage Remote Databases
Create Database Command

1.4.5 Creating an UltraLite Database from an XML File

Use XML as an intermediate format for managing your UltraLite database.

Prerequisites

UltraLite cannot use an arbitrary XML file. The %SQLANY17%\Bin32 and %SQLANY17%\Bin64 directories
contains a usm.xsd file, containing the schema definition. Use this file to review the XML format.

Context

You can use XML to:

• Load data into a new database with a different set of database properties/options.
• Upgrade the schema from a database created by a previous version of UltraLite.
• Create a text version of your UltraLite database.

Procedure

1. Save the XML file to a directory of your choosing. You can either:

30 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b786176ce2101484e0ba81e24eedcd.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c1eba76ce210148f1dfa74aa587775.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c8c8ff6ce210148430cd6521f55486.html

• Export/unload a database to an XML file. If you are unloading a SQL Anywhere database, use any of the
supported export methods.

• Take XML output from another source (that source could be another relational database or even a web
site where transactions are recorded to a file). You must always ensure that the format of the XML
meets the UltraLite requirements.

2. Run the ulload utility, including any necessary options.

Results

The database is created.

Example

To create a new UltraLite database in the file sample.udb from the table formats and data in sample.xml, run
the following command:

ulload -c DBF=sample.udb sample.xml

Next Steps

You can now connect to the database and build tables and other database objects.

Related Information

Relational Data Exported as XML
UltraLite Database Creation Using a Command Prompt [page 29]
Conversion from a SQL Anywhere Database to an UltraLite Database [page 37]
UltraLite Upgrades
Creating an UltraLite Database with the Create Database Wizard [page 28]
UltraLite Load XML to Database Utility (ulload) [page 234]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 31

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/819b7f1c6ce210148462dc22197f1d0b.html
https://help.sap.com/viewer/a3e900ad39b94d689987e838835f39fe/17.0.01/en-US/815959406ce210149981f931630bf790.html

1.4.6 UltraLite Database Creation on a First Connection

You can program your application to create a new UltraLite database if one cannot be detected at connection
time. The application can then use SQL to create tables, indexes, foreign keys, and so on. To populate the
database, synchronize with a consolidated database.

Considerations

By adding the additional database creation and SQL code, your application size can grow considerably.
However, this option can simplify deployment because you only need to deploy the application to the device. In
some pre-production development cycles, you may want to delete and reconstruct the database on your device
for testing purposes.

1.4.7 How to Access Creation Option Values

You cannot change creation option values after you have created a database. However, you can view the
corresponding database properties in SQL Central.

For the UltraLiteJ API, you can use the getCreationString method to view the creation string registered with the
setCreationString method.

For other UltraLite APIs, you can access the database properties programmatically from your UltraLite
application by calling the GetDatabaseProperty function appropriate to the UltraLite API.

1.4.8 UltraLite Character Sets

The results of comparisons on strings, and the sort order of strings, in part depends on the character set,
collation, and encoding properties of the database.

Choosing the correct character set, collation, and encoding properties for your database is primarily
determined by:

• The desired sort order. Choose the collation that best sorts the characters you intend to store in your
database.

• The platform of your device. Requirements among supported devices can vary, and some require that you
use UTF-8 to encode your characters. If you need to support multiple devices, you need to determine
whether a database can be shared.

• If you are synchronizing data, which languages and character sets are supported by the consolidated
database. You must ensure that the character sets used in the UltraLite database and the consolidated
database are compatible. Otherwise, data could be lost or become altered in unexpected ways if
characters in one database's character set do not exist in the other's character set. If you have deployed
UltraLite in a multilingual environment, you should also use UTF-8 to encode your UltraLite database.

32 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

When you synchronize, the MobiLink server converts characters as follows:
1. The UltraLite database characters are converted to Unicode.
2. The Unicode characters are converted into the consolidated database's character set.

In this section:

UltraLite Platform Requirements for Character Set Encoding [page 33]
Each platform has specific character set and encoding requirements.

UltraLite Supported Collations [page 34]
Several CHAR collations are supported in UltraLite.

Related Information

Character Sets
Character Set Considerations
Database Security [page 35]
UltraLite collation Creation Option [page 150]
UltraLite utf8_encoding Creation Option [page 180]
UltraLite Connection Parameters [page 181]
UltraLite case Creation Option [page 147]

1.4.8.1 UltraLite Platform Requirements for Character Set
Encoding

Each platform has specific character set and encoding requirements.

Microsoft Windows Desktop and Microsoft Windows Mobile

When using a UTF-8 encoded database on Microsoft Windows, you should pass wide characters to the
database. If you use UTF-8 encoding on these platforms, UltraLite expects that non-wide string parameters are
UTF-8 encoded, which is not a natural character set to use on Microsoft Windows. The exception is for
connection strings, where string parameters are expected to be in the active code page. However, by using
wide characters, you can avoid this complication.

Related Information

Character Sets
Character Set Considerations
Database Security [page 35]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 33

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcd0d486c5f10148649c1830273e14b.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81be94ad6ce21014b0ddcf5259dc40c4.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcd0d486c5f10148649c1830273e14b.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81be94ad6ce21014b0ddcf5259dc40c4.html

UltraLite utf8_encoding Creation Option [page 180]
UltraLite Connection Parameters [page 181]

1.4.8.2 UltraLite Supported Collations

Several CHAR collations are supported in UltraLite.

You can also generate the list by executing the following command:

ulinit -Z

Collation label Description

1250LATIN2 Code Page 1250, Windows Latin 2, Central/Eastern Euro
pean

1250POL Code Page 1250, Windows Latin 2, Polish

1251CYR Code Page 1251, Windows Cyrillic

1252LATIN1 Code Page 1252, Windows Latin 1, Western

1252NOR Code Page 1252, Windows Latin 1, Norwegian

1252SPA Code Page 1252, Windows Latin 1, Spanish

1252SWEFIN Code Page 1252, Windows Latin 1, Swedish/Finnish

1253ELL Code Page 1253, Windows Greek, ISO8859-7 with extensions

1254TRK Code Page 1254, Windows Turkish, ISO8859-9 with exten
sions

1254TRKALT Code Page 1254, Windows Turkish, ISO8859-9 with exten
sions, I-dot e als I-no-dot

1255HEB Code Page 1255, Windows Hebrew, ISO8859-8 with exten
sions

1256ARA Code Page 1256, Windows Arabic, ISO8859-6 with exten
sions

1257LIT Code Page 1257, Windows Baltic Rim, Lithuanian

874THAIBIN Code Page 874, Windows Thai, ISO8859-11, binary ordering

932JPN Code Page 932, Japanese Shift-JIS with Microsoft exten
sions

936ZHO Code Page 936, Simplified Chinese, PRC GBK

949KOR Code Page 949, Korean KS C 5601-1987 Encoding, Wansung

950ZHO_HK Code Page 950, Traditional Chinese, Big 5 Encoding with
HKSCS

950ZHO_TW Code Page 950, Traditional Chinese, Big 5 Encoding

EUC_CHINA Simplified Chinese, GB 2312-80 Encoding

34 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Collation label Description

EUC_JAPAN Japanese EUC JIS X 0208-1990 and JIS X 0212-1990 Encod
ing

EUC_KOREA Code Page 1361, Korean KS C 5601-1992 8-bit Encoding, Jo
hab

EUC_TAIWAN Code Page 964, EUC-TW Encoding

ISO1LATIN1 ISO8859-1, ISO Latin 1, Western, Latin 1 Ordering

ISO9LATIN1 ISO8859-15, ISO Latin 9, Western, Latin 1 Ordering

ISO_1 ISO8859-1, ISO Latin 1, Western

ISO_BINENG Binary ordering, English ISO/ASCII 7-bit letter case map
pings

UTF8BIN UTF-8, 8-bit multibyte encoding for Unicode, binary ordering

1.4.9 Database Security

You can encrypt or obfuscate your databases. Encryption provides secure representation of the data in the
database whereas obfuscation only prevents casual observation of the contents of the database.

By default, databases are not encrypted or obfuscated. Text and binary columns can be read when using a
viewing tool such as a hex editor. Consider the following options if you do not want your data stored as plain
text:

Obfuscation

This option provides protection against casual attempts to access data in the database but does not
provide as much security as strong encryption. Obfuscation has a minimal performance impact. You do not
need any special configuration to use simple obfuscation on your device.
AES 256-bit encryption

This option encrypts databases with an AES 256-bit algorithm. Strong encryption provides security against
skilled and determined attempts to gain access to the data. You do not need any special configuration to
use AES encryption on your device.
FIPS 140-2 certified AES 256-bit encryption

Encryption libraries certified to comply to the FIPS 140-2 computer security standard Security
Requirements for Cryptographic Modules are provided under a separate license. FIPS-certified AES
encryption requires that you configure your device appropriately.

Database obfuscation

To obfuscate data, specify obfuscate=1 as a database creation parameter when you create your database.
End users do not need to supply a corresponding connection parameter.

To obfuscate data with the UltraLiteJ API, use the ConfigPersistent.enableObfuscation method during
database creation.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 35

Database encryption

Encryption keys should contain a combination of characters, numbers, and special symbols to be effective.
Long encryption keys reduce the chances of someone guessing the key.

 Note
After the database is encrypted, the encryption key cannot be recovered.

Using SQL Central wizards, you can specify UltraLite database encryption options during creation by clicking
the Encrypt the database option and then clicking Use strong encryption. Select one of the AES algorithms and
then enter an encryption key.

Using the ulinit utility, you can specify encryption using the -e option. Use the --fips option to specify whether
to use FIPS-certified encryption. Specify the encryption key with the -k (--key) option.

UltraLite API encryption options are available when creating a database.

 Caution
You can change the encryption key after the database has been created but only under extreme caution.

This operation is costly and is non-recoverable. You can lose your database entirely if your operation
terminates mid-course.

For strongly encrypted databases, store a copy of the key in a safe location. If you lose the encryption key,
there is no way to access the data, even with the assistance of Technical Support. The database must be
discarded and you must create a new database.

The DBKEY parameter must be supplied when connecting to the database; otherwise, the connections fail.
Encryption keys should be treated as sensitive information.

Related Information

Separately Licensed Components
Cache Size Adjustment for an UltraLite Database [page 569]
UltraLite obfuscate Creation Option [page 165]
UltraLite DBKEY Connection Parameter [page 192]
UltraLite fips Creation Option [page 159]
UltraLite Initialize Database Utility (ulinit) [page 227]

36 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/81552fcf6ce21014b634eaf8cdc2b48a.html

1.5 Conversion from a SQL Anywhere Database to an
UltraLite Database

Create an UltraLite database from a SQL Anywhere reference database by running the ulinit utility with the -a
option. The new database is created with the same settings as those in the reference database where possible.

The SQL Anywhere reference database acts as a database template, and uses the following settings to create
an UltraLite database schema:

• Database configuration, such as the collation sequence
• Table definitions
• Synchronization publications

You can include data, and choose the columns, tables, and indexes as part of a publication in the reference
database.

 Note
To initialize an UltraLite database from an RDBMS other than SQL Anywhere, use the Create
Synchronization Model Wizard in SQL Central, and connect to a consolidated database when prompted to
obtain the schema information.

Conversion Considerations

Prior to running the ulinit utility, consider if the following reference database tasks are required:

Add tables, keys, indexes, and synchronization publications as needed

Add the tables and set primary keys as needed. You can also assign foreign key relationships that you need
within your UltraLite application.

Indexes can improve performance dramatically, particularly on slow devices. Primary key columns are
automatically indexed, but other types of columns are not.

 Note
If your UltraLite application frequently retrieves information in a particular order, consider adding an
index to your reference database specifically for this purpose.

Use synchronization publications to synchronize different tables at different times. You can use multiple
synchronization publications to define table subsets and set the synchronization priority with them.
Update database options or table schema that may have undesired effects

For example, if a column in the SQL Anywhere database includes a clause that UltraLite does not support,
the default value is ignored and the UltraLite default is specified for the new database.
Change the collation sequence if it is not supported by UltraLite

UltraLite uses the name of the collation sequence that is defined in the reference database. You can still
choose to use UTF-8 to encode the database by setting the utf8_encoding property.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 37

To see a list of collations and corresponding codepages supported by UltraLite, run ulinit with the -Z option
at a command prompt. If the reference database uses a collation sequence that is not supported, such as
UCA for CHAR collation sequences, change the collation sequence to one that is supported by performing
the following steps:

1. Use the Unload utility to unload the SQL Anywhere reference database.
2. Create a new SQL Anywhere database with a different collation and run the reload.sql script

through Interactive SQL.

Example

The following command creates a new UltraLite database named customer.udb from an existing SQL
Anywhere reference database defined in the MySADb data source. Tables in the reference database are defined
in TestPublication. The created UltraLite database contains all the same database options and tables contained
in TestPublication, and is encrypted with the mykey encryption key.

ulinit -a "DSN=MySADb;UID=JimmyB;PWD=secret" -n TestPublication -k mykey
customer.udb

The following command creates a new UltraLite database named customer.udb from an existing SQL
Anywhere database named MySource.db. The tables and indexes in the created database match those
contained in the Pub1 schema publication. The Pub2 synchronization publication is created in the UltraLite
database.

ulinit -a DBF=MySource.db;UID=JimmyB;PWD=secret customer.udb -n Pub1 -s Pub2

Related Information

UltraLite Tables and Columns [page 53]
When to Use an Index [page 63]
Index Scan Creation and Maintenance [page 570]
UltraLite Database Creation Approaches [page 26]
Publishing Data in UltraLite [page 83]
Unload Utility (dbunload)
UltraLite Initialize Database Utility (ulinit) [page 227]

38 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e16456ce21014b96dc39365129dc6.html

1.6 UltraLite Database Connections

Applications that use a database must establish a connection to that database before transactions can occur.
By connecting to an UltraLite database, you form a channel through which all activity from the application
takes place.

An application can be an UltraLite utility, a connection window, or your own custom application. Each
connection attempt creates a database specific SQL transaction.

In this section:

UltraLite Connection Strings and Parameters [page 39]
A connection string is a set of connection parameters that is passed from an application to the
UltraLite runtime so that a database connection can be defined and established. Some parameters are
always required to open a connection while others are used to adjust database features for a single
connection.

UltraLite Connection Parameters and the ULSQLCONNECT Environment Variable [page 41]
Use the ULSQLCONNECT environment variable to avoid having to supply the same connection
parameters repeatedly to the UltraLite desktop administration tools. Both Interactive SQL and SQL
Central support the ULSQLCONNECT environment variable.

UltraLite File Path Formats in Connection Parameters [page 42]
The physical storage of your device determines whether the database is saved as a file and what
naming conventions you must follow when identifying your database.

Related Information

UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite Connection Parameters [page 181]

1.6.1 UltraLite Connection Strings and Parameters

A connection string is a set of connection parameters that is passed from an application to the UltraLite
runtime so that a database connection can be defined and established. Some parameters are always required
to open a connection while others are used to adjust database features for a single connection.

Connection strings are defined as keyword=value pairs in a semicolon-delimited list. The following example
illustrates a connection string fragment that specifies a database file name, user ID, and password:

DBF=myULdb.udb;UID=JDoe;PWD=token

Methods of supplying these parameters to a database can vary depending on whether you are connecting from
an UltraLite utility or an UltraLite application.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 39

UltraLite command line utilities typically use a connection string if a connection to a database is required.

UltraLite applications can be developed using an UltraLite API to read connection parameter values from a
stored file or in the application code. You can supply fixed connection strings when user authentication is not
required, or prompt users to supply parameter values at connection time.

When a connection string has been assembled, it is passed to the UltraLite runtime for processing. The
connection to the database is granted when the connection attempt is validated. Connection failures can occur
if the database file does not exist, or the authentication was not successful.

UltraLite generates an error when it encounters an unrecognized connection parameter.

Prefixes

You can use a prefix with a connection parameter to specify that a parameter applies only when an application
is running on a particular output. For UltraLite, these prefixes are desktop: and device:.

Restrictions

Any leading and/or trailing spaces in connection string parameter values are ignored. Connection parameter
values cannot include leading single quotes ('), leading double quotes ("), or semicolons (;).

Example

For example, if you use the ulload utility, the following connection string is used to load new XML data into an
existing database. You cannot connect to the database file until you supply this string:

ulload -c "DBF=sample.udb;UID=DBA;PWD=sql" sample.xml

In this section:

Precedence of Connection Parameters for UltraLite Administration Tools [page 41]
UltraLite administration tools follow a specific order of connection parameter precedence:

Related Information

UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite Connection Parameters [page 181]

40 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.6.1.1 Precedence of Connection Parameters for UltraLite
Administration Tools

UltraLite administration tools follow a specific order of connection parameter precedence:

• Device-specific options take precedence over nonspecific options. For example: device:DBF takes
precedence over DBF on Microsoft Windows Mobile devices.

• Desktop-specific options take precedence over nonspecific options. For example: desktop:DBF takes
precedence over DBF on Microsoft Windows.

• If you supply duplicate parameters in a connection string, the last one supplied is used. All others are
ignored.

• Parameters in the connection string take precedence over those supplied in the ULSQLCONNECT
environment variable or a connection object.

• If no value is supplied for both UID and PWD in either the connection string or ULSQLCONNECT, the
defaults of UID=DBA and PWD=sql are assumed.

1.6.2 UltraLite Connection Parameters and the
ULSQLCONNECT Environment Variable

Use the ULSQLCONNECT environment variable to avoid having to supply the same connection parameters
repeatedly to the UltraLite desktop administration tools. Both Interactive SQL and SQL Central support the
ULSQLCONNECT environment variable.

You can set the ULSQLCONNECT environment variable to contain a list of parameters defined as
keyword=value pairs in a semicolon-delimited list.

The supplied values become defaults for the desktop administration tools. If any additional parameters are
required or if you must override default values set with this environment variable, ensure that you set these
values. User-supplied values always take precedence over this environment variable.

Example

In this example, you set the ULSQLCONNECT environment variable to specify a default database file named c:
\database\myfile.udb, a default user demo, and a default password test.

set ULSQLCONNECT=DBF=c:\database\myfile.udb;UID=demo;PWD=test

If you launch Interactive SQL with no arguments, then you will automatically connect to the specified database
using the specified credentials. If you launch SQL Central and connect to an UltraLite database, these
parameters are used to populate the connection dialog.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 41

Related Information

Precedence of Connection Parameters for UltraLite Administration Tools [page 41]

1.6.3 UltraLite File Path Formats in Connection Parameters

The physical storage of your device determines whether the database is saved as a file and what naming
conventions you must follow when identifying your database.

 Note
Use absolute file paths when using the UltraLite engine to support multi-process access to a database
since the engine may be started in different locations.

The DBF parameter is most appropriate when targeting a single deployment platform or when using UltraLite
desktop administration tools. For example:

ulload -c DBF=sample.udb sample.xml

 Note
You can use the UltraLite administration tools to administer databases already deployed to an attached
device.

Otherwise, if you are writing a cross-platform application, use the platform-specific DBF connection
parameters to construct a universal connection string. For example:

Connection = DatabaseManager::OpenConnection("UID=JDoe;PWD=ULdb;device:DBF=
\database\MobileDB.udb;desktop:DBF=DesktopDB.udb")

Platforms Other Than Microsoft Windows Mobile

Either absolute or relative paths are allowed.

Microsoft Windows Mobile

Microsoft Windows Mobile devices require absolute paths.

You can administer a Microsoft Windows Mobile database on either the desktop or the attached device. To
administer a database on a Microsoft Windows Mobile device, ensure you prefix the absolute path with wce:\.
For example, using the ulunload utility:

ulunload -c DBF=wce:\UltraLite\myULdb.udb c:\out\ce.xml

42 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

In this example, UltraLite unloads the database from the Microsoft Windows Mobile device to the ce.xml file in
the Microsoft Windows desktop folder of c:\out.

Related Information

UltraLite DBF Connection Parameter [page 191]

1.7 UltraLite Database Tasks and Features

There are many tasks you perform and features you can use to manage UltraLite databases.

In this section:

Reading Database Properties [page 43]
Inspect the settings of any UltraLite database property.

Accessing Database Options [page 45]
View and change database options to configure database behavior.

UltraLite Event Notifications [page 46]
UltraLite supports events and notifications. A notification is a message that is sent when an event
occurs, providing additional parameter information.

Isolation Levels [page 48]
Isolation levels define the degree to which the operations in one transaction are visible to the
operations in other concurrent transactions.

Validating an UltraLite Database [page 51]
Validate your database using tools such as the Validate Database Wizard in SQL Central, the UltraLite
Validate Database utility, or the ValidateDatabase method in your UltraLite API.

UltraLite Database Back up and Recovery [page 52]
If an application using an UltraLite database stops unexpectedly, the database automatically recovers
to a consistent state when the application is restarted.

1.7.1 Reading Database Properties

Inspect the settings of any UltraLite database property.

Context

Each UltraLite API contains a GetDatabaseProperty method that you can use in your applications to access
database properties.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 43

You can also access database properties by calling the DB_PROPERTY SQL function.

Procedure

1. Using SQL Central, connect to the database.
2. Right-click the database and click Properties.

Results

In the Database Properties window, database properties are listed on the General and Synchronization
Information tabs. On the Synchronization Information tab, the database properties are listed alphabetically by
the property name. To sort database properties by the value, click the Value column.

Related Information

UltraLite Database Properties [page 203]
DB_PROPERTY Function [System] [page 390]
How to Access Creation Option Values [page 32]
UltraLite Character Sets [page 32]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]
UltraLite DBF Connection Parameter [page 191]
UltraLite DBKEY Connection Parameter [page 192]
UltraLite Desktop Connection Parameter Prefix [page 194]
UltraLite Device Connection Parameter Prefix [page 195]
UltraLite MIRROR_FILE Connection Parameter [page 196]
UltraLite PWD Connection Parameter [page 198]
UltraLite RESERVE_SIZE Connection Parameter [page 199]
UltraLite UID Connection Parameter [page 202]

44 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.7.2 Accessing Database Options

View and change database options to configure database behavior.

Context

You can view and change the setting of persistent database options from SQL Central. Temporary UltraLite
database options cannot be viewed or set from SQL Central.

Database options can be set or modified at any time. Temporary database options only persist while the
database is running.

Option values are set by using the SET OPTION SQL statement.

Procedure

1. Using SQL Central, connect to the database.
2. Right-click the database and click Options.
3. To set or reset an option, type a new value in the Value field.
4. Click Set Now or Reset Now to commit the change.

Results

The database option setting is changed and saved.

Related Information

UltraLite Database Options [page 206]
Reading Database Properties [page 43]
SET OPTION Statement [UltraLite] [page 560]
How to Access Creation Option Values [page 32]
UltraLite Character Sets [page 32]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]
UltraLite DBF Connection Parameter [page 191]
UltraLite DBKEY Connection Parameter [page 192]
UltraLite Desktop Connection Parameter Prefix [page 194]
UltraLite Device Connection Parameter Prefix [page 195]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 45

UltraLite MIRROR_FILE Connection Parameter [page 196]
UltraLite PWD Connection Parameter [page 198]
UltraLite RESERVE_SIZE Connection Parameter [page 199]
UltraLite UID Connection Parameter [page 202]

1.7.3 UltraLite Event Notifications

UltraLite supports events and notifications. A notification is a message that is sent when an event occurs,
providing additional parameter information.

Event notifications allow you to provide coordination and signaling between connections or applications
connected to the same database. Notifications are managed in queues: either a connection's default queue or,
optionally, queues that are explicitly created and named. When an event occurs, notifications are sent to
registered queues (or connections).

Each connection manages its own notification queues. Named queues can be created for any connection.

Using predefined system events this feature also provides "triggers" for changes to data, such as when a
change is made to a table, for example, or signaling when a synchronization has occurred. Predefined events
include:

• Commit
• SyncComplete
• TableModified

UltraLite has system events and events can also be user-defined. User events may also be defined and
triggered by an application.

APIs for events and notifications are provided in each supported language. Additionally, a SQL function is
provided to access the API functionality.

Events

Event Occurrence

Commit Signaled upon completion of a commit.

SyncComplete Signaled upon completion of a sync.

46 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Event Occurrence

TableModified Triggered when rows in a table are inserted, updated, or de
leted. One event is signaled per request, no matter how
many rows were affected by the request when registering for
the event.

The object_name parameter specifies the table to monitor.
A value of "*" means all tables in the database.

The table_name notification parameter is the name of the
modified table.

note_info.event_name = "SyncComplete"; note_info.event_name_len = 12; note_info.parms_type = ul_ev_note_info::P_NONE;

note_info.event_name = "TableModified"; note_info.event_name_len = 13;
note_info.parms_type = ul_ev_note_info::P_TABLE_NAME;
note_info.parms = table->name->data; note_info.parms_len = table->name->len;

Working with Queues

Queues can be created and destroyed.

CreateNotificationQueue creates an event notification queue for the current connection. Queue names are
scoped per-connection, so different connections can create queues with the same name. When an event
notification is sent, all queues in the database with a matching name receive a separate instance of the
notification. Names are case insensitive. A default queue is created on demand for each connection if no queue
is specified. This call fails with an error if the name already exists for the connection or isn't valid.

DestroyNotificationQueue destroys the given event notification queue. A warning is signaled if unread
notifications remain in the queue. Unread notifications are discarded. A connection's default event queue, if
created, is destroyed when the connection is closed.

Working with events

DeclareEvent declares an event which can then be registered for and triggered. UltraLite predefines some
system events triggered by operations on the database or the environment. The event name must be unique
and names are case insensitive. Returns true if the event was declared successfully, false if the name is already
used or invalid.

RegisterForEvent registers a queue to receive notifications of an event. If no queue name is supplied, the default
connection queue is implied, and created if required. Certain system events allow specification of an object
name to which the event applies. For example, the TableModified event can specify the table name. Unlike
SendNotification, only the specific queue registered will receive notifications of the event; other queues with

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 47

the same name on different connections will not (unless they are also explicitly registered). Returns true if the
registration succeeded, false if the queue or event does not exist.

TriggerEvent triggers an event and sends a notification to all registered queues. Returns the number of event
notifications sent. Parameters may be supplied as name=value; pairs.

Working with Notifications

SendNotification sends a notification to all queues in the database matching the given name (including any
such queue on the current connection). This call does not block. Use the special queue name "*" to send to all
queues. Returns the number of notifications sent (the number of matching queues). Parameters may be
supplied as name=value; pairs.

GetNotification reads an event notification. This call blocks until a notification is received or until the given wait
period expires. To cancel a wait, send another notification to the given queue or use CancelGetNotification.
After reading a notification, use ReadNotificationParameter to retrieve additional parameters. Returns true if
an event was read, false if the wait period expired or was canceled.

GetNotificationParameter gets a named parameter for the event notification just read by GetNotification. Only
the parameters from the most-recently read notification on the given queue are available. Returns true if the
parameter was found, false if the parameter was not found.

CancelGetNotification cancels any pending GetNotification calls on all queues matching the given name.
Returns the number of affected queues (not necessarily the number of blocked reads).

Other Considerations

• Notification queue and event names are limited to 32 characters.
• To govern system resources, the number of notifications is limited. When this limit is exceeded,

SQLE_EVENT_NOTIFICATION_QUEUE_FULL is signaled and the pending notification is discarded.

1.7.4 Isolation Levels

Isolation levels define the degree to which the operations in one transaction are visible to the operations in
other concurrent transactions.

UltraLite uses the default isolation level, read_committed, for connections. The default UltraLite isolation level
aids data consistency by isolating uncommitted rows.

48 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Isolation level Characteristics

0 - read_uncommitted • Allow dirty reads, non-repeatable reads, and phantom
rows.

• No guarantee that concurrent transactions will not
modify row or roll back changes to rows

1 - read_committed • Allow non-repeatable reads and phantom rows

• Prevent dirty reads

• No guarantee that query results will not change during
transactions

You can change the isolation level from read_committed to read_uncommitted using one of following
approaches:

• Use the SET OPTION SQL statement and the isolation_level database option.
For example, the following statement sets the isolation level to read uncommitted:

SET OPTION isolation_level = 'READ_UNCOMMITTED'

• For the UltraLite C++ API, use the ULConnection.SetDatabaseOption method to change the isolation level.
For the UltraLite.NET API, use the ULConnection.BeginTransaction or
ULDatabaseSchema.SetDatabaseOption methods to create a transaction with the read_committed
isolation level.
For the UltraLiteJ API, use the Connection.setOption method.

In this section:

Characteristics of the read_uncommitted Isolation Level [page 49]
Several side effects are possible when UltraLite operates at an isolation_level of 0 (read_uncommitted).

Related Information

SET OPTION Statement [UltraLite] [page 560]
UltraLite isolation_level Option [page 211]

1.7.4.1 Characteristics of the read_uncommitted Isolation
Level

Several side effects are possible when UltraLite operates at an isolation_level of 0 (read_uncommitted).

• Applications can read uncommitted data (dirty reads). In this scenario, transactions may access rows in
the database that are not committed and may still get rolled back by another transaction. This phenomena
can result in phantom rows (rows that get added after the original query, making the result set returned in
a repeated, duplicate query different).

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 49

• Applications can perform non-repeatable reads. In this scenario, an application reads a row from the
database, and then goes on to perform other operations. Then a second application updates/deletes the
row and commits the change. If the first application attempts to re-read the original row, it receives either
the updated information or discovers that the original row was deleted.

Example

Consider two connections, A and B, each with their own transactions.

1. As connection A works with the result set of a query, UltraLite fetches a copy of the current row into a
buffer.

 Note
Reading or fetching a row does not lock the row. If connection A fetches but does not modify a row,
connection B can still modify the row.

2. As A modifies the current row, it changes the copy in the buffer. The copy in the buffer is written back into
the database when connection A calls an Update method or closes the result set.

3. A write lock is placed on the row to prevent other transactions from modifying it. This modification is
uncommitted, until connection A performs a commit.

4. Depending on the modification, if connection B fetches the current row, it may experience the following:

Connection A's modification Result1

Row has been deleted. Connection B gets the next row in the result set.

Row has been modified. Connection B gets the latest copy of the row.

1 Queries used by Connection A and B do not contain temporary tables. Temporary tables can cause other
side effects.

Related Information

Tutorial: Understanding Dirty Reads
Tutorial: Understanding Phantom Rows
Tutorial: Understanding Non-repeatable Reads
SET OPTION Statement [UltraLite] [page 560]
UltraLite isolation_level Option [page 211]

50 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/3bf0a3b26c5f101496bcb422c0713f55.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/3bf0b34f6c5f10149c2ba462b018a888.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/3bf0abd96c5f10148d339828bb901d0f.html

1.7.5 Validating an UltraLite Database

Validate your database using tools such as the Validate Database Wizard in SQL Central, the UltraLite Validate
Database utility, or the ValidateDatabase method in your UltraLite API.

Context

Database file corruption may not be reported until the database server tries to access the affected part of the
database.

 Caution
Database validation should be performed while no connections are making changes to the database;
otherwise, errors indicating database corruption might be reported even though no corruption actually
exists.

You can validate an UltraLite database using any of the following methods:

• The Validate Database Wizard in SQL Central.
• The ulvalid command line utility.
• The ValidateDatabase method in your UltraLite API.

Procedure

1. In the left pane of SQL Central, click the UltraLite database.

2. Click File Validate Database .
3. Follow the instructions in the Validate Database Wizard.

Results

The database is validated.

Related Information

UltraLite Validate Database Utility (ulvalid) [page 246]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 51

1.7.6 UltraLite Database Back up and Recovery

If an application using an UltraLite database stops unexpectedly, the database automatically recovers to a
consistent state when the application is restarted.

All committed transactions flushed to memory before the unexpected failure are present in the database. All
transactions not flushed at the time of the failure are rolled back.

An UltraLite database does not use a transaction log to perform recovery. Instead, UltraLite stores state
information for every row to determine the fate of a row when recovering.

Backups

UltraLite provides protection against system failures, but not from media failures. The best way to make a
backup of an UltraLite application is to synchronize with a consolidated database. To restore an UltraLite
database, start with an empty database and populate it from the consolidated database through
synchronization.

Related Information

UltraLite Database Row State Management [page 584]
Flush Single or Grouped Transactions [page 586]
UltraLite as a MobiLink Client [page 72]

1.8 UltraLite Database Schemas

The logical framework of the database is known as a schema.

UltraLite Database Schemas

You can upgrade the schema of an UltraLite database with the appropriate Data Definition Language (DDL)
statements or by using the ALTER DATABASE SCHEMA FROM FILE statement to modify the schema definition
using a SQL script.

Schema changes can take a considerable amount of time. For example, all rows in the associated table must be
updated when the column type is changed. DDL statements successfully execute when there are not any:

• Uncommitted transactions.
• Other active uses of the database, such as synchronization, prepared but unreleased statements, or

executing database operations.

52 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

When the DDL statement is executing, any other attempt to use the database is blocked until the DDL
statement completes the schema change.

In this section:

UltraLite Tables and Columns [page 53]
Tables are used to store data and define the relationships for data in them. Tables consist of rows and
columns. Each column carries a particular kind of information, such as a phone number or a name,
while each row specifies a particular entry.

UltraLite Indexes [page 62]
An index is a set of pointers to rows in a table based on the order of the values of data in one or more
table columns.

UltraLite Users [page 66]
A typical UltraLite database contains one user ID and password. UltraLite databases are created with a
default user ID of DBA and default password of sql unless otherwise specified.

Related Information

Deploying UltraLite Database Schema Upgrades [page 131]
ALTER DATABASE SCHEMA FROM FILE Statement [UltraLite] [page 520]

1.8.1 UltraLite Tables and Columns

Tables are used to store data and define the relationships for data in them. Tables consist of rows and columns.
Each column carries a particular kind of information, such as a phone number or a name, while each row
specifies a particular entry.

When you first create an UltraLite database, the only tables you will see are the system tables. System tables
hold the UltraLite schema. You can hide or show these tables from SQL Central as needed.

You can then add new tables as required by your application. You can also browse data in those tables, and
copy and paste data among existing tables in the source database or even among other open destination
databases.

In UltraLite, you can only create base tables, which you declare to hold persistent data. UltraLite does not
support global temporary or declared temporary tables.

In this section:

Row Packing and Table Definitions [page 54]
UltraLite works with rows in two formats: unpacked rows and packed rows.

Creating UltraLite Tables [page 55]
Create base tables to hold your persistent relational data.

Adding a Column to an UltraLite Table [page 56]
Add column to an UltraLite table after it has been created.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 53

Altering UltraLite Column Definitions [page 57]
Change the structure of column definitions for a table by altering various column attributes or deleting
columns entirely.

Deleting UltraLite Tables [page 58]
Delete tables when you no longer need them.

Browsing the Information in UltraLite Tables [page 59]
View the data held within the tables of an UltraLite database.

Data Copying and Pasting to or from UltraLite Databases [page 60]
With SQL Central you can copy and paste and drag and drop. This data transferral allows you to share
or move objects among one or more databases. By copying and pasting or dragging and dropping you
can share data described by the table that follows.

Viewing Entity-relationship (ER) Diagrams in SQL Central [page 61]
View and configure an entity-relationship (ER) diagram of the tables in an UltraLite database by using
SQL Central.

Related Information

Database Creation
UltraLite System Tables [page 248]

1.8.1.1 Row Packing and Table Definitions

UltraLite works with rows in two formats: unpacked rows and packed rows.

Unpacked rows

are the uncompressed format. Each row must be unpacked before individual column values can be read or
written.
Packed rows

are the compressed representation of the unpacked row, where each of the column values is compressed
so that the entire row takes up as little memory as possible. The size of a packed row depends on the
values in each column: for example, two rows can belong to the same table, but can differ significantly in
their packed size. Note also that LONG BINARY and LONG VARCHAR columns are stored separate from
the packed row.

UltraLite has a limitation that a packed row must fit on a database page. Since LONG BINARY and LONG
VARCHAR columns are not stored with the packed row, they can exceed the page size.

It is important to understand that table definitions describe the row before the UltraLite runtime packs the
data. Because the size of a packed row depends on the values in each column, you cannot readily pre-
determine from the table definition whether the packed row requirement is satisfied. For this reason, UltraLite
allows you to define a table where an unpacked row would not fit on a page. To know if a row fits on a page, you
must try inserting or updating the row itself; if a row does not fit, UltraLite detects and reports this error.

54 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/812e21f56ce210148c24d899960db404.html

 Note
You cannot declare tables to be any large size. UltraLite maintains a declared table row size limit of 64 KB. If
you try to define a table where an unpacked row can exceed this maximum, UltraLite generates a SQL error
code of SQLE_MAX_ROW_SIZE_EXCEEDED (-1132).

Related Information

Database Creation
UltraLite System Tables [page 248]
UltraLite page_size Creation Option [page 166]

1.8.1.2 Creating UltraLite Tables

Create base tables to hold your persistent relational data.

Prerequisites

Tables in UltraLite applications must include a primary key. Primary keys are also required during MobiLink
synchronization, to associate rows in the UltraLite database with rows in the consolidated database.

Procedure

1. Using SQL Central, connect to the UltraLite database.

2. In the left pane, right-click Tables and click New Table .
3. In the What Do You Want To Name The New Table field, type the new table name.
4. Click Finish.
5. From the File menu, click Save.

Results

The table is created. The table and any data it contains exist until you explicitly delete the data or drop the
table.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 55

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/812e21f56ce210148c24d899960db404.html

Next Steps

Add columns or create indexes.

Related Information

Adding a Column to an UltraLite Table [page 56]
CREATE TABLE Statement [UltraLite] [page 537]

1.8.1.3 Adding a Column to an UltraLite Table

Add column to an UltraLite table after it has been created.

Prerequisites

If the table already holds data, you can only add a column if the column definition includes a default value or
allows NULL values.

Procedure

1. Using SQL Central, connect to the UltraLite database.
2. In the left pane, double-click Tables.
3. Double-click a table.

4. Click the Columns tab, right-click the white space below the table and click New Column .
5. Set the attributes for the new column and then save your changes.

Results

The column is added to the table.

Related Information

SQL Data Types [page 288]

56 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Column Data Type Considerations
CREATE TABLE Statement [UltraLite] [page 537]
ALTER TABLE Statement [UltraLite] [page 524]

1.8.1.4 Altering UltraLite Column Definitions

Change the structure of column definitions for a table by altering various column attributes or deleting
columns entirely.

Prerequisites

The modified column definition must suit the requirements of any data already stored in the column. For
example, you cannot alter a column to disallow NULL if the column already has a NULL entry.

Procedure

1. Using SQL Central, connect to the UltraLite database.
2. In the left pane, double-click Tables.
3. Double-click a table.
4. Click the Columns tab and alter the column attributes.
5. From the File menu, click Save Table.

Results

The table is saved with the new column attributes.

Related Information

SQL Data Types [page 288]
Column Data Type Considerations
ALTER TABLE Statement [UltraLite] [page 524]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 57

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813acaed6ce21014902784341f4766de.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813acaed6ce21014902784341f4766de.html

1.8.1.5 Deleting UltraLite Tables

Delete tables when you no longer need them.

Prerequisites

You can drop any table if the table:

• Is not being used as an article in a publication.
• Does not have any columns that are referenced by another table's foreign key.

In these cases, you must change the publication or delete the foreign key before you can successfully delete the
table.

Procedure

1. Using SQL Central, connect to the UltraLite database.
2. In the left pane, double-click Tables.
3. Right-click a table and click Delete.
4. Click Yes.

Results

The table is deleted.

Related Information

DROP TABLE Statement [UltraLite] [page 548]

58 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.8.1.6 Browsing the Information in UltraLite Tables

View the data held within the tables of an UltraLite database.

Prerequisites

The database must be connected and selected.

Context

Tables can be user tables or system tables. You can filter tables by showing and hiding system tables from your
current view of the database. Because UltraLite does not have a concept of ownership, all users can browse all
tables.

Procedure

1. Using SQL Central, connect to the UltraLite database.
2. To view a list of tables, double-click Tables.
3. To view table data, double-click a table and click the Data tab in the right pane.

Results

The tables and data are displayed.

Related Information

UltraLite System Tables [page 248]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 59

1.8.1.7 Data Copying and Pasting to or from UltraLite
Databases

With SQL Central you can copy and paste and drag and drop. This data transferral allows you to share or move
objects among one or more databases. By copying and pasting or dragging and dropping you can share data
described by the table that follows.

Target Result

Another UltraLite or SQL Anywhere database. A new object is created, and the original object's code is cop
ied to the new object.

The same UltraLite database. A copy of the object is created; you must rename the new
object.

 Note
You can copy data from a database opened in MobiLink and paste it into an UltraLite database. However,
you cannot paste UltraLite data into a database opened in MobiLink.

SQL Central

When you copy any of the following objects in the UltraLite plug-in, the SQL for the object is also copied to the
clipboard. You can paste this SQL into other applications, such as Interactive SQL or a text editor. For example,
if you copy an index in SQL Central and paste it into a text editor, the CREATE INDEX statement for that index
appears. You can copy the following objects in the UltraLite plug-in:

• Articles
• Columns
• Foreign keys
• Indexes
• Publications
• Tables
• Unique constraints

Interactive SQL

With Interactive SQL you can also copy data from a result set into another object.

• Use the SELECT statement results into a named object.
• Use the INSERT statement to insert a row or selection of rows from elsewhere in the database into a table.

60 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

INSERT Statement [UltraLite] [page 552]
SELECT Statement [UltraLite] [page 558]

1.8.1.8 Viewing Entity-relationship (ER) Diagrams in SQL
Central

View and configure an entity-relationship (ER) diagram of the tables in an UltraLite database by using SQL
Central.

Context

UltraLite does not allow users to configure the ER diagram by importing or exporting a layout or by filtering the
tables that appear by owner.

Procedure

1. In SQL Central, use the UltraLite 17 plug-in to connect to a database.
2. Select the database, and then click the ER Diagram tab in the right pane to see the diagram.

3. Click File Choose ER Diagram Tables , and specify the tables to appear in the ER diagram.
4. Click OK.
5. Arrange the objects in the diagram as needed.

Drag the objects to change the layout.
6. (Optional) Double-click a table to see the column definitions for that table.

Results

The entity-relationship diagram appears in SQL Central.

Related Information

Database Creation
Foreign Keys

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 61

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/812e21f56ce210148c24d899960db404.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/818af6296ce21014a01bc45669ad581f.html

1.8.2 UltraLite Indexes

An index is a set of pointers to rows in a table based on the order of the values of data in one or more table
columns.

The index is a database object that is maintained automatically by UltraLite after it has been created. When
UltraLite optimizes a query, it scans existing indexes to see if one exists for the table(s) named in the query. If it
can help UltraLite return rows more quickly, the index is used. If you are using the UltraLite Table API in your
application, you can specify an index that helps determine the order in which rows are traversed.

 Note
Indexes can improve the performance of a query, especially for large tables. To see whether a query is using
a particular index, you can check the execution plan with Interactive SQL.

Alternatively, your UltraLite applications can include PreparedStatement objects which have a method to
return plans.

UltraLite supports the following indexes. These indexes can be single or multi-column (also known as
composite indexes). You cannot index LONG VARCHAR or LONG BINARY columns.

Index Characteristics

Primary key Required. An instance of a unique key. You can only have one
primary key. Values in the indexed column or columns must
be unique and cannot be NULL.

Foreign key1 Optional. Values in the indexed column or columns can be
duplicated. Nullability depends on whether the column was
created to allow NULL. Values in the foreign key columns
must exist in the table being referenced

Unique key2 Optional. Values in the indexed column or columns must be
unique and cannot be NULL.

Non-unique index Optional. Values in the indexed column or columns can be
duplicated and can be NULL.

Unique index Optional. Values in the indexed column or columns cannot
be duplicated and can be NULL.

1 A foreign key can reference either a primary key or a unique key.

2 Also known as a unique constraint.

About Composite Indexes

Multi-column indexes are sometimes called composite indexes. Additional columns in an index can allow you to
narrow down your search, but having a two-column index is not the same as having two separate indexes. For
example, the following statement creates a two-column composite index:

CREATE INDEX name ON Employees (Surname, GivenName)

62 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

A composite index is useful if the first column alone does not provide high selectivity. For example, a composite
index on Surname and GivenName is useful when many employees have the same surname. A composite index
on EmployeeID and Surname would not be useful because each employee has a unique ID, so the column
Surname does not provide any additional selectivity.

In this section:

When to Use an Index [page 63]
Indexes improve performance when querying data.

Index Types [page 64]
UltraLite supports different types of indexes: unique keys, unique indexes, and non-unique indexes.
What differentiates one from the others is what is allowed in that index.

Adding an UltraLite Index [page 65]
Adding indexes to databases speeds up the search process.

Dropping an UltraLite Index [page 66]
Drop an index from the database.

Related Information

Index Scan Creation and Maintenance [page 570]
Execution Plans in UltraLite [page 575]
Composite Indexes
Data creation and modification in UltraLite.NET using the ULTable Class [page 610]
Data Creation and Modification in UltraLite C++ Using the ULTable Class [page 657]

1.8.2.1 When to Use an Index

Indexes improve performance when querying data.

Use an index when:

You want UltraLite to maintain referential integrity

An index also affords UltraLite a means of enforcing a uniqueness constraint on the rows in a table. You do
not need to add an index for data that is very similar.
The performance of a particular query is important to your application

If an index improves performance of a query and the performance of that query is important to your
application and is used frequently, then you want to maintain that index. Unless the table in question is
extremely small, indexes can improve search performance dramatically. Indexes are typically
recommended whenever you search data frequently.
You have complicated queries

More complicated queries, (for example, those with JOIN, GROUP BY, and ORDER BY clauses), can yield
substantial improvements when an index is used, though it may be harder to determine the degree to

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 63

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/81839db76ce21014936ab15c4bd9b305.html

which performance has been enhanced. Therefore, test your queries both with and without indexes, to see
which yields better performance.
The size of an UltraLite table is large

The average time to find a row increases with the size of the table. Therefore, to increase searchability in a
very large table, consider using an index. An index allows UltraLite to find rows quickly, but only for
columns that are indexed. Otherwise, UltraLite must search every row in the table to see if the row matches
the search condition, which can be time consuming in a large table.
The UltraLite client application is not performing a large amount of insert, update, or delete
operations

Because UltraLite maintains indexes along with the data itself, an index in this context will have an adverse
effect on the performance of database operations. For this reason, you should restrict the use of indexes to
data that will be queried regularly described in the point above. Maintaining the UltraLite default indexes
(indexes for primary keys and for unique constraints) may be enough.
Use indexes on columns involved in WHERE clauses and/or ORDER BY clause

These indexes can speed the evaluation of these clauses. In particular, an index helps optimize a multi-
column ORDER BY clause, but only when the placement of columns in the index and ORDER BY clauses are
exactly the same.

1.8.2.2 Index Types

UltraLite supports different types of indexes: unique keys, unique indexes, and non-unique indexes. What
differentiates one from the others is what is allowed in that index.

Index characteristic Unique keys Unique indexes Non-unique indexes

Allows duplicate index en
tries for rows that have the
same values in indexed col
umns.

no no yes

Allows null values in index
columns.

no yes yes

 Note
You can create foreign keys to unique keys, but not to unique indexes.

Also, manually creating an index on a key column is not necessary and generally not recommended.
UltraLite creates and maintains indexes for unique keys automatically.

Related Information

Adding an UltraLite Index [page 65]

64 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.8.2.3 Adding an UltraLite Index

Adding indexes to databases speeds up the search process.

Prerequisites

The database must be connected.

Context

 Note
UltraLite does not detect duplicate or redundant indexes. As indexes must be maintained with the data in
your database, add your indexes carefully.

Procedure

1. Using SQL Central, connect to the UltraLite database.

2. Right-click Indexes, and click New Index .
3. Follow the instructions in the wizard.

Results

The index is created.

Example

To speed up a search on employee surnames in a database that tracks employee information, and tune the
performance of queries against this index, you could create an index called EmployeeNames and increase the
hash size to 20 bytes with the following statement:

CREATE INDEX EmployeeNames ON Employees (Surname, GivenName) WITH MAX HASH SIZE 20

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 65

This statement creates an index with the default maximum hash size you have configured. To create an index
that overrides the default, ensure you use the WITH MAX HASH SIZE value clause to set a new value for this
index instance.

Related Information

CREATE INDEX Statement [UltraLite] [page 531]

1.8.2.4 Dropping an UltraLite Index

Drop an index from the database.

Procedure

1. Using SQL Central, connect to the UltraLite database.
2. In the left pane, double-click Indexes.
3. Right-click an index and then click Delete.
4. Click Yes.

Results

The index is removed from the database.

Related Information

DROP INDEX Statement [UltraLite] [page 545]

1.8.3 UltraLite Users

A typical UltraLite database contains one user ID and password. UltraLite databases are created with a default
user ID of DBA and default password of sql unless otherwise specified.

Changing the user schema is optional and not required. Many applications do not need database-level
authentication and assume that a device level password is sufficient authentication to access an application
and its data.

66 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Common reasons for not authenticating users may be because the deployment is to a single-user device, or
that it is too awkward to prompt a user each time they start the application.

You do not need to include a user ID or password in the database connection string if you do not need
database-level authentication. The simplest UltraLite connection string is DBF= filename.

When developing an UltraLite application with a custom user authentication interface, you can effectively use
the UltraLite user IDs and password hashes stored in an UltraLite database to validate user-supplied
credentials and avoid creating your own password hashing algorithm. By adding users to your UltraLite
database, you store their user IDs and password hashes. You can then validate the user-supplied credentials in
your application by attempting to connect to the database with the UID and PWD connection parameters,
where UID= username and PWD= password. A successful UltraLite database connection indicates that the
user is authentic.

 Caution
Unlike SQL Anywhere users, UltraLite users are created and managed solely for authentication and not for
object ownership or specific database roles and privileges. Once users are authenticated, they gain full
access to the database.

By creating user IDs and passwords, you control connections to the UltraLite database but do not secure
the data in the database file. The contents are stored as plain text and can be read directly.

To secure the database contents, encrypt the file so that you can authenticate users with an encryption key
rather than a user ID and password.

You can obfuscate the file to alter the storage so that data is not stored as plain text, but this approach does
not secure the data.

 Note
UltraLite user IDs are different from MobiLink user names.

Limitations

The following limitations apply to UltraLite user IDs:

• UltraLite supports up to four unique user IDs per UltraLite database.
• User IDs and passwords can be changed using SQL Central, SQL statements, or UltraLite API methods in

your application.
• User IDs have a 31-character limit.
• User IDs cannot include leading single quotes('), leading double quotes ("), or semicolons(;).
• User IDs are always case insensitive and passwords are always case sensitive.
• User IDs cannot be renamed. You can only add new user IDs and delete existing ones from an existing

database connection.
• Users cannot be listed programmatically using the UltraLite APIs. You can only use database tools to list

existing users in the database.
• When connecting to an UltraLite database for the first time, the UID and PWD are the same values that

were set when the database was created. UltraLite attempts to connect with the DBA user ID and sql
password when these connection parameters are not specified. You do not need to supply a username or

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 67

password when connecting to the database if you did not explicitly set a username and password during its
creation.

In this section:

Connection Parameters for Managing UltraLite Users [page 68]
You can use the UID and PWD connection parameters to create or authenticate users in an UltraLite
database.

SQL Statements for Managing UltraLite Users [page 70]
You can use the CREATE USER, ALTER USER, and DROP USER statements to manage users in an
UltraLite database.

Creating an UltraLite User with SQL Central [page 71]
Use SQL Central to create users for an UltraLite database.

Deleting an UltraLite User with SQL Central [page 72]
Use SQL Central to explicitly delete users from an UltraLite database.

Related Information

Database Security [page 35]
UltraLite DBKEY Connection Parameter [page 192]
UltraLite UID Connection Parameter [page 202]
UltraLite PWD Connection Parameter [page 198]

1.8.3.1 Connection Parameters for Managing UltraLite
Users

You can use the UID and PWD connection parameters to create or authenticate users in an UltraLite database.

 Note
As an alternative to connection parameters, you can use the following UltraLite API methods in your
application to grant or revoke user access to an UltraLite database:

• ULConnection.GrantConnectTo method [UltraLite C++]
• ULConnection.RevokeConnectFrom method [UltraLite C++]
• ULGrantConnectTo method [UltraLite Embedded SQL]
• ULRevokeConnectFrom method [UltraLite Embedded SQL]
• ULConnection.GrantConnectTo method [UltraLite.NET]
• ULConnection.RevokeConnectFrom method [UltraLite.NET]

Grant and revoke methods are not available in the UltraLiteJ API. For Android devices, set the UID and PWD
connection parameters using the ConfigPersistent.setConnectionString method.

68 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Use Connection Parameters with UltraLite Databases

For most UltraLite APIs, the createDatabase method of a DatabaseManager object can be used to create a new
UltraLite database with the specified connection and creation parameters.

The following example illustrates how to create a default user for a new UltraLite database by passing the UID
and PWD parameters to the CreateDatabase method in the UltraLite C++ API:

ULConnection * conn; ULError ulerr; ULDatabaseManager::CreateDatabase("dbf=sample.udb;uid=default-name;pwd=default-
password", &ulerr);

The following example illustrates how to authenticate a user in an existing UltraLite database by passing the
UID and PWD parameters to the OpenConnection method in the UltraLite C++ API:

ULConnection * conn; ULError ulerr; ULDatabaseManager::OpenConnection("dbf=sample.udb;uid=test-name;pwd=test-
password", &ulerr);

Use Connection Parameters with UltraLite Databases on Android Devices

For the UltraLiteJ API, you use the setConnectionString method of a Configuration object in the UltraLiteJ API
to create or authenticate users.

The following example illustrates how to create a default user for a new UltraLite database by passing the UID
and PWD parameters to the createDatabase method in the UltraLiteJ API:

ConfigFile config = DatabaseManager.createConfigurationFileAndroid("DBname.udb",
getApplicationContext());
config.setConnectionString("uid=default-name;pwd=default-password"); Connection conn = DatabaseManager.createDatabase(config);

The following example illustrates how to authenticate a user in an existing UltraLite database by passing the
UID and PWD parameters and the connect method in the UltraLiteJ API:

ConfigFile config = DatabaseManager.createConfigurationFileAndroid("DBname.udb",
getApplicationContext());
config.setConnectionString("uid=test-name;pwd=test-password"); Connection conn = DatabaseManager.connect(config);

As an alternative to the setConnectionString method, you can use the setPassword or setUserName methods
to create or authenticate a user, respectively.

Related Information

UltraLite UID Connection Parameter [page 202]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 69

UltraLite PWD Connection Parameter [page 198]

1.8.3.2 SQL Statements for Managing UltraLite Users

You can use the CREATE USER, ALTER USER, and DROP USER statements to manage users in an UltraLite
database.

 Note
As an alternative to SQL statements, you can use the following UltraLite API methods in your application to
grant or revoke user access to an UltraLite database:

• ULConnection.GrantConnectTo method [UltraLite C++]
• ULConnection.RevokeConnectFrom method [UltraLite C++]
• ULGrantConnectTo method [UltraLite Embedded SQL]
• ULRevokeConnectFrom method [UltraLite Embedded SQL]
• ULConnection.GrantConnectTo method [UltraLite.NET]
• ULConnection.RevokeConnectFrom method [UltraLite.NET]

Grant and revoke methods are not available in the UltraLiteJ API. For Android devices, construct a CREATE
USER, ALTER USER, or DROP USER statement as a string variable and pass it to the
Connection.prepareStatement method.

Example

The following example illustrates how to use the UltraLiteJ API connect to an existing UltraLite database, and
use the CREATE USER statement to create a new user:

ConfigFile config = DatabaseManager.createConfigurationFileAndroid("DBname.udb",
getApplicationContext());
Connection conn = DatabaseManager.connect(config);
String sql_string = "CREATE USER test-user IDENTIFIED BY test-password";
PreparedStatement authenticator = conn.prepareStatement(sql_string);
authenticator.execute(); authenticator.close();

Related Information

CREATE USER Statement [UltraLite] [page 543]
ALTER USER Statement [UltraLite] [page 528]
DROP USER Statement [UltraLite] [page 549]

70 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.8.3.3 Creating an UltraLite User with SQL Central

Use SQL Central to create users for an UltraLite database.

Context

 Note
As an alternative to SQL Central, you can use the following UltraLite API methods in your application to
grant user access to an UltraLite database:

• ULConnection.GrantConnectTo method [UltraLite C++]
• ULGrantConnectTo method [UltraLite Embedded SQL]
• ULConnection.GrantConnectTo method [UltraLite.NET]

Grant methods are not available in the UltraLiteJ API. For Android devices, construct a CREATE USER
statement as a string variable and pass it to the Connection.prepareStatement method.

Procedure

1. Using SQL Central, connect to the UltraLite database.

2. Right-click the Users folder, and click New User .
3. Follow the instructions in the wizard.

Results

The new user is created.

Related Information

CREATE USER Statement [UltraLite] [page 543]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 71

1.8.3.4 Deleting an UltraLite User with SQL Central

Use SQL Central to explicitly delete users from an UltraLite database.

Context

 Note
As an alternative to SQL Central, you can use the following UltraLite API methods in your application to
revoke user access to an UltraLite database:

• ULConnection.RevokeConnectFrom method [UltraLite C++]
• ULRevokeConnectFrom method [UltraLite Embedded SQL]
• ULConnection.RevokeConnectFrom method [UltraLite.NET]

Revoke methods are not available in the UltraLiteJ API.construct a DROP USER statement as a string
variable and pass it to the Connection.prepareStatement method.

Procedure

1. Using SQL Central, connect to the UltraLite database.
2. In the left pane, double-click the Users folder.
3. Right-click the user and click Delete.

Results

The user is deleted from the database.

Related Information

DROP USER Statement [UltraLite] [page 549]

1.9 UltraLite as a MobiLink Client

You can configure UltraLite to act as a MobiLink client.

72 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

In this section:

UltraLite Clients [page 73]
Synchronizing an UltraLite database requires your application to set synchronization parameters.

Microsoft ActiveSync Synchronization Overview [page 92]
Synchronization through Microsoft ActiveSync can be summarized in a few steps.

UltraLite Synchronization Parameters [page 93]
Synchronization parameters control the synchronization between an UltraLite database and the
MobiLink server.

UltraLite Network Protocol Options [page 122]
You must set the network protocol in your application.

1.9.1 UltraLite Clients

Synchronizing an UltraLite database requires your application to set synchronization parameters.

These parameters identify the address of the MobiLink server and other required information, and calling a
synchronization function or executing the SYNCHRONIZE SQL statement. The option you chose depends on
the API you are using.

In this section:

UltraLite Client Synchronization Behavior Customization [page 73]
Adding custom synchronization support to UltraLite involves several tasks.

Primary Key Uniqueness in UltraLite [page 75]
UltraLite can maintain primary key uniqueness using any of the techniques supported by MobiLink.

UltraLite Client Synchronization Design [page 79]
All data in an UltraLite database is synchronized by default.

MobiLink File Transfers [page 88]
UltraLite supports the ability to transfer files with the MobiLink server.

UltraLite Publications [page 89]
A publication is a database object that identifies the data that is to be synchronized.

1.9.1.1 UltraLite Client Synchronization Behavior
Customization

Adding custom synchronization support to UltraLite involves several tasks.

Maintain primary key uniqueness in synchronization models that include more than one remote client

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 73

Required. In a synchronization system, the primary key is the only way to identify the same row in different
databases (remote and consolidated) and the only way to detect conflicts. Therefore, multiple clients must
adhere to the following rules:

• Every table that is to be synchronized must have a primary key.
• Never update the values of primary keys.
• Primary keys must be unique across all synchronized databases.

Ensure your date columns are set up so that fractional data is not lost

For a SQL Anywhere consolidated database this is not typically an issue. However, for databases like
Oracle, there may be compatibility issues that you need to consider. For example, UltraLite and Oracle
databases must share the same timestamp precision. Additionally, you should also add a TIMESTAMP to
the Oracle database to avoid losing fractional second data when the UltraLite remote databases uploads
data to the consolidated database.
Describe what data subsets you want to upload to the consolidated database

Optional. You only need to do this when you do not want to synchronize all data by default. To target what
data you want to synchronize, use one or more subsetting techniques.

For example, you may want to create a publication for high-priority data. The application could then
synchronize this data over wireless networks. Because wireless networks can have high usage costs
associated with them, you may want to limit these usage fees to those that are business critical. You can
then synchronize less time-sensitive data from a cradle at a later time.
Initialize synchronization from your UltraLite application and supply the parameters that describe the
session

Required. Programming synchronization has two parts: describing the session, and then initiating the
synchronization operation.

Describing the session primarily involves choosing a synchronization communication stream (also known
as a network protocol), and the parameters for that stream, setting the version of your synchronization
scripts, and identifying the MobiLink user. However, there are other parameters you can set: for example,
use the upload_only and download_only parameters to change the default bi-directional synchronization to
one-way only.

All other important synchronization behaviors are controlled at the MobiLink server with MobiLink
synchronization scripts. These include:

• What data is downloaded as updates or inserts to tables in the UltraLite remote.
• What processing is required on uploaded changes from a remote database.

You can write your synchronization scripts so that data is partitioned among remote databases in an
appropriate manner.

Related Information

Unique Primary Keys
Primary Key Uniqueness in UltraLite [page 75]
Oracle Consolidated Database
UltraLite Client Synchronization Design [page 79]
Synchronization Setup for Your UltraLite Application [page 86]

74 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81caa00f6ce2101497ac957ac998adb7.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c1d9a26ce21014990fc862ce3d25d3.html

MobiLink Consolidated Databases
Synchronization Scripts
Direct Row Handling
Partitioned Rows Among Remote Databases
UltraLite Precision Creation Option [page 168]

1.9.1.2 Primary Key Uniqueness in UltraLite

UltraLite can maintain primary key uniqueness using any of the techniques supported by MobiLink.

One of these methods is to use a GLOBAL AUTOINCREMENT column. GLOBAL AUTOINCREMENT is similar to
AUTOINCREMENT, except that the domain is partitioned. UltraLite supplies column values only from the
partition assigned to the database's global database ID. Each UltraLite database is assigned a unique integer
global database ID.

A second method is to use a UUID primary key column. A UUID requires more data, but needs no distinct
database identifier.

In this section:

GLOBAL AUTOINCREMENT Columns in UltraLite [page 75]
You can declare the default value of a column in an UltraLite database to be of type GLOBAL
AUTOINCREMENT.

Methods for Finding the Last Assigned GLOBAL AUTOINCREMENT Value [page 77]
You can retrieve the GLOBAL AUTOINCREMENT value that was chosen during the most recent insert
operation.

Partition Sizes [page 77]
The partition size can be any positive integer but should be set so that the supply of numbers within
any one partition is not likely to be exhausted.

Related Information

Unique Primary Keys
UltraLite global_database_id Option [page 210]

1.9.1.2.1 GLOBAL AUTOINCREMENT Columns in UltraLite

You can declare the default value of a column in an UltraLite database to be of type GLOBAL AUTOINCREMENT.

Before you can autoincrement these column IDs, you must first set the global database ID for the UltraLite
database.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 75

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c21d826ce21014b474ee67358e9be5.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81cff7326ce210148cdcea57b02446f3.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c3b1cf6ce210148d04fae97a963faa.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81ca7d4c6ce21014b653986ca082de70.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81caa00f6ce2101497ac957ac998adb7.html

 Caution
GLOBAL AUTOINCREMENT column values downloaded via MobiLink synchronization do not update the
GLOBAL AUTOINCREMENT value counter. As a result, an error can occur should one MobiLink client insert
a value into another client's partition. To avoid this problem, ensure that each copy of your UltraLite
application inserts values only in its own partition.

The global_database_id database option allows you to set the value in your UltraLite database. When deploying
UltraLite, you must assign a different identification number to each database.

Allow UltraLite to supply default values for the column using the partition uniquely identified by the UltraLite
database's number.

UltraLite follows these rules:

• If the column contains no values in the current partition, the first default value is pn + 1. p represents the
partition size and n represents the global ID number.

• If the column contains values in the current partition, but all are less than p(n + 1), the next default value
will be one greater than the previous maximum value in this range.

• Default column values are not affected by values in the column outside the current partition; that is, by
numbers less than pn + 1 or greater than p(n + 1). Such values may be present if they have been replicated
from another database via MobiLink synchronization.
For example, if you assigned your UltraLite database a global ID of 1 and the partition size is 1000, then the
default values in that database would be chosen in the range 1001-2000. Another copy of the database,
assigned the identification number 2, would supply default values for the same column in the range
2001-3000.

• Because you cannot set the global ID number to a negative value, the GLOBAL AUTOINCREMENT column
values are always positive. The maximum identification number is restricted only by the column data type
and the partition size.

• If you do not set a global ID value, or if you exhaust values from the partition, a NULL value is inserted into
the column. Should NULL values not be permitted, the attempt to insert the row causes an error.

If you exhaust or will soon exhaust available values for columns declared as GLOBAL AUTOINCREMENT, you
need to set a new global database ID. UltraLite chooses GLOBAL AUTOINCREMENT values from the partition
identified by the global ID number, but only until the maximum value is reached. If you exceed values, UltraLite
begins to generate NULL values. By assigning a new global database ID number, you allow UltraLite to set
appropriate values from another partition.

One approach of choosing a new global database ID is to maintain a pool of unused global database ID values.
This pool is maintained in the same manner as a pool of primary keys.

 Note
UltraLite APIs provide means of obtaining the proportion of numbers that have been used. The return value
is a SHORT in the range 0-100 that represents the percent of values used so far. For example, a value of 99
indicates that very few unused values remain and the database should be assigned a new identification
number. The method of setting this identification number varies according to the programming interface
you are using.

76 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

Primary Key Pools with SQL Remote
Partition Sizes [page 77]
UltraLite global_database_id Option [page 210]
UltraLite global_database_id Option [page 210]

1.9.1.2.2 Methods for Finding the Last Assigned GLOBAL
AUTOINCREMENT Value

You can retrieve the GLOBAL AUTOINCREMENT value that was chosen during the most recent insert
operation.

Since these values are often used for primary keys, knowing the generated value may let you more easily insert
rows that reference the primary key of the first row. You can check the value with:

UltraLite for C/C++

Use the GetLastIdentity function on the ULConnection object.
UltraLite.NET

Use the LastIdentity property on the ULConnection object.
UltraLiteJ

Use the getLastIdentity method on the Connection object.

The returned value is an unsigned 64-bit integer, database data type UNSIGNED BIGINT. Since this statement
only allows you to determine the most recently assigned default value, you should retrieve this value soon after
executing the insert statement to avoid spurious results.

 Note
Occasionally, a single INSERT statement may include more than one column of type GLOBAL
AUTOINCREMENT. In this case, the return value is one of the generated default values, but there is no
reliable means to determine which one. For this reason, you should design your database and write your
INSERT statements in a way that avoids this situation.

1.9.1.2.3 Partition Sizes

The partition size can be any positive integer but should be set so that the supply of numbers within any one
partition is not likely to be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216 = 65536; for columns of other types
the default partition size is 232 = 4294967296. Since these defaults may be inappropriate, it is best to specify
the partition size explicitly.

Default partition sizes for some data types are different in UltraLite applications than in SQL Anywhere
databases. Declare the partition size explicitly if you want different databases to remain consistent.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 77

https://help.sap.com/viewer/dc2260c1b8de4966b6cdee9c6d5cbcb2/17.0.01/en-US/95f66a656ea110148713f7e10fcaf891.html

In this section:

Overriding the Partition Size for a GLOBAL AUTOINCREMENT Column [page 78]
Override the partition size of a GLOBAL AUTOINCREMENT column.

Related Information

CREATE TABLE Statement [UltraLite] [page 537]
ALTER TABLE Statement [UltraLite] [page 524]

1.9.1.2.3.1 Overriding the Partition Size for a GLOBAL
AUTOINCREMENT Column

Override the partition size of a GLOBAL AUTOINCREMENT column.

Prerequisites

You must be connected to an UltraLite database.

Context

Increasing the partition size of a GLOBAL AUTOINCREMENT column ensures that the supply of numbers within
the partition is rarely exhausted.

Procedure

1. Create a table with a GLOBAL AUTOINCREMENT column that has a partition size specified in parentheses.

Execute the following SQL code:

CREATE TABLE customer (id INT DEFAULT GLOBAL AUTOINCREMENT (5000),
 name VARCHAR(128) NOT NULL,
 PRIMARY KEY (id))

A simple reference table with two columns: an integer that holds a customer identification number, and a
character string that holds the customer's name is created. The ID has a partition size of 5000.

78 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

2. Connect to the UltraLite database in SQL Central.
3. Right-click the ID column of the customer table and click Properties.
4. Click the Value tab.
5. Enter a positive integer that is greater than 5000 in the Partition Size field.

Results

The partition size of the ID column is updated according to the value entered in the Partition Size field.

1.9.1.3 UltraLite Client Synchronization Design

All data in an UltraLite database is synchronized by default.

If you are new to deploying UltraLite as a MobiLink remote database, plan to use the default behavior initially.

Once you become comfortable with the synchronization process, you may decide to customize the behavior of
the synchronization operation to capture more complex business logic. Designing custom synchronization
behavior requires that you ask the following questions. If your business requirements are simple, you may only
need to use a single synchronization feature. However, in very complex deployments, you may need to use
multiple synchronization features to configure the desired synchronization behavior.

Design question If you answer yes, use the following

Do you want to download changes from the consolidated da
tabase but not have local changes uploaded to the data
base?

The download_only table name suffix allows you to identify
any tables for which the synchronization should be down
load only. Changes made to the local tables are not uploaded
to the consolidated database.

Do you want to exclude tables from synchronization? The nosync table name suffix allows you to identify any ta
bles that you do not want to synchronize.

Do you only want to synchronize entire tables even when
data hasn't changed?

The allsync table name suffix allows you to synchronize the
entire table, even when no changes are detected.

Do you want to synchronize an entire table or just rows that
meet specific conditions? Does some of the data require
synchronization priority due to its importance or time-sensi
tivity?

A publication includes articles that list the tables that require
synchronization. An article can include a WHERE clause that
specifies the rows to upload based on whether the rows
meet the defined criteria.

Multiple publications can address priority issues that require
certain UltraLite data be uploaded before others.

Do you want a table order for synchronization because you
have cycles of foreign keys?

The Table Order synchronization parameter allows you to
determine the order of synchronization operations when you
have foreign key cycles. However, foreign key cycles are gen
erally not recommended for UltraLite.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 79

Design question If you answer yes, use the following

Do you want to control synchronization behavior? For exam
ple, do you need downloads to occur at the same time as up
loads? Or do you want to change bi-directional synchroniza
tion to one-way only?

Use the appropriate synchronization parameter as part of:

• Your application's synchronization structure (or the syn
chronization enumeration).

• The ulsync utility's -e option.

Do you want your UltraLite client to be TLS-enabled? What encryption algorithm you choose determines how your
device must be set up according to the platform that runs on
that device.

In this section:

UltraLite Non-synchronizing Tables [page 81]
By creating the table using SYNCHRONIZE OFF, you control when to exclude the entire table from the
upload operation.

UltraLite Download-only Tables [page 82]
By creating the table using SYNCHRONIZE DOWNLOAD, you exclude entire tables from the upload
operation.

UltraLite Synchronize-All Tables [page 82]
By creating or altering a table using SYNCHRONIZE ALL, you control whether to change the
synchronization behavior during upload so that it synchronizes all table data, even if nothing has
changed since the previous synchronization session.

Publishing Data in UltraLite [page 83]
Add publications to an UltraLite database using SQL Central or SQL.

Table Order in UltraLite [page 84]
By setting the Table Order synchronization parameter you can control the order of synchronization
operations.

Synchronization Setup for Your UltraLite Application [page 86]
In UltraLite, synchronization begins by opening a specific connection with the MobiLink server over the
configured communication stream (also known as a network protocol).

Related Information

UltraLite Synchronization Parameters [page 93]
UltraLite Network Protocol Options [page 122]
The Synchronization Process
The Synchronization Process

80 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5f7de6ce21014abd0ed7492e3b5da.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5f7de6ce21014abd0ed7492e3b5da.html

1.9.1.3.1 UltraLite Non-synchronizing Tables

By creating the table using SYNCHRONIZE OFF, you control when to exclude the entire table from the upload
operation.

You can use these non-synchronizing tables for client-specific persistent data that is not required in the
consolidated database. Other than being excluded from synchronization, you can use these tables in exactly
the same way as other tables in the UltraLite database.

 Note
The synchronization type for a table can only be changed if it does not have any unsynchronized changes
that need to be uploaded.

If you create a table with a _nosync suffix, you can only rename that table so it retains the _nosync suffix. For
example, the following ALTER TABLE statement with a rename clause is not allowed because the new name no
longer ends in nosync:

ALTER TABLE purchase_comments_nosync RENAME comments

To correct this, the statement must be rewritten to include this suffix:

ALTER TABLE purchase_comments_nosync RENAME comments_nosync

You can alternatively use publications to achieve the same effect.

 Note
As an alternative to creating or altering a table with the SYNCHRONIZE OFF clause, you can append the
phrase _nosync to the table name to turn it into a non-synchronizing table.

Related Information

Publications
UltraLite Publications [page 89]
Synchronization Scripts
Download Only Synchronization Parameter [page 101]
Upload Only Synchronization Parameter [page 118]
Additional Parameters Synchronization Parameter [page 95]
CREATE TABLE Statement [UltraLite] [page 537]
ALTER TABLE Statement [UltraLite] [page 524]
CREATE PUBLICATION Statement [UltraLite] [page 533]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 81

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a618806ce2101494c5d4eb7d82c6fc.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81cff7326ce210148cdcea57b02446f3.html

1.9.1.3.2 UltraLite Download-only Tables

By creating the table using SYNCHRONIZE DOWNLOAD, you exclude entire tables from the upload operation.

You can use these tables for data that should not synchronized to the consolidated database. Other than being
excluded from synchronization, you can use these tables in exactly the same way as other tables in the
UltraLite database.

You can alternatively use publications to achieve the same effect.

 Note
The synchronization type for a table can only be changed if it does not have any unsynchronized changes
that need to be uploaded.

 Note
As an alternative to creating or altering a table with the SYNCHRONIZE DOWNLOAD clause, you can
append the phrase _download_only to the table name to turn it into a download-only table.

Related Information

Publications
UltraLite Publications [page 89]
Synchronization Scripts
Download Only Synchronization Parameter [page 101]
Upload Only Synchronization Parameter [page 118]
Additional Parameters Synchronization Parameter [page 95]
CREATE TABLE Statement [UltraLite] [page 537]
ALTER TABLE Statement [UltraLite] [page 524]
CREATE PUBLICATION Statement [UltraLite] [page 533]

1.9.1.3.3 UltraLite Synchronize-All Tables

By creating or altering a table using SYNCHRONIZE ALL, you control whether to change the synchronization
behavior during upload so that it synchronizes all table data, even if nothing has changed since the previous
synchronization session.

 Note
The synchronization type for a table can only be changed if it does not have any unsynchronized changes
that need to be uploaded.

Some UltraLite applications require user/client-specific data that you can store in a SYNCHRONIZE ALL
TABLES. You can upload the data in the table to a temporary table in the consolidated database, use the data to

82 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a618806ce2101494c5d4eb7d82c6fc.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81cff7326ce210148cdcea57b02446f3.html

control synchronization by your other scripts without having the data maintained in the consolidated database.
For example, you may want your UltraLite applications to indicate which channels or topics they are interested
in, and use this information to download the appropriate rows.

 Note
As an alternative to creating or altering a table with the SYNCHRONIZE ALL clause, you can append the
phrase _allsync to the table name to turn it into a synchronize-all table.

Related Information

Publications
UltraLite Publications [page 89]
Synchronization Scripts
Download Only Synchronization Parameter [page 101]
Upload Only Synchronization Parameter [page 118]
Additional Parameters Synchronization Parameter [page 95]
CREATE TABLE Statement [UltraLite] [page 537]
ALTER TABLE Statement [UltraLite] [page 524]
CREATE PUBLICATION Statement [UltraLite] [page 533]

1.9.1.3.4 Publishing Data in UltraLite

Add publications to an UltraLite database using SQL Central or SQL.

Context

Publications define a set of articles that describe the data to be synchronized.

Publication articles can be a whole table, or can define a subset of the data in a table. You can include an
optional predicate (a WHERE clause) to define a subset of rows from a given table. Publications are more
flexible than creating tables with SYNCHRONIZE OFF. To synchronize data subsets of an UltraLite database
separately, use multiple publications. You can then combine publications with upload-only or download-only
synchronization parameters to synchronize high-priority changes efficiently.

 Note
The maximum number of user publications in UltraLite is 63.

UltraLite publications do not support the definition of column subsets, nor the SUBSCRIBE BY clause that is
available in SQL Anywhere. If columns in an UltraLite table do not exactly match tables in a consolidated
database, use MobiLink scripts to resolve those differences.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 83

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a618806ce2101494c5d4eb7d82c6fc.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81cff7326ce210148cdcea57b02446f3.html

You do not need to set a table synchronization order in a publication. If table order is important for your
deployment, you can set the table order when you synchronize the UltraLite database by setting the Table
Order synchronization parameter.

Procedure

1. Connect to the UltraLite database using the UltraLite plug-in.

2. Right-click the Publications folder and click New Publication .
3. Enter a name for the new publication. Click Next.
4. On the Tables tab, click a table in the Matching Tables list. Click Add.

The table appears in the Selected Tables list on the right.
5. Add additional tables.
6. If necessary, click the Where tab to specify the rows to be included in the publication. You cannot specify

column subsets.
7. Click Finish.

Results

The new publication is created.

Related Information

UltraLite Publications [page 89]
Publications
Synchronization Scripts
Download Only Synchronization Parameter [page 101]
Upload Only Synchronization Parameter [page 118]
Additional Parameters Synchronization Parameter [page 95]
CREATE PUBLICATION Statement [UltraLite] [page 533]

1.9.1.3.5 Table Order in UltraLite

By setting the Table Order synchronization parameter you can control the order of synchronization operations.

To specify a table order for synchronization, you can use the TableOrder parameter programmatically or as part
of the ulsync utility during testing. The TableOrder parameter specifies the order of tables that are to be
uploaded.

84 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a618806ce2101494c5d4eb7d82c6fc.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81cff7326ce210148cdcea57b02446f3.html

You only need to explicitly set the table order if your UltraLite database has:

• Foreign key cycles. You must then list all tables that are part of a cycle.
• Different foreign key relationships from those used in the consolidated database.

In this section:

Avoiding Synchronization Issues with Foreign Key Cycles [page 85]
Table order is particularly important for UltraLite databases that use foreign key cycles.

Related Information

Referential Integrity and Synchronization
Additional Parameters Synchronization Parameter [page 95]

1.9.1.3.5.1 Avoiding Synchronization Issues with Foreign Key
Cycles

Table order is particularly important for UltraLite databases that use foreign key cycles.

A cycle occurs when you link a series of tables together such that a circle is formed. However, due to
complexities that arise when cycles between the consolidated database and the UltraLite remote database
differ, foreign key cycles are not recommended.

With foreign key cycles, you should order your tables so that operations for a primary table come before the
associated foreign table. A Table Order parameter ensures that the insert in the foreign table will have its
foreign key referential integrity constraint satisfied (likewise for other operations like delete).

In addition to table ordering, another method you can use to avoid synchronization issues is to postpone the
checking of referential integrity until the transaction is committed. If your consolidated database is a SQL
Anywhere database, use the CHECK ON COMMIT clause on one of the foreign keys. This ensures that foreign
key referential integrity is checked during the commit phase rather than when the operation is initiated. For
example:

CREATE TABLE c (id INTEGER NOT NULL PRIMARY KEY,
 c_pk INTEGER NOT NULL
);
CREATE TABLE p (
 pk INTEGER NOT NULL PRIMARY KEY,
 c_id INTEGER NOT NULL,
 FOREIGN KEY p_to_c (c_id) REFERENCES c(id)
);
ALTER TABLE c
 ADD FOREIGN KEY c_to_p (c_pk)
 REFERENCES p(pk) CHECK ON COMMIT;

If your consolidated database is from another database vendor, check to see if the database has similar
methods of checking referential integrity. If so, you should implement this method. Otherwise, you must
redesign table relationships to eliminate all foreign key cycles.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 85

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bbaa2d6ce210148c40dd378ab29a59.html

Related Information

Referential Integrity and Synchronization
Additional Parameters Synchronization Parameter [page 95]

1.9.1.3.6 Synchronization Setup for Your UltraLite
Application

In UltraLite, synchronization begins by opening a specific connection with the MobiLink server over the
configured communication stream (also known as a network protocol).

In addition to synchronization support for direct network connections, Microsoft Windows Mobile devices also
support Microsoft ActiveSync synchronization.

Defining the Connection

Each UltraLite remote database that synchronizes with a MobiLink server does so over a network protocol. You
set the network protocol with the synchronization stream parameter. Supported network protocols include
TCP/IP, HTTP, HTTPS, and TLS. For the protocol you choose, you also need to supply stream parameters that
define other required connection information like the MobiLink server host and the port. You must also supply
the MobiLink user information and the synchronization script version.

Defining the Synchronization Behavior

You can control synchronization behavior by setting various synchronization parameters. The way you set
parameters depends on the specific UltraLite interface you are using.

Important behaviors to consider include:

Synchronization direction

By default, synchronization is bi-directional. When using only one-way synchronizations, remember to use
the appropriate upload_only or download_only parameter. By performing one-way synchronizations, you
minimize the synchronization time required. Also, with download-only synchronization, you do not have to
commit all changes to the UltraLite database before synchronization. Uncommitted changes to tables not
involved in synchronization are not uploaded, so incomplete transactions do not cause problems.

To use download-only synchronization, you must ensure that rows overlapping with the download are not
changed locally. If any data is changed locally, synchronization fails in the UltraLite application with a
SQLE_DOWNLOAD_CONFLICT error.
Concurrent changes during synchronization

During the upload phase, UltraLite applications can access UltraLite databases in a read-only fashion.
During the download phase, read-write access is permitted, but if an application changes a row that the

86 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bbaa2d6ce210148c40dd378ab29a59.html

download then attempts to change, the download will fail and roll back. You can disable concurrent access
to data during synchronization by setting the DisableConcurrency synchronization parameter.

The following procedure is generally used to add synchronization functionality to your application:

1. Supply the necessary synchronization parameters and protocol options needed for the session as fields of
a synchronization information structure.
For example, using the UltraLite C++ API, you add synchronization to your application by setting
appropriate values in the ul_sync_info structure:

ul_sync_info info; // define a sync structure named "info"
 ULEnableTcpipSynchronization(&sqlca);
 // use a TCP/IP stream
 conn->InitSynchInfo(&info);
 // initialize the structure
 info.stream = ULSocketStream();
 // specify the Socket Stream
 info.stream_parms= UL_TEXT("host=myMLserver;port=2439");
 // set the MobiLink host information
 info.version = UL_TEXT("custdb 11.0");
 // set the MobiLink version information
 info.user_name = UL_TEXT("50");
 // set the MobiLink user name
 info.download_only =ul_true; // make the synchronization download-only

2. Initialize synchronization.
For direct synchronization, you would call an API-specific synchronization method. These methods return a
boolean value, indicating success or failure of the synchronization operation. If the synchronization fails,
you can examine detailed error status fields in another structure to get additional error information.
For Microsoft ActiveSync synchronization, you must catch the synchronization message from the
Microsoft ActiveSync provider and use the DoSync method to call the ULSynchronize method.

3. Use an observer callback function to report the progress of the synchronization to the user.

 Note
If you have an environment where DLLs fail either because the download is very large or the network
connection is unreliable, you may want to implement resumable downloads.

Related Information

Failed Downloads
Resumption of Failed Downloads
Upload-only and Download-only Synchronizations
The Synchronization Process
UltraLite Synchronization Parameters [page 93]
UltraLite Network Protocol Options [page 122]
MobiLink Data Synchronization in UltraLite.NET [page 620]
MobiLink Data Synchronization in UltraLite C++ [page 666]
Microsoft ActiveSync Synchronization in UltraLite C++ [page 713]
Synchronization Setup for an Embedded SQL Application [page 699]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 87

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c0a9d66ce210148d60ece1d123ea22.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c69c6b6ce210149820c7f6169e80b1.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c1e2b16ce21014b19ef372471123dc.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5f7de6ce21014abd0ed7492e3b5da.html

1.9.1.4 MobiLink File Transfers

UltraLite supports the ability to transfer files with the MobiLink server.

For all other APIs, use the MobiLink file transfer mechanism when:

• You have multiple files that you need to deploy to multiple devices, particularly when corporate firewalls are
used as a security measure. Because MobiLink is already configured to handle synchronization through
these firewalls, the MLFileTransfer mechanism makes device provisioning for upgrades and other types of
file transfers very convenient.

• You have files that you want to target to a specific MobiLink user ID. This requires that you create one or
more user-specific directories on the MobiLink server for each user ID. Otherwise, if you only have a single
version of the file, you can use a default directory.

How File Transfers Work

You can employ one of two MobiLink-initiated file transfer mechanisms to download files to a device: run the
mlfiletransfer utility for desktop transfers, or call the appropriate function for the API you are using to code
your UltraLite application. Both approaches require that you:

1. Describe the transfer destination.
Whether you use the mlfiletransfer utility from the desktop, or whether you use the function appropriate to
your API, you must set the local path and file name of the file on the target device or desktop computer. If
none are supplied in the application or by the end user, then the source file name is assumed and the file is
stored in the current directory.
The destination directory of the target can vary depending on the device's operating system:
• On Microsoft Windows Mobile, if the destination is NULL, the file is stored in the root directory (\).

The file name must follow file name conventions for Microsoft Windows Mobile.
• On the desktop, if the destination is NULL, the file is stored in the current directory.

The file name must follow file name conventions for the desktop system.
• On Apple iOS, you should store files in your application's document directory. You can get the location

of the document directory by calling the NSSearchPathForDirectories/uDomains using the
NSDocumentDirectory parameter.

2. Set the MobiLink user credentials that allow the user to be identified and the correct file(s) to be
downloaded.
This user name and password are separate from any database user ID and password, and serve to identify
and authenticate the application to the MobiLink server.

3. Set the stream type you want to use, and define the parameters for the desired stream. These are the same
parameters supported by UltraLite for MobiLink synchronization.
Most synchronization streams require parameters to identify the MobiLink server address and control
other behavior. If you set the stream type to a value that is invalid for the platform, the stream type is set to
TCP/IP.

4. Describe the required behavior for the transfer mechanism.
For example, you can set properties that allow this mechanism to force a download even when the file
already exists on the target and has not changed, or that allow partial downloads to be resumed. You can
also set whether you want the progress to be monitored and reported upon.

5. Ensure the MobiLink server is running and has been started with the -ftr option.

88 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

6. Start the transfer, and, if applicable, monitor the download progress.
By displaying the download progress, the user can cancel and resume the download at a later time.

Related Information

UltraLite File Path Formats in Connection Parameters [page 42]
UltraLite Synchronization Parameters [page 93]
UltraLite Network Protocol Options [page 122]
-ftr mlsrv17 Option
MobiLink File Transfer Utility (mlfiletransfer)

1.9.1.5 UltraLite Publications

A publication is a database object that identifies the data that is to be synchronized.

To synchronize all tables and all rows of those tables in your UltraLite database, do not create any publications.

A publication consists of a set of articles. Each article may be an entire table, or may be rows in a table. You can
define this set of rows with a WHERE clause.

Each database can have multiple publications, depending on the desired synchronization logic. For example,
you may want to create a publication for high-priority data. The user can synchronize this data over high-speed
wireless networks. Because wireless networks can have usage costs associated with them, you would want to
limit these usage fees to those that are business-critical only. All other less time-sensitive data could be
synchronized from a cradle at a later time.

You create publications using SQL Central or with the CREATE PUBLICATION statement. In SQL Central, all
publications and articles appear in the Publications folder.

Usage Notes

• UltraLite publications do not support the definition of column subsets, nor the SUBSCRIBE BY clause. If
columns in an UltraLite table do not exactly match tables in a SQL Anywhere consolidated database, use
MobiLink scripts to resolve those differences.

• Columns are always sent in the order in which they were defined in the CREATE TABLE statement.
• You do not need to set a table synchronization order in a publication. If table order is important for your

deployment, you can set the table order when you synchronize the UltraLite database by setting the Table
Order synchronization parameter.

• Because object ownership is not supported in UltraLite, any user can delete a publication.

In this section:

Publishing Whole Tables in UltraLite [page 90]
Publish an entire table in UltraLite

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 89

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c7a5246ce21014be5be63bba6303bf.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac09836ce21014913ed9c27368e76d.html

Publishing a Subset of Rows from an UltraLite Table [page 91]
Publish a subset of rows from an UltraLite table

Dropping a Publication for UltraLite [page 92]
Drop a publication for UltraLite.

Related Information

Table Order in UltraLite [page 84]
Publications
UltraLite Client Synchronization Design [page 79]
Synchronization Scripts

1.9.1.5.1 Publishing Whole Tables in UltraLite

Publish an entire table in UltraLite

Context

A publication consists of a set of articles. The simplest publication you can make consists of a single article,
which consists of all rows and columns of a table.

You can use either SQL Central or Interactive SQL to perform this task.

Procedure

1. Using SQL Central, connect to the UltraLite database.

2. Right-click the Publications folder, and click New Publication .
3. In the What Do You Want To Name The New Publication field, type a name for the new publication. Click

Next.
4. On the Tables tab, click tables in the Available Tables list. Click Add.
5. Click Finish.

Results

The publication is created.

90 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a618806ce2101494c5d4eb7d82c6fc.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81cff7326ce210148cdcea57b02446f3.html

Related Information

UltraLite Clients [page 73]
CREATE PUBLICATION Statement [UltraLite] [page 533]

1.9.1.5.2 Publishing a Subset of Rows from an UltraLite
Table

Publish a subset of rows from an UltraLite table

Context

A publication can only contain specific table rows. A WHERE clause limits the rows that are uploaded to those
that have changed and satisfy a search condition in the WHERE clause.

To upload all changed rows, do not specify a WHERE clause.

Procedure

1. Using SQL Central, connect to the UltraLite database.

2. Right-click the Publications folder, and click New Publication .
3. In the What Do You Want To Name The New Publication field, type a name for the new publication.
4. Click Next.
5. In the Available Tables list, click a table and click Add.
6. Click the WHERE Clauses tab, and click the table from the Articles list. Optionally, you can use the Insert

window to assist you in formatting the search condition.
7. Click Finish.

Results

The rows that are uploaded are now limited to those that have changed and that satisfy the search condition in
the WHERE clause.

Related Information

UltraLite Clients [page 73]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 91

CREATE PUBLICATION Statement [UltraLite] [page 533]

1.9.1.5.3 Dropping a Publication for UltraLite

Drop a publication for UltraLite.

Context

Dropping a table's publications allows you to synchronize all the tables and rows of that table in your UltraLite
database.

You can drop a publication using either SQL Central or Interactive SQL.

Procedure

1. In SQL Central, connect to the UltraLite database.
2. In the left pane, double-click the Publications folder.
3. Right-click the publication and click Delete.
4. Click Yes.

Results

The publication is deleted.

Related Information

UltraLite Clients [page 73]
DROP PUBLICATION Statement [UltraLite] [page 546]

1.9.2 Microsoft ActiveSync Synchronization Overview

Synchronization through Microsoft ActiveSync can be summarized in a few steps.

1. Microsoft ActiveSync begins a synchronization session.
2. The Microsoft ActiveSync provider sends a synchronize notification message to the first registered

application on the device. The application is started if it is not yet running.

92 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

3. WndProc is invoked for each registered application.
4. Once the application has determined that this is the synchronize notification message from Microsoft

ActiveSync, the application calls ULIsSynchronizeMessage to invoke the database synchronization
procedure.

5. Once synchronization is complete, the application calls ULSignalSyncIsComplete to let the provider know
that it has finished synchronizing.

6. Steps two-five are repeated for each application that has been registered with the provider.

1.9.3 UltraLite Synchronization Parameters

Synchronization parameters control the synchronization between an UltraLite database and the MobiLink
server.

The way you set parameters depends on the specific UltraLite interface you are using.s

 Note
The parameters described only apply to UltraLite remote databases. Use the MobiLink SQL Anywhere
client utility to synchronize SQL Anywhere remote databases.

Required Parameters

The following parameters are required:

• Stream Type
• User Name
• Version

The synchronization function throws an exception, such as SQLCode.SQLE_SYNC_INFO_INVALID or its
equivalent, if you do not set these parameters.

Conflicting Parameters

You can specify at most one of these parameters:

• Download Only
• Ping
• Upload Only

The synchronization function throws an exception, such as SQLCode.SQLE_SYNC_INFO_INVALID or its
equivalent, if you set more than one of these parameters to true.

In this section:

Additional Parameters Synchronization Parameter [page 95]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 93

This synchronization parameter allows an application to supply additional parameters that are seldom
used or that cannot be readily specified using other predefined parameters.

Authentication Parameters Synchronization Parameter [page 98]
Supplies parameters to authentication parameters in MobiLink events.

Authentication Status Synchronization Parameter [page 99]
This field is set by a synchronization to report the status of MobiLink user authentication. The MobiLink
server provides this information to the client.

Authentication Value Synchronization Parameter [page 100]
This field is set by a synchronization to report results of a custom MobiLink user authentication script.
The MobiLink server provides this information to the client.

Download Only Synchronization Parameter [page 101]
Prevents changes from being uploaded from the UltraLite database during this synchronization.

Ignored Rows Synchronization Parameter [page 102]
This field is set by a synchronization to indicate that rows were ignored by the MobiLink server during
synchronization because of absent scripts.

Keep Partial Download Synchronization Parameter [page 103]
Controls whether UltraLite holds on to the partial download, rather than rolling back the changes, when
a download fails because of a communications error during synchronization.

New Password Synchronization Parameter [page 104]
Sets a new MobiLink password associated with the user name.

Number of Authentication Parameters Synchronization Parameter [page 105]
Supplies the number of authentication parameters being passed to authentication parameters in
MobiLink events.

Observer Synchronization Parameter [page 106]
Specifies a pointer to a callback function or event handler that monitors synchronization.

Partial Download Retained Synchronization Parameter [page 106]
Indicates whether UltraLite applied the changes that were downloaded rather than rolling back the
changes when a download fails due to a communications error during synchronization.

Password Synchronization Parameter [page 107]
Specifies the MobiLink password associated with the user name.

Ping Synchronization Parameter [page 108]
Confirms communications between the UltraLite client and the MobiLink server. When this parameter
is set to true, no synchronization takes place.

Publications Synchronization Parameter [page 109]
Specifies the publications to be synchronized.

Resume Partial Download Synchronization Parameter [page 110]
Resumes a failed download.

Send Download Acknowledgement Synchronization Parameter [page 111]
Instructs the MobiLink server that the client will provide a download acknowledgement.

Stream Error Synchronization Parameter [page 112]
Provides a structure to hold communications error reporting information.

Stream Type Synchronization Parameter [page 114]
Sets the MobiLink network protocol to use for synchronization.

94 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Stream Parameters Synchronization Parameter [page 115]
Sets options to configure the network protocol.

Sync Result Synchronization Parameter [page 116]
Reports the status of a synchronization.

Upload OK Synchronization Parameter [page 117]
This field is set by a synchronization to report the status of data uploaded to the MobiLink server.

Upload Only Synchronization Parameter [page 118]
Indicates that there should be no downloads in the current synchronization, which can save
communication time over slow communication links.

User Data Synchronization Parameter [page 119]
Makes application-specific information available to the synchronization observer.

User Name Synchronization Parameter [page 120]
Required. A string that the MobiLink server uses for authentication purposes.

Version Synchronization Parameter [page 121]
Defines the consolidated database version.

Related Information

MobiLink SQL Anywhere Client Utility (dbmlsync) Syntax

1.9.3.1 Additional Parameters Synchronization Parameter

This synchronization parameter allows an application to supply additional parameters that are seldom used or
that cannot be readily specified using other predefined parameters.

 Syntax
The syntax varies depending on the API you use. The additional parameters are specified as a semicolon-
delimited list of keyword=value pairs.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 95

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ab9d146ce21014ae3bf49a7a2aa923.html

Allowed Values

The following properties can be specified as part of the additional parameters setting:

Property name Description

AllowDownloadDupRows Prevents errors from being raised when a synchronization
encounters downloaded rows with duplicate primary keys.

Set this property to 0 to raise errors and roll back the down
load; otherwise, set to 1 to raise warnings and continue the
download.

This property is only available in UltraLite C++.

CheckpointStore Adds additional checkpoints of the database during syn
chronization to limit database growth during the synchroni
zation process.

Set this property to 1 to enable this feature, which is benefi-
cial for large downloads with many updates but slows down
synchronization; otherwise, set to 0, which is the default.

DisableConcurrency Disallows database access from other threads during syn
chronization during the upload phase.

Set this property to 0 to allow concurrent database access;
otherwise, set to 1. By default, this property is set to 0.

96 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Property name Description

TableOrder Sets the table order required for priority synchronization if
the UltraLite default table ordering is not suitable for your
deployment.

Set this property to a list of table names, arranged in the de
sired order for upload. For UltraLite, use a comma-delimited
list; for ulsync, use a semicolon-delimited list. By default, the
order is based on foreign key relationships. Typically, the de
fault is acceptable when the foreign keys on your consoli
dated database match the UltraLite remote database and
there are no foreign key cycles.

Quote tables names with either single or double quotes. For
example, "Customer,Sales" and 'Customer,Sales' are both
supported in UltraLite.

If you include tables that are not included in the synchroniza
tion, they are ignored. Any tables that you do not list are ap
propriately sorted based on the foreign keys defined in the
remote database.

The order of tables on the download is the same as those
you define for upload.

You only need to explicitly set the table order if your UltraLite
tables:

• Are part of foreign key cycles. You must then list all ta
bles that are part of a cycle.

• Have different foreign key relationships in the consoli
dated database.

Example

UltraLite for C++ applications can set additional parameters as follows:

ul_sync_info info; // ...
info.additional_parms = UL_TEXT(
 "AllowDownloadDupRows=1;
 CheckpointStore=1;
 DisableConcurrency=1;
 TableOrder=Customer,Sales");

UltraLiteJ applications can set additional parameters as follows:

SyncParms parms; // ...
parms.setAdditionalParms("AllowDownloadDupRows=1;CheckpointStore=1;DisableConcurrency=1");

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 97

1.9.3.2 Authentication Parameters Synchronization
Parameter

Supplies parameters to authentication parameters in MobiLink events.

 Syntax
The syntax varies depending on the API you use.

Remarks

Parameters may be a user name and password, for example.

If you use this parameter, you must also supply the number of parameters.

Allowed Values

An array of strings. Null is not allowed as a value for any of the strings, but you can supply an empty string.

Example

UltraLite for C/C++ applications can set the parameters as follows:

ul_char * Params[3] = { UL_TEXT("parm1"), UL_TEXT("parm2"),
 UL_TEXT("parm3") };
// ...
info.num_auth_parms = 3; info.auth_parms = Params;

Related Information

Authentication Parameters
Number of Authentication Parameters Synchronization Parameter [page 105]
authenticate_parameters Connection Event

98 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c4cb0b6ce210148b8bb129155d1501.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81bd49016ce21014afb2d8ccbff47559.html

1.9.3.3 Authentication Status Synchronization Parameter

This field is set by a synchronization to report the status of MobiLink user authentication. The MobiLink server
provides this information to the client.

 Syntax
The syntax varies depending on the API you use.

Allowed Values

The allowed values are held in an interface-specific enumeration. For example, for C/C++ applications the
enumeration is as follows.

Constant Value Description

UL_AUTH_STATUS_UNKNOWN 0 Authorization status is unknown, possi
bly because the connection has not yet
synchronized.

UL_AUTH_STATUS_VALID 1 User ID and password were valid at the
time of synchronization.

UL_AUTH_STATUS_VALID_BUT_EX
PIRES_SOON

2 User ID and password were valid at the
time of synchronization but will expire
soon.

UL_AUTH_STATUS_EXPIRED 3 Authorization failed: user ID or pass
word have expired.

UL_AUTH_STATUS_INVALID 4 Authorization failed: bad user ID or
password.

UL_AUTH_STATUS_IN_USE 5 Authorization failed: user ID is already
in use.

Remarks

If a custom authenticate_user synchronization script at the consolidated database returns a different value, the
value is interpreted according to the rules given in an authenticate_user connection event.

If you are implementing a custom authentication scheme, the authenticate_user or authenticate_user_hashed
synchronization script must return one of the allowed values of this parameter.

The parameter is set by the MobiLink server, and so is read-only.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 99

Example

UltraLite for C/C++ applications can access the parameter as follows:

ul_sync_info info; // ... returncode = info.auth_status;

Related Information

MobiLink Users in a Synchronization System
authenticate_user Connection Event

1.9.3.4 Authentication Value Synchronization Parameter

This field is set by a synchronization to report results of a custom MobiLink user authentication script. The
MobiLink server provides this information to the client.

 Syntax
The syntax varies depending on the API you use. It is not available in UltraLiteJ.

Remarks

The values set by the default MobiLink user authentication mechanism are described in the authenticate_user
connection event and Authentication Status synchronization parameter.

The parameter is set by the MobiLink server, and so is read-only.

Example

UltraLite for C/C++ applications can access the parameter as follows:

ul_sync_info info; // ... returncode = info.auth_value;

100 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81bd5a776ce21014b193d8c8fbd2ada6.html

Related Information

authenticate_user Connection Event
authenticate_user_hashed Connection Event
Authentication Status Synchronization Parameter [page 99]

1.9.3.5 Download Only Synchronization Parameter

Prevents changes from being uploaded from the UltraLite database during this synchronization.

 Syntax
The syntax varies depending on the API you use.

Default

False

Allowed Values

Boolean

Conflicts with

Ping and Upload Only

Remarks

Data changes are not uploaded when download-only synchronization occurs. However, information about the
schema and the value stored in the progress counter is still uploaded. If the downloaded data conflicts with
changes on the remote that have not been uploaded, then the synchronization fails and is rolled back.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 101

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81bd5a776ce21014b193d8c8fbd2ada6.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81bd51c06ce21014a4459e726ac471ae.html

Example

The following example illustrates how to set the DownloadOnly synchronization parameter using the ulsync
utility:

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;ScriptVersion=2;DownloadOnly=ON;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.download_only = ul_true;

Related Information

UltraLite Synchronization Client Features [page 10]
Upload Only Synchronization Parameter [page 118]
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.6 Ignored Rows Synchronization Parameter

This field is set by a synchronization to indicate that rows were ignored by the MobiLink server during
synchronization because of absent scripts.

 Syntax
The syntax varies depending on the API you use.

Allowed Values

Boolean

Remarks

The parameter is read-only.

102 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

UltraLite for C/C++ applications can access the parameter as follows:

ul_sync_info info; // ... res = info.ignored_rows;

1.9.3.7 Keep Partial Download Synchronization Parameter

Controls whether UltraLite holds on to the partial download, rather than rolling back the changes, when a
download fails because of a communications error during synchronization.

 Syntax
The syntax varies depending on the API you use.

Default

False, which indicates that UltraLite rolls back all changes after a failed download.

Allowed Values

Boolean

Example

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.keep_partial_download = ul_true;

Related Information

Resumption of Failed Downloads
Resume Partial Download Synchronization Parameter [page 110]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 103

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c69c6b6ce210149820c7f6169e80b1.html

1.9.3.8 New Password Synchronization Parameter

Sets a new MobiLink password associated with the user name.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Allowed Values

String

Remarks

The parameter is optional.

Example

ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;NewMobiLinkPwd=mynewpassword;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ...
info.new_password = UL_TEXT("mlnewpass");

Related Information

MobiLink Users in a Synchronization System
UltraLite Synchronization Utility (ulsync) [page 238]

104 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html

1.9.3.9 Number of Authentication Parameters
Synchronization Parameter

Supplies the number of authentication parameters being passed to authentication parameters in MobiLink
events.

 Syntax
The syntax varies depending on the API you use. Not required for UltraLiteJ.

Default

No parameters passed to a custom authentication script.

Remarks

The parameter is used together with Authentication Parameters to supply information to custom
authentication scripts.

Example

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.num_auth_parms = 3;

Related Information

Authentication Parameters
Authentication Parameters Synchronization Parameter [page 98]
authenticate_parameters Connection Event

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 105

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c4cb0b6ce210148b8bb129155d1501.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81bd49016ce21014afb2d8ccbff47559.html

1.9.3.10 Observer Synchronization Parameter

Specifies a pointer to a callback function or event handler that monitors synchronization.

The signature of the callback function that you need to implement to use is of the type ul_sync_observer_fn:

typedef void(UL_CALLBACK_FN *ul_sync_observer_fn)(ul_sync_status * status);

 Syntax
The syntax varies depending on the API you use.

Example

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.observer=callfunction;

Related Information

User Data Synchronization Parameter [page 119]

1.9.3.11 Partial Download Retained Synchronization
Parameter

Indicates whether UltraLite applied the changes that were downloaded rather than rolling back the changes
when a download fails due to a communications error during synchronization.

This parameter is set by the synchronization.

 Syntax
The syntax varies depending on the API you use.

Allowed Values

Boolean

106 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The parameter is set during synchronization if a download error occurs and a partial download was retained.

Partial downloads are retained only if Keep Partial Download is set to true.

Example

Access the parameter as follows:

ul_sync_info info; // ... returncode=info.partial_download_retained;

Related Information

Resumption of Failed Downloads
Keep Partial Download Synchronization Parameter [page 103]
Resume Partial Download Synchronization Parameter [page 110]

1.9.3.12 Password Synchronization Parameter

Specifies the MobiLink password associated with the user name.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Allowed Values

String

Remarks

The parameter is optional.

This MobiLink user name and password are different than any database user ID and password, and serve to
only identify and authenticate the application to the MobiLink server.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 107

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c69c6b6ce210149820c7f6169e80b1.html

If the MobiLink client already has a password, use the New Password parameter to change it.

Example

ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;MobiLinkPwd=mypassword;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.password = UL_TEXT("mypassword");

Related Information

MobiLink Users in a Synchronization System
User Name Synchronization Parameter [page 120]
New Password Synchronization Parameter [page 104]
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.13 Ping Synchronization Parameter

Confirms communications between the UltraLite client and the MobiLink server. When this parameter is set to
true, no synchronization takes place.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default

False

Allowed Values

Boolean

108 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html

Remarks

When the MobiLink server receives a ping request, it connects to the consolidated database, authenticates the
user, and then sends the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If the ping does not succeed, it issues
an error message.

If the MobiLink user ID cannot be found in the ml_user system table and the MobiLink server is running with the
command line option -zu+, the MobiLink server adds the user to ml_user.

The MobiLink server may execute the following scripts, if they exist, for a ping request:

• begin_connection
• authenticate_user
• authenticate_user_hashed
• authenticate_parameters
• end_connection

Example

ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;Ping=True;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.ping = ul_true;

Related Information

-pi dbmlsync Option
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.14 Publications Synchronization Parameter

Specifies the publications to be synchronized.

 Syntax
The syntax varies depending on the API you use. You can also use this parameter with ulsync.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 109

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac964e6ce21014b0c1a62b926cd965.html

Default

Synchronize all publications.

Remarks

When synchronizing in C/C++, set the publications synchronization parameter to a publication list: a comma-
separated list of publication names.

Example

ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;Publications=UL_PUB_MYPUB1,UL_PUB_MYPUB2;Str
eam=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.publications = UL_TEXT("Pubs1,Pubs3");

Related Information

UltraLite Publications [page 89]
Publishing Data in UltraLite [page 83]
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.15 Resume Partial Download Synchronization
Parameter

Resumes a failed download.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

110 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Default

False

Allowed Values

Boolean

Remarks

The synchronization does not upload changes; it only downloads those changes that were to be downloaded in
the failed download.

Example

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.resume_partial_download = ul_true;

Related Information

Resumption of Failed Downloads
Keep Partial Download Synchronization Parameter [page 103]
Partial Download Retained Synchronization Parameter [page 106]
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.16 Send Download Acknowledgement Synchronization
Parameter

Instructs the MobiLink server that the client will provide a download acknowledgement.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 111

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c69c6b6ce210149820c7f6169e80b1.html

Default

False

Allowed Values

Boolean

Example

ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;SendDownloadACK=true;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.send_download_ack = ul_true;

Related Information

UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.17 Stream Error Synchronization Parameter

Provides a structure to hold communications error reporting information.

 Syntax
The syntax varies depending on the API you use.

Applies to

This parameter applies only to C++ interfaces.

112 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Allowed Values

The parameter has no default value, and must be explicitly set using one of the supported fields. The
ul_stream_error fields are as follows:

stream_error_code

For the error code suffixes, see %SQLANY17%\SDK\Include\sserror.h.
system_error_code

A system-specific error code. For more information about the error code, you must look at your platform
documentation. For Windows platforms, this is the Microsoft Developer Network documentation.

The following are common system errors on Windows:

10048 (WSAADDRINUSE)

Address already in use.
10053 (WSAECONNABORTED)

Software caused connection abort.
10054 (WSAECONNRESET)

The other side of the communication closed the socket.
10060 (WSAETIMEDOUT)

Connection timed out.
10061 (WSAECONNREFUSED)

Connection refused. Typically, the MobiLink server is not running or is not listening on the specified
port.

error_string

A string with additional information, if available, for the stream_error_code. The string may or may not be
empty. A non-empty error_string value provides information in addition to the stream_error_code value.
For example, for a write error (error code 9) the error string is a number showing how many bytes it was
trying to write.

Remarks

UltraLite applications other than the UltraLite C++ Component receive communications error information as
part of the Sync Result parameter.

The stream_error field is a structure of type ul_stream_error.

typedef struct { ss_error_code stream_error_code;
 asa_uint16 alignment;
 asa_int32 system_error_code;
 char error_string[UL_STREAM_ERROR_STRING_SIZE];
} ul_stream_error, * p_ul_stream_error;

The structure is defined in %SQLANY17%\SDK\Include\sserror.h.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 113

Check for a SQLE_MOBILINK_COMMUNICATIONS_ERROR:

ULConnection * conn; ul_sync_info info;
...
conn->InitSynchInfo(&info);
if(!conn->Synchronize(&info)) {
 ULError const * error = conn->GetLastError();
 char buf[256];
 if(error->GetSQLCode() == SQLE_MOBILINK_COMMUNICATIONS_ERROR) {
 error->GetString(buf, sizeof(buf));
 printf("%s\n", buf);
 // more handling for communication error
 } }

Related Information

MobiLink Communication Error Messages
Sync Result Synchronization Parameter [page 116]

1.9.3.18 Stream Type Synchronization Parameter

Sets the MobiLink network protocol to use for synchronization.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Remarks

This parameter is required. It has no default value.

Most network protocols require protocol options to identify the MobiLink server address and other behavior.
These options are supplied in the Stream Parameters parameter.

When the network protocol requires an option, pass that option using the Stream Parameters parameter;
otherwise, set the Stream Parameters parameter to null.

The following stream types are available, but not all are available on all target platforms:

Network protocol Description

HTTP Synchronize over HTTP.

114 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/8534f27c56354283bd00fc8f77adaf94/17.0.01/en-US/80bfebc76ce210149235ee4e33544160.html

Network protocol Description

HTTPS Synchronize over HTTPS.

The HTTPS protocol uses TLS as its underlying security
layer. It operates over TCP/IP.

TCP/IP Synchronize over TCP/IP.

TLS Synchronize over TCP/IP with Transport Layer Security
(TLS). TLS secures client/server communications using digi
tal certificates and public-key cryptography.

Example

For UltraLite for C/C++ applications, set the parameter as follows:

Connection conn; ul_sync_info info;
...
conn.InitSynchInfo(&info); info.stream = "http";

Related Information

Transport Layer Security
UltraLite Network Protocol Options [page 122]
Supported Platforms
Stream Parameters Synchronization Parameter [page 115]
Certificate Creation Utility (createcert)
Certificate Viewer Utility (viewcert)
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.19 Stream Parameters Synchronization Parameter

Sets options to configure the network protocol.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 115

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bc8c0bd6c5f1014890fd9779dc6da50.html
https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/8155387d6ce21014937df18c3511be8f.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8141d1926ce21014b400d0c51435d3d3.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814a6f3d6ce210149bf5a9e8c0a653c2.html

Default

Null

Allowed Values

String

Remarks

This parameter is optional. It accepts a semicolon separated list of network protocol options. Each option is of
the form keyword=value, where the allowed sets of keywords depends on the network protocol.

Example

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.stream_parms= UL_TEXT("host=myserver;port=2439");

Related Information

UltraLite Network Protocol Options [page 122]
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.20 Sync Result Synchronization Parameter

Reports the status of a synchronization.

 Syntax
The syntax varies depending on the API you use.

116 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The parameter is set by UltraLite, and is read-only.

The C/C++ interface receives this information in separate parameters as part of a ul_sync_info struct.
Otherwise, this information is defined as a compound parameter containing a variety of information in separate
fields:

Authentication Status

Reports success or failure of authentication.
Ignored Rows

Reports the number of ignored rows.
Stream Error information

The Stream Error information includes a Stream Error Code, Stream Error Context, Stream Error ID, and
Stream Error System.
Upload OK

Reports the success or failure of the upload phase.

Related Information

Authentication Status Synchronization Parameter [page 99]
Ignored Rows Synchronization Parameter [page 102]
Stream Error Synchronization Parameter [page 112]
Upload OK Synchronization Parameter [page 117]

1.9.3.21 Upload OK Synchronization Parameter

This field is set by a synchronization to report the status of data uploaded to the MobiLink server.

 Syntax
The syntax varies depending on the API you use.

Remarks

The parameter is set by UltraLite, and so is read-only.

After synchronization, the parameter holds true if the upload was successful, and false otherwise. You can
check this parameter if there was a synchronization error, to know whether data was successfully uploaded
before the error occurred.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 117

Example

UltraLite for C/C++ applications can access the parameter as follows:

ul_sync_info info; // ... returncode = info.upload_ok;

1.9.3.22 Upload Only Synchronization Parameter

Indicates that there should be no downloads in the current synchronization, which can save communication
time over slow communication links.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Default

False

Allowed Values

Boolean

Conflicts with

Download Only, Ping, and Resume Partial Download

Remarks

When set to true, the client waits for the upload acknowledgement from the MobiLink server, after which it
terminates the synchronization session successfully.

118 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb
"MobiLinkUid=remoteA;ScriptVersion=2;UploadOnly=True;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.upload_only = ul_true;

Related Information

UltraLite Client Synchronization Design [page 79]
Download Only Synchronization Parameter [page 101]
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.23 User Data Synchronization Parameter

Makes application-specific information available to the synchronization observer.

Applies to

C/C++ applications only. Other components, such as UltraLite.NET, do not require a separate parameter to
handle user data and so have no User Data parameter.

 Syntax
The syntax varies depending on the API you use.

Remarks

When implementing the synchronization observer callback function or event handler, you can make
application-specific information available by providing information using the User Data parameter.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 119

Related Information

Observer Synchronization Parameter [page 106]

1.9.3.24 User Name Synchronization Parameter

Required. A string that the MobiLink server uses for authentication purposes.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Remarks

This parameter is required. Empty strings and NULL strings are universally rejected.

The parameter has no default value, and must be explicitly set.

The user name does not have to be unique when a remote ID is used.

This MobiLink user name and password are separate from any database user ID and password, and serves only
to identify and authenticate the application to the MobiLink server.

For a user to be part of a synchronization system, you must register the user name with the MobiLink server.
The user name is stored in the name column of the ml_user MobiLink system table in the consolidated
database.

Example

ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;ScriptVersion=2;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.user_name= UL_TEXT("remoteA");

Related Information

Remote IDs

120 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abecb96ce210149cfae8b41cb3ae74.html

MobiLink Users in a Synchronization System
MobiLink Users in a Synchronization System
Password Synchronization Parameter [page 107]
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.3.25 Version Synchronization Parameter

Defines the consolidated database version.

 Syntax
The syntax varies depending on the API you use. You can also set this parameter with ulsync.

Allowed Values

String

Remarks

This parameter is required. Empty strings and NULL strings are universally rejected.

Each synchronization script in the consolidated database is marked with a version string. For example, there
may be two different download_cursor scripts, identified by different version strings.

Example

ulsync can set this parameter as an extended synchronization parameter as follows:

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;ScriptVersion=2;Stream=http"

UltraLite for C/C++ applications can set the parameter as follows:

ul_sync_info info; // ... info.version = UL_TEXT("default");

Related Information

Script Versions

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 121

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81cf63486ce21014aa6aa9fb54274feb.html

UltraLite Synchronization Utility (ulsync) [page 238]

1.9.4 UltraLite Network Protocol Options

You must set the network protocol in your application.

Each UltraLite database that synchronizes with a MobiLink server does so over a network protocol. Available
network protocols include TCP/IP, HTTP, HTTPS, and TLS.

For the network protocol you set, you can choose from a set of corresponding protocol options to ensure that
the UltraLite application can locate and properly communicate with the MobiLink server. The MobiLink client
network protocol options provide information such as addressing information (host and port) and protocol-
specific information.

In this section:

Synchronization Stream Options [page 122]
You can provide the information needed to locate the MobiLink server in your application by setting the
Stream Parameters parameter.

Related Information

Configuring UltraLite Clients to Use Transport Layer Security [page 25]
MobiLink Client Network Protocol Options
MobiLink Client Network Protocol Options
Stream Parameters Synchronization Parameter [page 115]
UltraLite Synchronization Utility (ulsync) [page 238]

1.9.4.1 Synchronization Stream Options

You can provide the information needed to locate the MobiLink server in your application by setting the Stream
Parameters parameter.

Related Information

Stream Parameters Synchronization Parameter [page 115]

122 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8e2886ce21014af37ca9aa8f73a47.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8e2886ce21014af37ca9aa8f73a47.html

1.10 UltraLite Deployment

In the majority of cases, development occurs on a Windows desktop or macOS with the final release target for
UltraLite being the mobile device.

However, depending on your deployment environment, you can use various deployment mechanisms to install
UltraLite.

UltraLite application projects may evolve with different iterations of the same UltraLite database: a
development database, a test database, and a deployed production database. During the lifetime of a deployed
database application, changes and improvements are first made in the development database, then
propagated to the test database, before finally being distributed to the production database.

The modules you need to use for your UltraLite application depend on the platform you are targeting, the
interface you are using, and the functionality you want to use.

In this section:

UltraLite Application Build and Deployment Specifications [page 124]
There is a minimum set of requirements to build and deploy an UltraLite application for all supported
platforms and devices, including the requirements for UltraLite database encryption.

UltraLite Database Deployment Techniques [page 130]
There are several techniques you can use to get the initial database file onto a device.

Deploying UltraLite Database Schema Upgrades [page 131]
Perform a schema upgrade.

UltraLite Engine Startup [page 133]
When using the UltraLite engine to manage data on a Microsoft Windows or Microsoft Windows Mobile
device, your UltraLite application starts the engine automatically unless the application needs to
explicitly provide the directory location of the engine.

Registering Applications with the Microsoft ActiveSync Manager [page 134]
Register applications that use Microsoft ActiveSync synchronization.

Related Information

UltraLite Data Management Components for Microsoft Windows Mobile [page 21]
How to Build and Deploy UltraLite C++ Applications [page 667]
UltraLite.NET Application Development [page 600]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 123

1.10.1 UltraLite Application Build and Deployment
Specifications

There is a minimum set of requirements to build and deploy an UltraLite application for all supported platforms
and devices, including the requirements for UltraLite database encryption.

 Note
There may be versions of the UltraLite engine located in directories that contains the _dev suffix, such as
the x86_dev directory. These versions contain development-time logging functionality that can be used to
diagnose problems on platforms for debugging purposes. For production systems, use a version of the
engine that is not in a _dev directory.

The following table provides the minimum requirements:

Platform or device Minimum requirements
AES encryption require
ments

FIPS 140-2 AES encryption
requirements

Microsoft Windows Mobile
and desktop (UltraLite C++
using static linkage)

Link against:

• ulrt.lib 1

• ulbase.lib 1

Use the DBKEY creation pa
rameter to set the encryption
key when creating or con
necting to the database.

Call the EnableAesDBEn
cryption method.

Set the DBKEY creation pa
rameter to the encryption
key when creating and con
necting to the database.

Set the creation parameter
fips=yes when creating the
database.

Call the EnableAesFipsDBEn
cryption method.

Deploy:

• ulfips17.dll 2

• libeay32.dll 2

• msvcr90.dll/
msvcr100.dll2

124 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Platform or device Minimum requirements
AES encryption require
ments

FIPS 140-2 AES encryption
requirements

Microsoft Windows Mobile
and desktop (UltraLite C++
using dynamic linkage)

Link against:

• ulimp.lib 1, 10

• ulbase.lib 1

Deploy:

• ulrt17.dll 1

Use the DBKEY creation pa
rameter to set the encryption
key when creating or con
necting to the database.

Call the EnableAesDBEn
cryption method.

Set the DBKEY creation pa
rameter to the encryption
key when creating and con
necting to the database.

Set the creation parameter
fips=yes when creating the
database.

Call the EnableAesFipsDBEn
cryption method.

Deploy:

• ulfips17.dll 2

• libeay32.dll 2

• msvcr90.dll/
msvcr100.dll2

Microsoft Windows Mobile
and desktop (UltraLite C++
with the UltraLite engine)

Link against:

• ulrtc.lib 1

• ulbase.lib 1

Deploy:

• uleng17.exe 2

Use the DBKEY creation pa
rameter to set the encryption
key when creating or con
necting to the database.

Set the DBKEY creation pa
rameter to the encryption
key when creating and con
necting to the database.

Set the creation parameter
fips=yes when creating the
database.

Deploy:

• ulfips17.dll 2

• libeay32.dll 2

• msvcr90.dll/
msvcr100.dll2

Microsoft Windows Mobile
and desktop (UltraLite.NET)

Add references to:

• Sap.Data.UltraLite
• Sap.Data.UltraLite.resou

rces

Deploy:

• Sap.Data.UltraLi
te.dll 7

• Sap.Data.UltraLi
te.resources.dll
8

• ulnet17.dll 6

Use the DBKEY creation pa
rameter to set the encryption
key when creating or con
necting to the database.

Set the DBKEY creation pa
rameter to the encryption
key when creating and con
necting to the database.

Set the creation parameter
fips=yes when creating the
database.

Deploy:

• ulfips17.dll 2

• libeay32.dll 2

• msvcr90.dll/
msvcr100.dll2

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 125

Platform or device Minimum requirements
AES encryption require
ments

FIPS 140-2 AES encryption
requirements

Microsoft Windows Mobile
and desktop (UltraLite.NET
with the UltraLite engine)

Add references to:

• Sap.Data.UltraLite
• Sap.Data.UltraLite.resou

rces

Deploy:

• Sap.Data.UltraLi
te.dll 7

• Sap.Data.UltraLi
te.resources.dll
8

• ulnetclient17.dll
6

• uleng17.exe 2

Use the DBKEY creation pa
rameter to set the encryption
key when creating or con
necting to the database.

Set the DBKEY creation pa
rameter to the encryption
key when creating and con
necting to the database.

Set the creation parameter
fips=yes when creating the
database.

Deploy:

• ulfips17.dll 2

• libeay32.dll 2

• msvcr90.dll/
msvcr100.dll2

macOS and iOS (UltraLite C+
+)

Add to your Xcode project:

• libulrt.a 9

• libulbase.a 9 (ma
cOS only)

Use the DBKEY creation pa
rameter to set the encryption
key when creating or con
necting to the database.

Call the EnableAesDBEn
cryption method.

Not applicable

Linux (UltraLite C++) Link against:

• libulrt.a 3

• libulbase.a 3

Use the DBKEY creation pa
rameter to set the encryption
key when creating or con
necting to the database.

Call the EnableAesDBEn
cryption method.

Not applicable

Microsoft Windows Phone
(UltraLite for Microsoft Win
dows Phone)

Add UltraLite.winmd13

to your Microsoft Windows
Phone project.

Use the DBKEY creation pa
rameter to set the encryption
key when creating or con
necting to the database.

Not applicable

Android (UltraLiteJ) Add to your Android project:

• UltraLiteJNI17.ja
r 5

• libultralitej17.s
o 4

Use the DBKEY creation pa
rameter or the setEncryp
tionKey method to set the
encryption key when creating
or connecting to the data
base.

Call the EnableAesDBEn
cryption method.

Not applicable

126 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1 For Microsoft Windows Mobile, this file is located in %SQLANY17%\UltraLite\CE\Arm.50\Lib. For
Microsoft Windows, it is located in %SQLANY17%\UltraLite\Windows\x64\Lib\VS9 or %SQLANY17%
\UltraLite\Windows\x86\Lib\VS9.

2 FIPS is not supported on Microsoft Windows Mobile. On, Microsoft Windows, these files are located in
%SQLANY17%\UltraLite\Windows\x64 or %SQLANY17%\UltraLite\Windows\x86.

3 This file is located in /opt/sqlanywhere17/ultralite/linux/x64/lib.

4 This file is located in %SQLANY17%\UltraLite\UltraLiteJ\Android\ARM.

5 This file is located in %SQLANY17%\UltraLite\UltraLiteJ\Android.

6 For Microsoft Windows Mobile, this file is located in %SQLANY17%\UltraLite\UltraLite.NET\CE\Arm.
50. For Microsoft Windows, it is located in %SQLANY17%\UltraLite\UltraLite.NET\x64 or %SQLANY17%
\UltraLite\UltraLite.NET\win32.

7 This file is located in %SQLANY17%\UltraLite\UltraLite.NET\Assembly\V2.

8 This file is located in %SQLANY17%\UltraLite\UltraLite.NET\Assembly\V2\en.

9 For macOS, this file is located in /Applications/SQLAnywhere17/System/ultralite/macosx/x86_64. For
iOS, UltraLite runtimes must be built after installation. Follow the instructions provided in install-dir/
ultralite/iphone/readme.txt.

10 When linking against this library, define the UL_USE_DLL preprocessor macro when compiling. For example,
specify the following:

-DUL_USE_DLL

11Required for over-the-air (OTA) deployment only. Alternatively, you can create your own .jad file that deploys
UltraLiteJ with your application.

12The WinRT components for the ARM, x86, and x64 processors are located in the UltraLite\UWP\Windows
\8.0\ and UltraLite\UWP\WindowsPhone\8.0\ directories of your SQL Anywhere installation. The
Microsoft Windows Phone 8 emulator for x86 processors is included in the respective directory.

Additional build and deployment requirements for synchronization and
compression

The following table describes the stream, protocol option, and code requirements for building and deploying an
UltraLite application that uses synchronization:

 Note
The HTTPS stream option can be enabled in the UltraLiteJ API by passing the SyncParms.HTTPS_STREAM
constant to the Connection.createSyncParms method

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 127

Synchronization type Stream option specification
Protocol option require
ments

Method call requirements
for UltraLite C++

TCP/IP "tcpip" None • EnableTcpipSynchroni
zation

HTTP "http" None • EnableHttpSynchroniza
tion

RSA TLS "tls" None • EnableTlsSynchroniza
tion

• EnableRsaSyncEncryp
tion

RSA HTTPS "https" None • EnableHttpsSynchroni
zation

• EnableRsaSyncEncryp
tion

FIPS 140-2 RSA TLS "tls" fips=yes • EnableTlsSynchroniza
tion

• EnableRsaFipsSyncEn
cryption

FIPS 140-2 RSA HTTPS "https" fips=yes • EnableHttpsSynchroni
zation

• EnableRsaFipsSyncEn
cryption

The following table describes additional protocol option and code requirements for building and deploying an
UltraLite application that uses compression or end-to-end encryption:

Compression and stream encryption
options Protocol option requirements

Method call requirements for Ultra
Lite C++ and UltraLiteJ

ZLIB compression • compression=zlib • C++: EnableZlibSyncCompression
• Java: setZlibCompression

RSA E2EE • e2ee_public_key= key-file • C++: EnableRsaE2ee
• Java: setE2eePublicKey

FIPS 140-2 RSA E2EE • e2ee_public_key= key-file
• fips=yes

• C++: EnableRsaFipsE2ee
• Java: Not applicable

The following table illustrates additional build and deployment requirements for compression and encrypted
synchronization:

 Note
There are no additional build and deployment requirements for TCP/IP and HTTP synchronization.

128 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Platform or device
ZLIB compression require
ments

RSA TLS, RSA HTTPS, and
RSA E2EE requirements

FIPS 140-2 RSA TLS, FIPS
140-2 RSA HTTPS, and FIPS
140-2 RSA E2EE require
ments

Microsoft Windows Mobile
and desktop (UltraLite C++
using static linkage)

None Link against:

• ulrsa.lib 1

Deploy:

• mlcrsafips17.dll 2

• libeay32.dll 2

• ssleay32.dll 2

• msvcr90.dll/
msvcr100.dll2

Microsoft Windows Mobile
and desktop (UltraLite C++
using dynamic linkage)

Deploy:

• mlczlib17.dll 2

Deploy:

• mlcrsa17.dll 2

Deploy:

• mlcrsafips17.dll 2

• libeay32.dll 2

• ssleay32.dll 2

• msvcr90.dll/
msvcr100.dll2

Microsoft Windows Mobile
and desktop (UltraLite C++
with the UltraLite engine)

Deploy:

• mlczlib17.dll 2

Deploy:

• mlcrsa17.dll 2

Deploy:

• mlcrsafips17.dll 2

• libeay32.dll 2

• ssleay32.dll 2

• msvcr90.dll/
msvcr100.dll2

Microsoft Windows Mobile
and desktop (UltraLite.NET)

Deploy:

• mlczlib17.dll 2

Deploy:

• mlcrsa17.dll 2

Deploy:

• mlcrsafips17.dll 2

• libeay32.dll 2

• ssleay32.dll 2

• msvcr90.dll/
msvcr100.dll2

Microsoft Windows Mobile
and desktop (UltraLite.NET
with the UltraLite engine)

Deploy:

• mlczlib17.dll 2

Deploy:

• mlcrsa17.dll 2

Deploy:

• mlcrsafips17.dll 2

• libeay32.dll 2

• ssleay32.dll 2

• msvcr90.dll/
msvcr100.dll2

macOS and iOS (UltraLite C+
+)

None None Not applicable

Linux (UltraLite C++) None Link against:

• libulrsa.a 3

Not applicable

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 129

Platform or device
ZLIB compression require
ments

RSA TLS, RSA HTTPS, and
RSA E2EE requirements

FIPS 140-2 RSA TLS, FIPS
140-2 RSA HTTPS, and FIPS
140-2 RSA E2EE require
ments

Microsoft Windows Phone
(UltraLite for Microsoft Win
dows Phone)

None Not applicable Not applicable

Android (UltraLiteJ) None Deploy:

• libmlcrsa17.so 4

Not applicable

1 For Microsoft Windows Mobile, this file is located in %SQLANY17%\UltraLite\CE\Arm.50\Lib. For
Microsoft Windows, it is located in %SQLANY17%\UltraLite\Windows\x64\Lib\VS9 or %SQLANY17%
\UltraLite\Windows\x86\Lib\VS9.

2 FIPS is not supported on Microsoft Windows Mobile. On Microsoft Windows, these files are located in
%SQLANY17%\UltraLite\Windows\x64 or %SQLANY17%\UltraLite\Windows\x86.

3 This file is located in /opt/sqlanywhere17/ultralite/linux/x64/lib.

4 This file is located in %SQLANY17%\UltraLite\UltraLiteJ\Android\ARM.

Related Information

How to Build and Deploy UltraLite C++ Applications [page 667]
How to Deploy UltraLite.NET Applications [page 621]
MobiLink Client Network Protocol Options

1.10.2 UltraLite Database Deployment Techniques

There are several techniques you can use to get the initial database file onto a device.

• Use the UltraLite API in your application to create the initial database file.
• Create a schema file from a SQL script and use the ALTER DATABASE SCHEMA FROM FILE statement.
• Use UltraLite FileTransfer methods to download the initial database file if it does not already exist on the

device.
• Bundle the initial database with the application.
• When deploying to a Microsoft Windows or Microsoft Windows Mobile device, use central administration to

send down the initial UDB file, or send a command to create the initial database file and execute SQL to
give it schema.

130 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8e2886ce21014af37ca9aa8f73a47.html

Related Information

Manage Remote Databases
Deploying UltraLite Database Schema Upgrades [page 131]
ALTER DATABASE SCHEMA FROM FILE Statement [UltraLite] [page 520]

1.10.3 Deploying UltraLite Database Schema Upgrades

Perform a schema upgrade.

Prerequisites

The SQL file you use must contain the entire new schema.

Context

UltraLite database schema upgrades can be deployed using one of the following techniques:

Individual DDL statements

For example, execute the following statement to create a new publication:

dbconnection->ExecuteStatement("CREATE PUBLICATION p (table t)");

The ALTER DATABASE SCHEMA FROM FILE statement

This statement can be used to perform schema upgrades when you do not know the DDL statement
requirements, or do not want to specify the individual DDL statements.

 Caution
Do not reset a device during a schema upgrade. If you reset the device during a schema upgrade, data
will be lost and the UltraLite database marked as "bad."

UltraLite executes the following steps when you upgrade an UltraLite database schema with the ALTER
DATABASE SCHEMA FROM FILE statement:

1. Both the new and existing database schemas are compared to see what differs.
2. The schema of the existing database is altered.
3. Rows that do not fit the new schema are dropped. For example:

• If you add a uniqueness constraint to a table and there are multiple rows with the same values, all
but one row will be dropped.

• If you try to change a column domain and a conversion error occurs, then that row is dropped. For
example, if you have a VARCHAR column and convert it to an INT column and a row has the value
ABCD, then that row is dropped.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 131

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c1eba76ce210148f1dfa74aa587775.html

• If your new schema has new foreign keys where the foreign row does not have a matching primary
row, these rows are dropped.

4. When rows are dropped, a SQLE_ROW_DROPPED_DURING_SCHEMA_UPGRADE (130) warning is
raised.

Procedure

1. Create a SQL script of DDL statements to create a completely new schema.

You can keep a master schema on your computer and update the schema as your application changes.

Use either the ulinit or ulunload utilities to extract the DDL statements required for your script. By using
these utilities with the following options, you ensure that the DDL statements are syntactically correct:

• For an UltraLite database, use the ulunload utility with the -n and -s [schema-file] options. For
example:

ulunload -c dbf=mydatabase.udb -n -s MySchema.sql

• For a SQL Anywhere database, use the ulinit utility with the -a, -l [schema-file], and -n
[publication-name] option. For example:

ulinit -a "dsn=mysqlanywheredatabase" -l MySchema.sql -n MyPub Temp.udb

If you do not use the ulunload or ulinit utilities, review the script and ensure the following:

• The script declares the entire desired schema with CREATE statements.
• Tables, columns, and publications are not renamed. The RENAME operation is not supported.

Renamed tables are processed as a DROP TABLE and CREATE TABLE operation.
• There are no non-DDL statements, including non-DDL statements that may not have the effect you

expect.
• Words in the SQL statement are separated by spaces.
• Only one SQL statement appears in each line.
• Comments are prepended with double hyphens (-), and only occur at the start of a line.
• Each statement is separated by a line containing exactly the word GO.

2. Deploy the new SQL script file.
3. Ensure that the database is synchronized.
4. Run the new statement on the device. For example:

ALTER DATABASE SCHEMA FROM FILE 'MySchema.sql'

Results

The schema is updated.

132 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

UltraLite Database Schemas [page 52]
ALTER DATABASE SCHEMA FROM FILE Statement [UltraLite] [page 520]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Database Unload Utility (ulunload) [page 243]

1.10.4 UltraLite Engine Startup

When using the UltraLite engine to manage data on a Microsoft Windows or Microsoft Windows Mobile device,
your UltraLite application starts the engine automatically unless the application needs to explicitly provide the
directory location of the engine.

When an UltraLite application attempts to start the UltraLite engine, the application searches the following
directories:

Client platform Directory locations

Microsoft Windows desktop 1. The directory of the application that is starting it
2. The current working directory
3. The system path
4. The SQL Anywhere install directory (either under

bin32 or bin64), depending on whether the client is
32-bit or 64-bit

Microsoft Windows Mobile/CE 1. \Windows\
2. \ (the root directory)

3. \UltraLiteDB\

Linux 1. The directory of the application that is auto-starting it

2. %SQLANY17%/bin32

If the UltraLite engine is stored in a different location, start the engine by specifying the START connection
parameter.

For example, a connection string to the database or connection code for a Microsoft Windows Mobile client
application might use the following START parameter value:

"START=\Program Files\MyApp\uleng17.exe"

Related Information

UltraLite Application Build and Deployment Specifications [page 124]
UltraLite START Connection Parameter [page 200]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 133

1.10.5 Registering Applications with the Microsoft
ActiveSync Manager

Register applications that use Microsoft ActiveSync synchronization.

Context

You can register your application for use with Microsoft ActiveSync either by using the ActiveSync Provider
Installation utility or using the Microsoft ActiveSync Manager itself.

The following task describes how to use the Microsoft ActiveSync Manager to register your application:

Procedure

1. Launch Microsoft ActiveSync.
2. From the Microsoft ActiveSync window, click Options.
3. From the list of information types, click MobiLink Clients and click Settings.
4. In the MobiLink Synchronization window, click New.
5. Enter the following information for your application:

Application name

A name identifying the application that appears in the Microsoft ActiveSync user interface.
Class name

The registered class name for the application.
Path

The location of the application on the device.
Arguments

Any command line arguments to be used when Microsoft ActiveSync starts the application.
6. Click OK to register the application.

Results

The application is registered with Microsoft ActiveSync.

Next Steps

Copy the application to the device.

134 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

Assigning Class Names for Applications [page 711]

1.11 Tutorial: Building the UltraLite CustDB Sample
Application

In this tutorial you learn how to run the MobiLink server to carry out data synchronization between the
consolidated database and the UltraLite remote, use SQL Central to browse the data in the UltraLite remote,
and manage UltraLite databases with UltraLite utilities.

Context

Different versions of the application code exist for each supported programming interface and platform.
However, this tutorial references the compiled version of the application for Windows desktops only. Each
version varies to conform to the conventions of each platform.

1. Lesson 1: Building and Running the CustDB Application [page 136]
Build the CustDB application.

2. Lesson 2: Starting the MobiLink Server and Performing an Initial Synchronization [page 137]
Start the MobiLink server and synchronize the CustDB database with the UltraLite database using the
CustDB application.

3. Lesson 3: Updating Data in the UltraLite Database [page 138]
Use the CustDB application to add, update, and delete data in the remote database.

4. Lesson 4: Synchronizing the UltraLite Database with the Consolidated Database [page 140]
Synchronize databases and use either Interactive SQL or SQL Central to connect to the consolidated
database and confirm that your changes were synchronized.

5. Lesson 5: Browsing MobiLink Synchronization Scripts [page 141]
Browse synchronization scripts to get a better understanding of how the CustDB synchronization logic
works.

Related Information

CustDB Sample Application Overview [page 17]
CustDB Sample for MobiLink
Users in the CustDB Sample
Tables in the CustDB Databases

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 135

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b90f576ce21014975d83610206f34a.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcf9a56ce2101499b380a768386b61.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcc5386ce21014b27490eef6b5f69b.html

1.11.1 Lesson 1: Building and Running the CustDB Application

Build the CustDB application.

Procedure

1. For non-Windows environments, build the CustDB application.
a. Open a CustDB project file in the appropriate environment.
b. Compile the source code.

2. Copy the CustDB application.

For Windows 32-bit environments, copy the CustDB application, %SQLANY17%\UltraLite\Windows
\x86\custdb.exe, to the %SQLANYSAMP17%\UltraLite\CustDB directory.

Results

The CustDB application is compiled.

 Note
If the Mobilink server is not running, starting the CustDB application displays an error message because it
is unable to synchronize.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building the UltraLite CustDB Sample Application [page 135]

Next task: Lesson 2: Starting the MobiLink Server and Performing an Initial Synchronization [page 137]

Related Information

CustDB File Locations for UltraLite [page 19]

136 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.11.2 Lesson 2: Starting the MobiLink Server and Performing
an Initial Synchronization

Start the MobiLink server and synchronize the CustDB database with the UltraLite database using the CustDB
application.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Click Start Programs SQL Anywhere 17 MobiLink Synchronization Server Sample . Or, run the
following command:

mlsrv17 -c "DSN=SQL Anywhere 17 CustDB;uid=ml_server;pwd=sql" -vcrs

Use mobilink.sh on macOS or Linux. You must specify the password for the sample database. For
example:

mobilink.sh sql

The window displays messages about the MobiLink server's status.
2. Run the CustDB application. In Windows, run %SQLANYSAMP17%\UltraLite\CustDB\custdb.exe.

3. On the File menu, click Synchronize.

The application synchronizes and the MobiLink server messages window displays messages showing the
synchronization taking place.

The synchronization script determines which subset of customers, products, and orders is downloaded to
the application when user 50 logs in. In this case, only orders that have not yet been approved are
downloaded.

4. Confirm that the company name and a sample order appear in the application window.

Results

The CustDB application synchronizes with the consolidated database.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 137

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building the UltraLite CustDB Sample Application [page 135]

Previous task: Lesson 1: Building and Running the CustDB Application [page 136]

Next task: Lesson 3: Updating Data in the UltraLite Database [page 138]

1.11.3 Lesson 3: Updating Data in the UltraLite Database

Use the CustDB application to add, update, and delete data in the remote database.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Browse orders.

Browsing orders is accomplished by using a similar method for each version of the CustDB application. By
browsing an order, you are scrolling through the data in your local UltraLite database. Because customers
are sorted alphabetically, you can easily scroll through the list and locate a customer by name.

a. To scroll down the list of customers, click Next.
b. To scroll up through the list of customers, click Previous.

2. Add an order.

Adding an order is carried out in a similar way in each version of the CustDB application. By adding an
order, you modify the data in your local UltraLite database. This data is not shared with the consolidated
database until you synchronize.

a. Click Order New .
b. In the Customer list, use the directional keys to scroll down and click Basements R Us.
c. In the Product list, use the directional keys to scroll down and click Screwmaster Drill. The price of

this item is automatically entered in the Price field.
d. In the Quantity field, type 20.
e. In the Discount field, type 5 (percent) and click OK.

138 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

3. Approve, deny, and delete orders.

Because you have authenticated your identity as user ID 50, you are a manager that can perform all the
same tasks as a sales person, but you have the added ability to accept or reject orders. By accepting or
rejecting an order, you change its status and add an additional note for the sales person to review. However,
the data in the consolidated database is unchanged until you synchronize.

a. Approve the order for Apple Street Builders.

1. To locate the customer, click Previous.
2. To approve the order, click Order and then Approve.
3. In the Note list, click Good and then click OK.

The order appears with a status of Approved.
b. Deny the order for Art's Renovations.

1. Go to the next order in the list, which is from Art's Renovations.
2. To deny the order, click Order and then Deny.
3. In the Note list, click Discount Is Too High and then click OK.

The order appears with a status of Denied.
c. Delete the order for Awnings R Us.

1. Go to the next order in the list, which is from Awnings R Us.

2. Delete this order by choosing Order Delete .
3. Click OK to confirm the deletion.

The order is marked as deleted. However, the current data remains in the UltraLite remote
database until you synchronize changes to the consolidated database.

Results

Modifications to the data in the UltraLite database are saved but not synchronized with the CustDB database.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building the UltraLite CustDB Sample Application [page 135]

Previous task: Lesson 2: Starting the MobiLink Server and Performing an Initial Synchronization [page 137]

Next task: Lesson 4: Synchronizing the UltraLite Database with the Consolidated Database [page 140]

Related Information

Tables in the CustDB Databases

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 139

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcc5386ce21014b27490eef6b5f69b.html

1.11.4 Lesson 4: Synchronizing the UltraLite Database with
the Consolidated Database

Synchronize databases and use either Interactive SQL or SQL Central to connect to the consolidated database
and confirm that your changes were synchronized.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Context

The synchronization process for the CustDB application removes approved orders from your database.

Procedure

1. Synchronize the UltraLite database.

From the File menu, click Synchronize Database.
2. Confirm that synchronization took place.

At the remote database, you can confirm that all required transactions occurred by checking that the order
for Awnings R Us is now deleted. Perform this action by browsing the orders to confirm the absence of
this entry.

At the consolidated database, you can also confirm that all required actions occurred by checking data.

• Confirm that synchronization took place by using SQL Central.

1. Click Start Programs SQL Anywhere 17 Administration Tools SQL Central .

2. Click Connections Connect With SQL Anywhere 17 .
3. In the Action dropdown menu, click Connect With An ODBC Data Source.
4. Click ODBC Data Source Name.
5. Click Browse and click SQL Anywhere 17 CustDB.
6. Click OK.
7. Click Connect.
8. Double-click Tables.
9. Double-click ULOrder.
10. Click the Data tab and verify that order 5100 is approved, order 5101 is denied, and order 5102 is

deleted.
• Confirm that synchronization took place using Interactive SQL.

140 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1. Connect to the consolidated database from Interactive SQL.

1. Click Start Programs SQL Anywhere 17 Administration Tools Interactive SQL .
2. In the Action dropdown list, click Connect With An ODBC Data Source.
3. Click ODBC Data Source Name and click SQL Anywhere 17 CustDB.
4. Click Connect.

2. To confirm that the approval and denial have been synchronized, execute the following statement:

SELECT order_id, status FROM ULOrder WHERE status IS NOT NULL;

The results show that order 5100 is approved and 5101 is denied.
3. The deleted order has an order_id of 5102. The following query returns no rows, demonstrating

that the order has been removed from the system:

SELECT * FROM ULOrder WHERE order_id = 5102

Results

The approved orders are removed from the database and you confirmed the removal.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building the UltraLite CustDB Sample Application [page 135]

Previous task: Lesson 3: Updating Data in the UltraLite Database [page 138]

Next task: Lesson 5: Browsing MobiLink Synchronization Scripts [page 141]

1.11.5 Lesson 5: Browsing MobiLink Synchronization Scripts

Browse synchronization scripts to get a better understanding of how the CustDB synchronization logic works.

Prerequisites

You must have completed the previous lessons in this tutorial.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 141

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Open SQL Central.

Click Start Programs SQL Anywhere 17 Administration Tools SQL Central .
2. Connect to the consolidated database.

1. In the Context field, choose SQL Central and then double-click MobiLink 17.
2. In the right pane of SQL Central, double-click CustDB and then double-click Consolidated Databases.
3. Right-click CustDB and then click Connect.
4. In the Action dropdown menu, click Connect With An ODBC Data Source.
5. Click ODBC Data Source Name.
6. Click Browse and click SQL Anywhere 17 CustDB.
7. Click OK.
8. Click Connect.

3. Set up the MobiLink system.

Right-click CustDB, click Check MobiLink System Setup, and then click OK.

4. Click View Folders if the Folders option is not already selected.

5. In the left pane, expand Consolidated Databases CustDB .
6. Click Connection Scripts.

The right pane lists a set of synchronization scripts and a set of events with which these scripts are
associated. As the MobiLink server carries out the synchronization process, it triggers a sequence of
events. Any synchronization script associated with an event is run at that time. By writing synchronization
scripts and assigning them to synchronization events, you can control the actions that are carried out
during synchronization.

7. Click Synchronized Tables.

A set of scripts specific to this table, and their corresponding events appears. These scripts control the way
that data is synchronized with the remote databases.

Results

You have reviewed the synchronization scripts.

Task overview: Tutorial: Building the UltraLite CustDB Sample Application [page 135]

Previous task: Lesson 4: Synchronizing the UltraLite Database with the Consolidated Database [page 140]

142 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

Synchronization Scripts
Synchronization Logic Source Code
CustDB Sample for MobiLink
UltraLite Clients [page 73]
Connection Scripts
Table Scripts

1.12 UltraLite Database Reference

UltraLite provides many tools and features to help you run, manage, and configure UltraLite databases.

In this section:

UltraLite Options [page 143]
There are several options you can control when creating your UltraLite database. These are designed to
help with the wide variety of UltraLite uses. Most options specified at creation time cannot be changed
later.

UltraLite Connection Parameters [page 181]
UltraLite supports these connection parameters when connecting to an UltraLite database.

UltraLite Database Properties [page 203]
UltraLite database property values are defined when the database is first created.

UltraLite Database Options [page 206]
UltraLite database option values are defined when the database is first created and can be altered while
connected to the database.

UltraLite Utilities [page 212]
UltraLite provides utilities that are designed to perform basic database administration activities at a
command prompt. Many of these utilities share a similar functionality to the SQL Anywhere Server
utilities. However, the way options are used can vary.

UltraLite System Tables [page 248]
The schema of an UltraLite database is stored in a proprietary format.

1.12.1 UltraLite Options

There are several options you can control when creating your UltraLite database. These are designed to help
with the wide variety of UltraLite uses. Most options specified at creation time cannot be changed later.

You can specify creation options when creating a database using the ulinit or ulload utility, and from the
supported client interfaces.

Boolean creation options are turned on with YES, Y, ON, TRUE, or 1, and are turned off with any of NO, N, OFF,
FALSE, and 0. The options are case insensitive.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 143

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81cff7326ce210148cdcea57b02446f3.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcab9f6ce21014a7a7d6e30775450c.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b90f576ce21014975d83610206f34a.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81bee5b26ce21014a071c765396a1374.html
https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81ce52e16ce21014913ecdcc86e7fc92.html

UltraLite creation options are specified as a semicolon separated list when creating a database from a
programming interface.

You can use a prefix with an option to specify that the option applies only when an application is running on a
particular type of platform.

Use the prefix desktop: with an option to indicate that the option only applies when the application is running
on the desktop.

Use the prefix device: with an option to indicate that the option only applies when the application is running
on the mobile device.

 Note
If the option is appropriate for both desktop and mobile device, then do not use the prefix.

device:DBF=\Documents\sample.udb;desktop:DBF=c:\Databases
\sample.udb;UID=DBA;device:DBKEY=secret

Name Description Syntax

case Sets the case-sensitivity of string com
parisons in the UltraLite database. case=value

checksum_level Sets the level of checksum validation in
the database. By default, checksum val
idation is enabled.

checksum_level=value

collation Sets the collation sequence used by the
UltraLite database. Setting this prop
erty with or without the UTF-8 property
determines the character set of the da
tabase.

collation=value

date_format Sets the default string format in which
dates are retrieved from the database. date_format=value

date_order Controls the interpretation of date or
dering of months, days, and years. date_order=value

dbf Specifies the path and file name for an
UltraLite database.

dbf=database-file

dbkey Provides an encryption key for the data
base.

dbkey=string

fips Controls the use of FIPS-certified AES
encryption. fips=value

kdf_iterations Makes it more difficult to access an en
crypted database by prolonging each
attack attempt.

kdf_iterations=value

max_hash_size Sets the default index hash size in
bytes. max_hash_size=value

144 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Name Description Syntax

mirror_file Specifies the name of the database mir
ror file to which all database writes will
be issued (at the same time as they are
to the main database file).

mirror_file=mirror-file

nearest_century Controls the interpretation of two-digit
years in string-to-date conversions. nearest_century=value

obfuscate Controls whether data in the database
is obfuscated. Obfuscation is not se
cure against skilled and determined at
tempts to gain access to the data.

obfuscate=value

page_size Defines the database page size.
page_size=sizek

precision Specifies the maximum number of dig
its in decimal point arithmetic results. precision=value

pwd Sets the password for the user. pwd=password

reserve_size Pre-allocates the file system space re
quired for your UltraLite database, with
out actually inserting any data.

reserve_size=number{ k | m
| g }

scale Specifies the minimum number of dig
its after the decimal point when an
arithmetic result is truncated to the
maximum precision.

scale=value

time_format Sets the format for times retrieved from
the database. time_format=value

timestamp_format Sets the format for timestamps re
trieved from the database. timestamp_format=value

timestamp_increment Determines how the timestamp is trun
cated in UltraLite. timestamp_increment=value

timestamp_with_time_zone_format This option sets the format for TIME
STAMP WITH TIME ZONE values re
trieved from the database.

timestamp_with_time_zone_for
mat=value

uid Sets the default user ID for the data
base.

uid=user

utf8_encoding Encodes data using the UTF-8 format,
8-bit multibyte encoding for Unicode. utf8_encoding=value

In this section:

UltraLite case Creation Option [page 147]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 145

Sets the case sensitivity of string comparisons in the UltraLite database.

UltraLite checksum_level Creation Option [page 149]
Specify the level of checksum validation for the database.

UltraLite collation Creation Option [page 150]
Sets the database collation.

UltraLite date_format Creation Option [page 151]
Specify the format used for converting date values to strings.

UltraLite date_order Creation Option [page 153]
Specify the default order of date parts when interpreting a date string.

UltraLite DBF Creation Option [page 155]
Specify the path and file name for an UltraLite database.

UltraLite DBKEY Creation Option [page 156]
When creating a new UltraLite database, this creation option provides an encryption key for the
database.

UltraLite Desktop Creation Option Prefix [page 157]
Use the prefix desktop: with an UltraLite option to indicate that the option only applies when the
application is running on the desktop.

UltraLite Device Creation Option Prefix [page 158]
Use the prefix device: with an UltraLite option to indicate that the option only applies when the
application is running on the mobile device.

UltraLite fips Creation Option [page 159]
Controls whether the new database should be encrypted using AES or AES_FIPS strong encryption.

UltraLite kdf_iterations Creation Option [page 160]
Specify the number of iterations, in thousands, for the key derivation function that converts the pass
phrase provided by the DBKEY option into an actual encryption key.

UltraLite max_hash_size Creation Option [page 161]
Specify the maximum default primary key or index hash size in bytes.

UltraLite nearest_century Creation Option [page 162]
Specify the interpretation of two-digit years in string-to-date conversions.

UltraLite PWD Creation Option [page 164]
Specify the password for the default user.

UltraLite obfuscate Creation Option [page 165]
Specify simple obfuscation for the data in the database.

UltraLite page_size Creation Option [page 166]
Specify the database page size in kilobytes.

UltraLite Precision Creation Option [page 168]
Specify the maximum number of digits in decimal point arithmetic results.

UltraLite scale Creation Option [page 169]
Specifies the minimum number of digits after the decimal point when an arithmetic result is truncated
to the maximum precision.

UltraLite time_format Creation Option [page 171]
Specify the format used for converting time values to strings.

146 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite timestamp_format Creation Option [page 173]
Specify the format used for converting timestamp values to strings.

UltraLite timestamp_increment Creation Option [page 175]
Specify the limit on the resolution of timestamp values. As timestamps are inserted into the database,
UltraLite truncates them to match this increment.

UltraLite timestamp_with_time_zone_format Creation Option [page 177]
Specify the format used for converting TIMESTAMP WITH TIME ZONE values to strings.

UltraLite UID Creation Option [page 179]
Specify the default user ID for the database.

UltraLite utf8_encoding Creation Option [page 180]
Specify UTF-8 encoding (8-bit multibyte encoding for Unicode) for the database.

Related Information

How to Access Creation Option Values [page 32]
UltraLite Character Sets [page 32]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]
UltraLite DBF Connection Parameter [page 191]
UltraLite DBKEY Connection Parameter [page 192]
UltraLite Desktop Connection Parameter Prefix [page 194]
UltraLite Device Connection Parameter Prefix [page 195]
UltraLite MIRROR_FILE Connection Parameter [page 196]
UltraLite PWD Connection Parameter [page 198]
UltraLite RESERVE_SIZE Connection Parameter [page 199]
UltraLite UID Connection Parameter [page 202]
Accessing Database Options [page 45]
Reading Database Properties [page 43]

1.12.1.1 UltraLite case Creation Option

Sets the case sensitivity of string comparisons in the UltraLite database.

Syntax

case=value

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 147

Allowed Values

Ignore, Respect

Default

Ignore

Remarks

The case sensitivity of data is reflected in tables, indexes, and so on. By default, UltraLite databases perform
case-insensitive comparisons, although data is always held in the case in which you enter it. Identifiers (such as
table and column names) and user IDs are always case insensitive, regardless of the database case sensitivity.
Passwords are always case sensitive, regardless of the case sensitivity of the database.

The results of comparisons on strings, and the sort order of strings, depend in part on the case sensitivity of
the database.

There are some collations where particular care is required when assuming case insensitivity of identifiers. In
particular, Turkish collations have a case-conversion behavior that can cause unexpected and subtle errors.
The most common error is that a system object containing a letter i or I is not found.

You cannot change the case of an existing database. Instead, you must create a new database.

From SQL Central, you can set the case sensitivity in any wizard that creates a database. On the New Database
Collation And Character Set page, click the Use Case-sensitive String Comparisons option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class. Pass in case=respect to the creation string parameter of the
CreateDatabase method in your programming interface (or case=ignore for a case-insensitive database).

Related Information

Strings in UltraLite [page 257]
How to Access Creation Option Values [page 32]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

148 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.12.1.2 UltraLite checksum_level Creation Option

Specify the level of checksum validation for the database.

Syntax

checksum_level=value

Allowed Values

0, 1, 2

Default

2

Remarks

Checksums are used to detect offline corruption on pages stored to disk, flash, or memory, which can help
reduce the chances of other data being corrupted as the result of a bad critical page. Depending on the level
you choose, UltraLite calculates and records a checksum for each database page before it writes the page to
storage.

If the calculated checksum does not match the stored checksum for a page read from storage, then the page
has been modified or became corrupted during the storage/retrieval of the page. If a checksum validation fails,
then when the database loads a page, UltraLite stops the database and reports a fatal error. This error cannot
be corrected; you must re-create your UltraLite database and report the database failure to SAP.

If you unload and reload an UltraLite database with checksums enabled, the checksum level is preserved and
restored.

The following values are supported for the checksum_level:

0

Do not add checksums to database pages.
1

Add checksums to important database pages, such as indexes and synchronization status pages, but not
row pages.
2

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 149

Add checksums to all database pages (the default).

From SQL Central, you can configure the use of checksums in any wizard that creates a database. On the New
database storage settings page of the Create Database Wizard, click the Checksum level for database pages
option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Related Information

UltraLite Performance Tips [page 569]
UltraLite Database Connections [page 39]
UltraLite Database Properties [page 203]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]
UltraLite page_size Creation Option [page 166]

1.12.1.3 UltraLite collation Creation Option

Sets the database collation.

Syntax

collation=value

Allowed Values

String

Default

1252Latin1

150 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

You can view a list of collations supported by UltraLite using the following command:

ulinit -Z

You can set the collation using SQL Central. Go to the New Database Collation And Character Set page, click
either the default collation (1252Latin1), or select an alternate one from the list.

Related Information

UltraLite Character Sets [page 32]
How to Access Creation Option Values [page 32]
UltraLite Supported Collations [page 34]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]
UltraLite utf8_encoding Creation Option [page 180]

1.12.1.4 UltraLite date_format Creation Option

Specify the format used for converting date values to strings.

Syntax

date_format=value

Allowed Values

String

Default

YYYY-MM-DD (this corresponds to ISO date format specifications)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 151

Remarks

The default date format YYYY-MM-DD conforms to ISO 8601. For example, "January 7, 2006" in this format is
presented as "2006-01-07". You can specify a different format and order for year, month, and day.

The format is a string using the following symbols:

Symbol Description

YY Two digit year.

YYYY Four digit year.

MM Two digit month, or two digit minutes if following a colon (as
in hh:mm).

MMM[m...] Character short form for month. As many characters as
there are "m"s. An uppercase M causes the output to be
made uppercase.

D Single digit day of week, (0 = Sunday, 6 = Saturday).

DD Two digit day of month. A leading zero is not required.

DDD[d...] Character short form for day of the week. An uppercase D
causes the output to be made uppercase.

JJJ Julian day of the year, from 1 to 366.

You cannot change the date format of an existing database. Instead, you must create a new database.

Allowed values are constructed from the symbols listed in the table above. Each symbol is substituted with the
appropriate data for the date that is being formatted.

Controlling output case

For symbols that represent character data (such as MMM), you can control the case of the output as
follows:

• Type the symbol in uppercase to have the format appear in uppercase. For example, MMM produces
JAN.

• Type the symbol in lowercase to have the format appear in lowercase. For example, mmm produces
jan.

• Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is
being used. For example, in English, typing Mmm produces May, while in French it produces mai.

Controlling zero-padding

For symbols that represent numeric data, you can control zero-padding with the case of the symbols:

• Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

• Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd
could produce 2002/1/1.

From SQL Central, you can set the date format in any wizard that creates a database. On the New database
creation parameters page, click the Date Format option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

152 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following table illustrates date_format settings, together with the output from a SELECT CURRENT DATE
statement, executed on Thursday May 21, 2001.

date_format syntax used Result returned

YYYY/MM/DD/ddd 2001/05/21/thu

JJJ 141

mmm YYYY may 2001

MM-YYYY 05-2001

Related Information

How to Access Creation Option Values [page 32]
UltraLite date_order Creation Option [page 153]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.5 UltraLite date_order Creation Option

Specify the default order of date parts when interpreting a date string.

Syntax

date_order=value

Allowed Values

MDY, YMD, DMY

Default

YMD (this corresponds to ISO date format specifications)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 153

Remarks

The default order for year, month, and day corresponds to the ISO 8601 date format. For example, "06-01-07"
is interpreted as January 7, 2006.

You can specify a different order for the interpretation of date parts. For example, if "06-01-07" represents June
1, 2007 then specify "MDY" for the date order.

You can only specify the date order for a new database. Once the database has been created, you cannot
change the date order.

From SQL Central, you can set the date order in any wizard that creates a database. On the New database
creation parameters page, click the Date Order option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Example

Different values determine how the date 10/11/12 is interpreted:

Date order Interpretation

MDY October 11 2012

YMD November 12 2010

DMY November 10 2012

Use the nearest_century option to control the interpretation of two-digit years in string-to-date conversions.

The following SQL query returns 2010-11-12 using the default date_order and nearest_century settings.

SELECT CAST(CAST('10/11/12' AS DATE) AS VARCHAR(15));

Related Information

How to Access Creation Option Values [page 32]
UltraLite date_format Creation Option [page 151]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

154 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.12.1.6 UltraLite DBF Creation Option

Specify the path and file name for an UltraLite database.

Use this creation option to specify the path and file name for a new database file or when connecting to an
existing database file.

Syntax

DBF=ul-db

Behavior

1. On connect, look to see if the database is already running. If DBN is specified, look for a matching database
and connect if found, proceed to auto-start if not.

2. If DBF is specified, look for a matching database (identical filename) and connect if found, proceed to auto-
start if not.

3. If neither DBN nor DBF is specified, and a single database is running, connect to it.
4. A database is auto-started when required if DBF is specified. If DBN is also specified, it becomes the name

of the running database, otherwise a name is generated from the base filename.

Remarks

If you are connecting to multiple databases on different devices from a single connection string, you can use
the following options to name platform-specific alternates:

• desktop:DBF
• device:DBF

If specified, these platform-specific creation options take precedence over DBF.

The value of DBF must meet the file name requirements for the platform.

Microsoft Windows Mobile

If you are deploying to a Microsoft Windows Mobile device, UltraLite administration tools running on the
Microsoft Windows desktop can connect to an UltraLite database on an attached Microsoft Windows
Mobile device. To identify a file on a Microsoft Windows Mobile device, you must specify the required
absolute path, and use the wce: file prefix.

You cannot use the wce: file prefix in an application running on the Microsoft Windows Mobile device.

Any leading or trailing spaces in option values are ignored. The value cannot include leading single quotes,
leading double quotes, or semicolons.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 155

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite Options [page 143]

1.12.1.7 UltraLite DBKEY Creation Option

When creating a new UltraLite database, this creation option provides an encryption key for the database.

Syntax

DBKEY=string

Default

No key is provided.

Remarks

If a database is created using an encryption key, the database file is strongly encrypted by using either the 256-
bit AES or FIPS-certified 256-bit AES algorithm. By using strong encryption, you have increased security
against skilled and determined attempts to gain access to the data.

Any leading or trailing spaces in option values are ignored. The value cannot include leading single quotes,
leading double quotes, or semicolons.

Related Information

UltraLite Connection Strings and Parameters [page 39]
Database Security [page 35]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]

156 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite Options [page 143]
UltraLite obfuscate Creation Option [page 165]

1.12.1.8 UltraLite Desktop Creation Option Prefix

Use the prefix desktop: with an UltraLite option to indicate that the option only applies when the application is
running on the desktop.

Syntax

desktop:option=value

Remarks

If the option is appropriate for both desktop and mobile device, then do not use the prefix.

Use the desktop option prefix for UltraLite client applications that run on a variety of devices.

Options with a desktop or device prefix take precedence over options without a prefix.

Example

The following example identifies different database files for the desktop and the mobile device, the location of
the temporary directory on the desktop, and the cache_size for the mobile device:

"desktop:DBF=C:\dir\db.udb;device:DBF=\SD Card\db.udb;desktop:temp_dir=
\Temp;device:cache_size=4M"

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite File Path Formats in Connection Parameters [page 42]
Precedence of Connection Parameters for UltraLite Administration Tools [page 41]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite Options [page 143]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 157

UltraLite DBF Connection Parameter [page 191]

1.12.1.9 UltraLite Device Creation Option Prefix

Use the prefix device: with an UltraLite option to indicate that the option only applies when the application is
running on the mobile device.

Syntax

device:option=value

Remarks

If the option is appropriate for both desktop and mobile device, then do not use the prefix.

Use the device option prefix for UltraLite client applications that run on a variety of devices.

Options with a desktop or device prefix take precedence over options without a prefix.

Example

The following example identifies different database files for the desktop and the mobile device, the location of
the temporary directory on the mobile device, and the cache_size for the mobile device:

"desktop:DBF=C:\dir\db.udb;device:DBF=\SD Card\db.udb;device:temp_dir=
\Temp;device:cache_size=4M"

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite File Path Formats in Connection Parameters [page 42]
Precedence of Connection Parameters for UltraLite Administration Tools [page 41]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite Options [page 143]
UltraLite DBF Connection Parameter [page 191]

158 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.12.1.10 UltraLite fips Creation Option

Controls whether the new database should be encrypted using AES or AES_FIPS strong encryption.

Syntax

fips=value

Allowed Values

Yes (use AES_FIPS), No (use AES)

Default

No

Remarks

This option is not supported by UltraLiteJ, or UltraLite for Apple iOS.

The only way to change the type of database encryption is to recreate the database with the appropriate fips or
obfuscate creation option. You can change the database encryption key by specifying a new encryption key on
the Connection object. Users connecting to the database must supply the key each time they connect.

From SQL Central, you can configure encryption in any wizard that creates a database. On the New database
storage settings page of the Create Database Wizard, select the Encrypt the database and Use strong encryption
options and then select the type of AES encryption. You must also specify and confirm the encryption key.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

To deploy a database with the fips option enabled, copy all appropriate libraries for your platform.

Related Information

Simple Obfuscation Versus Strong Encryption
Database Security [page 35]
How to Access Creation Option Values [page 32]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 159

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcdfebe6c5f10148cb18d955cd9ab47.html

UltraLite obfuscate Creation Option [page 165]
UltraLite DBKEY Connection Parameter [page 192]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.11 UltraLite kdf_iterations Creation Option

Specify the number of iterations, in thousands, for the key derivation function that converts the pass phrase
provided by the DBKEY option into an actual encryption key.

Syntax

kdf_iterations=value

Allowed Values

1 to 1000

Default

The default value for Apple macOS and iOS is 30, which results in 30000 iterations.

The default value for other platforms, including desktop and device platforms, is 5, which results in 5000
iterations.

Remarks

This parameter is specified only at database creation.

The key derivation function makes it more difficult to access an encrypted database by prolonging each attack
attempt.

 Note
A larger number of iterations will make passwords harder to break through brute force, but will increase
database start-up time.

160 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

There are two cases when an explicit setting may be required:

1. You are using a very slow device and UltraLite takes too long to start with encryption. For example:

kdf_iterations=1

2. You are using a high-end computer and want added security. For example, when running UltraLite on a
Windows or Linux desktop:

kdf_iterations=100

1.12.1.12 UltraLite max_hash_size Creation Option

Specify the maximum default primary key or index hash size in bytes.

Syntax

max_hash_size=value

Allowed Values

0 to 32

Default

4

Remarks

A hash is an optional part of an index entry that is stored in the index page. The hash transforms the actual row
values for the indexed columns into a numerical equivalent (a key), while still preserving ordering for that index.
The size of the key, and how much of the actual value UltraLite hashes, is determined by the hash size you set.

A row ID allows UltraLite to locate the row for the actual data in the table. A row ID is always part of an index
entry. If you set the hash size to 0 (disable index hashing), then the index entry only contains this row ID. For all
other hash sizes, the hash key, which can contain all or part of the transformed data in that row, is stored along
with the row ID in the index page. You can improve query performance on these indexed columns because
UltraLite may not always need to find, load, and unpack data before it can compare actual row values.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 161

Determining an appropriate default database hash size requires that you evaluate the trade-off between query
efficiency and database size: the higher the maximum hash value, the larger the database size grows.

UltraLite only uses as many bytes as required for the data type(s) of the column(s), up to the maximum value
specified by this option. The default hash size is only used if you do not set a size when you create the index. If
you set the default hash size to 0, UltraLite does not hash row values.

You cannot change the hash size for an existing index. When creating a primary key or new index, you can
override the default value with the UltraLite Set Primary Key Wizard or Create Index Wizard in SQL Central, or
with the WITH MAX SIZE clause of a CREATE INDEX or a CREATE TABLE statement.

If you declare your columns as DOUBLE, FLOAT, or REAL, no hashing is used. The hash size is always ignored.

From SQL Central, you can set the maximum hash size in any wizard that creates a database. On the New
database storage settings page of the Create Database Wizard, click the Default maximum hash size for indexes
option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Related Information

UltraLite Performance Tips [page 569]
UltraLite Indexes [page 62]
Optimal Hash Size Limit [page 573]
How to Access Creation Option Values [page 32]
CREATE INDEX Statement [UltraLite] [page 531]
CREATE TABLE Statement [UltraLite] [page 537]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.13 UltraLite nearest_century Creation Option

Specify the interpretation of two-digit years in string-to-date conversions.

Syntax

nearest_century=value

162 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Allowed Values

Integer, between 0 and 100, inclusive

Default

50

Remarks

UltraLite automatically converts a string into a date when a date value is expected, even if the year is
represented in the string by only two digits. For a two-digit date, you need to set the appropriate rollover value.
Two digit years less than the value are converted to 20yy, while years greater than or equal to the value are
converted to 19yy.

Choosing an appropriate rollover value typically is determined by:

The use of two-digit dates

Otherwise, nearest century conversion isn't applicable. Two-digit years less than the nearest_century value
you set are converted to 20yy, while years greater than or equal to the value are converted to 19yy.

Store four-digit dates to avoid issues with incorrect conversions.
Consolidated database compatibility

For example, the historical SQL Anywhere behavior is to add 1900 to the year. Adaptive Server Enterprise
behavior is to use the nearest century, so for any year where value yy is less than 50, the year is set to
20yy.
What the date represents: past event or future event

Birth years are typically those that would require a lower rollover value since they occur in the past. So for
any year where yy is less than 20, the year should be set to 20yy. However, if the date is used as an expiry
date, then having a higher value would be a logical choice, since the date is occurring in the future.

You cannot change the nearest century of an existing database. Instead, you must create a new database.

From SQL Central, you can configure the nearest century setting in any wizard that creates a database. On the
New database creation parameters page, click the Nearest Century option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Related Information

How to Access Creation Option Values [page 32]
UltraLite Initialize Database Utility (ulinit) [page 227]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 163

UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.14 UltraLite PWD Creation Option

Specify the password for the default user.

Syntax

PWD=password

Default

If you do not set both the user ID and password, UltraLite opens connections with UID=DBA and PWD=sql.

Remarks

For Android devices, you can use Configuration.setPassword as an alternative to setting this creation option.

Every user of a database has a password. UltraLite supports up to four user ID/password combinations.

You can set passwords to NULL or an empty string.

A random 4-byte salt value is generated when a new user is created or an existing user changes their password.
The salt value is appended to the user's password when calculating the password hash and is stored in the
database along with the hash. Salting significantly decreases vulnerability to dictionary attacks and also
ensures that users with the same password will have different password hashes.

This creation option is not encrypted. However, UltraLite hashes the password before saving it, so you can only
modify a password using SQL Central.

Related Information

Users
UltraLite Connection Strings and Parameters [page 39]
UltraLite Users [page 66]
User Authentication [page 697]
UltraLite Database Connections [page 647]

164 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/815363536ce210148cfcdafcf813783b.html

User Authentication [page 697]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite UID Connection Parameter [page 202]
UltraLite UID Connection Parameter [page 202]

1.12.1.15 UltraLite obfuscate Creation Option

Specify simple obfuscation for the data in the database.

Syntax

obfuscate=value

Allowed Values

Boolean.

Default

0 (databases are not obfuscated)

Remarks

Obfuscation makes it difficult for someone using a disk utility to look at the file to decipher the data in your
database. However, obfuscation is not secure against skilled and determined attempts to gain access to the
data. Simple obfuscation does not require a key to encode the database.

You must use strong encryption to make the database inaccessible without the correct encryption key.

From SQL Central, you can configure obfuscation in any wizard that creates a database. On the New database
storage settings page of the Create Database Wizard, select the Encrypt the database and Use simple
encryption (obfuscation) options.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 165

Related Information

Database Security [page 35]
How to Access Creation Option Values [page 32]
UltraLite fips Creation Option [page 159]
UltraLite DBKEY Connection Parameter [page 192]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.16 UltraLite page_size Creation Option

Specify the database page size in kilobytes.

Syntax

page_size=sizeK

Allowed Values

1K, 2K, 4K, 8K, 16K

Default

4K

Remarks

The page size must be entered with a K or k after the digit, or, alternatively, the equivalent number of bytes
(1024, 2048, 4096, 8192, or 16384).

UltraLite databases are stored in pages, and all I/O operations are carried out a page at a time. The page size
you choose can affect the performance or size of the database.

If you use any value other than those listed, the size is changed to the next larger size. If you do not specify a
unit, bytes are assumed.

166 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

If your platform has limited dynamic memory, consider using a smaller page size to limit the effect on
synchronization memory requirements.

When choosing a page size, you should keep the following guidelines in mind:

Database size

Larger databases usually benefit from a larger page size. Larger pages hold more information and therefore
use space more effectively, particularly if you insert rows that are slightly more than half a page in size. The
larger the page, the less page swapping that is required.
Number of rows

Because a row (excluding BLOBs) must fit on a page, the page size determines how large the largest
packed row can be, and how many rows you can store on each page. Sometimes reading one page to
obtain the values of one row may have the side effect of loading the contents of the next few rows into
memory.
Query types

In general, smaller page sizes are likely to benefit queries that retrieve a relatively small number of rows
from random locations. By contrast, larger pages tend to benefit queries that perform sequential table
scans.
Cache size

Large page sizes may require larger cache sizes. With dynamic cache sizing, UltraLite grows the cache as
required.
Index entries

Page size also affects indexes. The larger the database page, the more index entries it can hold.
Device memory

Small pages are particularly useful if your database must run on small devices with limited memory. For
example, 1 MB of memory can hold 1000 pages that are each 1 KB in size, but only 250 pages that are 4 KB
in size.

You cannot change the page size of an existing database. Instead, you must create a new database.

From SQL Central, you can set the page size in any wizard that creates a database. On the New database
storage settings page of the Create Database Wizard, click the desired page size.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Example

To set the page size of the database to 8 KB, specify page_size=8k or page_size=8192:

ulinit test.udb --page_size=8k

Related Information

Row Packing and Table Definitions [page 54]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 167

UltraLite Indexes [page 62]
How to Access Creation Option Values [page 32]
UltraLite case Creation Option [page 147]
UltraLite CACHE_SIZE Connection Parameter [page 187]
UltraLite CACHE_MIN_SIZE Connection Parameter [page 186]
UltraLite CACHE_MAX_SIZE Connection Parameter [page 185]
UltraLite RESERVE_SIZE Connection Parameter [page 199]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.17 UltraLite Precision Creation Option

Specify the maximum number of digits in decimal point arithmetic results.

Syntax

precision=value

Allowed Values

Integer, between 1 and 127, inclusive

Default

30

Remarks

The position of the decimal point is determined by the precision and the scale of the number: precision is the
total number of digits to the left and right of the decimal point; scale is the minimum number of digits after the
decimal point when an arithmetic result is truncated to the maximum precision.

Choosing an appropriate decimal point position is typically determined by:

The type of arithmetic procedures you perform

Multiplication, division, addition, subtraction, and aggregate functions can all have results that exceed the
maximum precision.

168 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a
DECIMAL(17,4). If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is a
DECIMAL(15,4). If scale is 2, the result is a DECIMAL(15,2). In both cases, there is a possibility of an
overflow error.
The relationship between scale and precision values

The scale sets the number of digits in the fractional part of the number, and cannot be negative or greater
than the precision.

You cannot change the precision of an existing database. Instead, you must create a new database.

If you are using an Oracle database as the consolidated database, all UltraLite remotes and the Oracle
consolidated database must have the same precision value.

From SQL Central, you can set the precision in any wizard that creates a database. On the New database
creation parameters page, click the Precision option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Related Information

How to Access Creation Option Values [page 32]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.18 UltraLite scale Creation Option

Specifies the minimum number of digits after the decimal point when an arithmetic result is truncated to the
maximum precision.

Syntax

scale=value

Allowed Values

Integer, between 0 and 127, inclusive

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 169

Default

6

Remarks

The position of the decimal point is determined by the precision and the scale of the number: precision is the
total number of digits to the left and right of the decimal point; scale is the minimum number of digits after the
decimal point when an arithmetic result is truncated to the maximum precision.

Choosing an appropriate decimal point position is typically determined by:

The type of arithmetic procedures you perform

Multiplication, division, addition, subtraction, and aggregate functions can all have results that exceed the
maximum precision.

For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a
DECIMAL(17,4). If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is a
DECIMAL(15,4). If scale is 2, the result is a DECIMAL(15,2). In both cases, there is a possibility of an
overflow error.
The relationship between scale and precision values

The scale sets the number of digits in the fractional part of the number, and cannot be negative or greater
than the precision.

You cannot change the scale of an existing database. Instead, you must create a new database.

From SQL Central, you can set the scale in any wizard that creates a database. On the New database creation
parameters page, click the Scale option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Example

When a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a DECIMAL(17,4). If precision
is 15, only 15 digits are kept in the result. If scale is 4, the result is DECIMAL(15,4). If scale is 2, the result is a
DECIMAL(15,2). In both cases, there is a possibility of overflow.

Related Information

How to Access Creation Option Values [page 32]
UltraLite Precision Creation Option [page 168]
UltraLite Initialize Database Utility (ulinit) [page 227]

170 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.19 UltraLite time_format Creation Option

Specify the format used for converting time values to strings.

Syntax

time_format=value

Allowed Values

String (composed of the symbols listed below)

Default

HH:NN:SS.SSS

Remarks

UltraLite writes times from time parts you set with the time_format creation option. Time parts can include
hours, minutes, seconds, and milliseconds.

TIME values can also be represented by strings. Before a time value can be retrieved, it must be assigned to a
string variable.

UltraLite uses ISO 8601 as the default time standard. This international time standard indicates hours using the
24-hour clock system. For example, "midnight" in this international standard is written: 00:00:00. If you do not
want to use the default time standard, you must specify a different format and order for these time parts.

The format is a string using the following symbols:

Symbol Description

HH Two digit hours (24 hour clock).

NN Two digit minutes.

MM Two digit minutes if following a colon (as in HH:MM).

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 171

Symbol Description

SS[.ssssss] Seconds and fractions of a second, up to six decimal places.
Not all platforms support timestamps to a precision of six
places.

You cannot change the time_format creation option of an existing database. Instead, you must create a new
database.

Each symbol is substituted with the appropriate data for the time that is being formatted. Any format symbol
that represents character rather than digit output can be put in uppercase, which causes the substituted
characters to be in uppercase. For numbers, using mixed case in the format string suppresses leading zeros.

Control zero-padding with the case of the symbols:

• Type the symbol in same-case (such as HH or hh) to allow zero padding. For example, HH:NN:SS could
produce 01:01:01.

• Type the symbol in mixed case (such as Hh or hH) to suppress zero padding. For example, Hh:Nn:Ss could
produce 1:1:1.

• Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is being
used. For example, in English, typing Mmm produces May, while in French it produces mai.

• If the first two digits of the fractional seconds are mixed case (such as Ss or sSssss), then trailing zeros are
removed. For example, hh:nn:ss.Sss could produce 12:34:56.1.

From SQL Central, you can set the time_format option in any wizard that creates a database. On the New
database creation parameters page, click the Time Format option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Example

The following command creates a database and sets the time_format creation option so that fractions of a
second are excluded when retrieving TIME values from the database:

ulinit --time_format=HH:NN:SS example.udb

Execute the following query on the created database:

SELECT CAST(CAST('3:30:12.345 PM' AS TIME) AS CHAR(32))

The query returns 15:30:12.

Related Information

How to Access Creation Option Values [page 32]
UltraLite timestamp_format Creation Option [page 173]
UltraLite Initialize Database Utility (ulinit) [page 227]

172 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.20 UltraLite timestamp_format Creation Option

Specify the format used for converting timestamp values to strings.

Syntax

timestamp_format=value

Allowed Values

String

Default

YYYY-MM-DD HH:NN:SS.SSS

Remarks

The default timestamp format YYYY-MM-DD HH:NN:SS.SSS conforms to ISO 8601. For example, "January 7,
2006 12:34 AM" in this format is presented as "2006-01-07 00:34:00.000". You can specify a different format
and order for year, month, day, and time parts.

The format is a string composed of the following symbols:

Symbol Description

YY Two digit year.

YYYY Four digit year.

MM Two digit month, or two digit minutes if following a colon (as
in HH:MM).

MMM[m...] Character short form for months. As many characters as
there are "m"s. An uppercase M causes the output to be
made uppercase.

D Single digit day of week, (0 = Sunday, 6 = Saturday).

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 173

Symbol Description

DD Two digit day of month. A leading zero is not required.

DDD[d...] Character short form for day of the week. An uppercase D
causes the output to be made uppercase.

HH Two digit hours. A leading zero is not required.

NN Two digit minutes. A leading zero is not required.

SS[.ssssss] Seconds and parts of a second.

AA Use 12 hour clock. Indicate times before noon with AM.

PP Use 12 hour clock. Indicate times after noon with PM.

JJJ Day of the year, from 1 to 366.

You cannot change the timestamp_format creation option of an existing database. Instead, you must create a
new database.

Allowed values are constructed from the symbols listed in the table above. Each symbol is substituted with the
appropriate data for the date that is being formatted.

For the character short forms, the number of letters specified is counted. The A.M. or P.M. indicator (which
could be localized) is also truncated, if necessary, to the number of bytes corresponding to the number of
characters specified.

For symbols that represent character data (such as MMM), control the case of the output as follows:

• Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM produces
JAN.

• Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm produces
jan.

• Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is being
used. For example, in English, typing Mmm produces May, while in French it produces mai.

For symbols that represent numeric data, control zero-padding with the case of the symbols:

• Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd could
produce 2002/01/01.

• Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

• Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is being
used. For example, in English, typing Mmm produces May, while in French it produces mai.

• If the first two digits of the fractional seconds are mixed case (such as Ss or sSssss), then trailing zeros are
removed. For example, hh:nn:ss.Sss could produce 12:34:56.1.

From SQL Central, you can set the timestamp_format option in any wizard that creates a database. On the New
database creation parameters page, click the Timestamp Format option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

174 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following command creates a database and sets the timestamp_format creation option so that the year is
displayed in two digits and fractions of a second are excluded when retrieving TIMESTAMP values from the
database:

ulinit --timestamp_format="YY-MM-DD HH:NN:SS" example.udb

Execute the following query on the created database:

SELECT CAST(CAST('Friday May 12, 2006 3:30 PM' AS TIMESTAMP) AS CHAR(32))

The query returns 06-05-12 15:30:00.

Related Information

How to Access Creation Option Values [page 32]
UltraLite Concurrency [page 583]
Implementing Timestamp-based Downloads
UltraLite timestamp_increment Creation Option [page 175]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.1.21 UltraLite timestamp_increment Creation Option

Specify the limit on the resolution of timestamp values. As timestamps are inserted into the database, UltraLite
truncates them to match this increment.

Syntax

timestamp_increment=value

Allowed Values

1 to 60000000 microseconds

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 175

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81ce6f2e6ce210148b0bd52bf7551f47.html

Default

1 microsecond

Remarks

Note that 1000000 microseconds equals 1 second.

You cannot change the timestamp_increment creation option of an existing database. Instead, you must create
a new database.

This increment is useful when a DEFAULT TIMESTAMP column is being used as a primary key or row identifier.

From SQL Central, you can set the timestamp increment in any wizard that creates a database. On the New
database creation parameters page, click the Timestamp Increment option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Example

To store a value such as '2000/12/05 10:50:53:700', set this creation option to 100000. This value truncates
the timestamp after the first decimal place in the seconds component.

Related Information

How to Access Creation Option Values [page 32]
UltraLite Concurrency [page 583]
Implementing Timestamp-based Downloads
UltraLite timestamp_format Creation Option [page 173]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

176 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81ce6f2e6ce210148b0bd52bf7551f47.html

1.12.1.22 UltraLite timestamp_with_time_zone_format
Creation Option

Specify the format used for converting TIMESTAMP WITH TIME ZONE values to strings.

Syntax

timestamp_with_time_zone_format=value

Allowed Values

String (composed of the symbols listed below)

Default

YYYY-MM-DD HH:NN:SS.SSS+HH:NN

Remarks

The default format YYYY-MM-DD HH:NN:SS.SSS+HH:NN conforms to ISO 8601. You can specify a different
format and order for year, month, day, time, and time zone parts.

The format is a string using the following symbols:

Symbol Description

YY Two digit year

YYYY Four digit year

MM Two digit month, or two digit minutes if following a colon (as
in HH:MM).

MMM[m...] Character short form for months (as many characters as
there are "m"s).

DD Two digit day of month.

DDD[d...] Character short form for day of the week.

HH Two digit hours.

NN Two digit minutes.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 177

Symbol Description

SS[.ssssss] Seconds and fractions of a second, up to six decimal places.
Not all platforms support timestamps to a precision of six
places.

AA A.M. or P.M. (12 hour clock). Omit AA and PP for 24 hour
time.

PP P.M. if needed (12 hour clock). Omit AA and PP for 24 hour
time.

HH Two digit hours (time zone offset).

NN Two digit minutes (time zone offset).

Each symbol is substituted with the appropriate data for the date that is being formatted.

For symbols that represent character data (such as MMM), you can control the case of the output as follows:

• Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM produces
JAN.

• Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm produces
jan.

• Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is being
used. For example, in English, typing Mmm produces May, while in French it produces mai.

• If the first two digits of the fractional seconds are mixed case (such as Ss or sSssss) then trailing zeros are
removed. For example, hh:nn:ss.Sss could produce 12:34:56.1.

If the character data is multibyte, the length of each symbol reflects the number of characters, not the number
of bytes. For example, the MMM symbol specifies a length of three characters for the month.

For symbols that represent numeric data, control zero-padding with the case of the symbols:

• Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd could
produce 2002/01/01.

• Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

• If the first two digits of the fractional seconds are mixed case (such as Ss or sSssss), then trailing zeros are
removed. For example, hh:nn:ss.Sss could produce 12:34:56.1.

 Note
If you change the setting for timestamp_with_time_zone_format option in a way that re-orders the date
format, be sure to change the date_order option to reflect the same change, and vice versa.

Example

The following command creates a database and sets the timestamp_with_time_zone_format creation option
so that the year is displayed in two digits and fractions of a second are excluded when retrieving TIMESTAMP
WITH TIME ZONE values from the database:

ulinit --timestamp_with_time_zone_format="YY-MM-DD HH:NN:SS+HH:NN" example.udb

178 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Execute the following query on the created database:

SELECT CAST(CAST('Friday May 12, 2006 3:30 PM -04:00' AS TIMESTAMP WITH TIME
ZONE) AS CHAR(32))

The query returns 06-05-12 15:30:00-04:00.

Related Information

date_order Option

1.12.1.23 UltraLite UID Creation Option

Specify the default user ID for the database.

Syntax

UID=user

Default

If you do not set the UID and PWD when connecting, UltraLite opens connections with UID=DBA and PWD=sql.

Remarks

Every user of a database has a user ID. UltraLite supports up to four user ID/password combinations.

UltraLite user IDs are separate from MobiLink user names and from other SQL Anywhere user IDs. You cannot
change a user ID once it is created. Instead, you must delete the user ID and then add a new one.

You cannot set the UID to NULL or an empty string. The maximum length for a user ID is 31 characters. User
IDs are case insensitive.

Any leading or trailing spaces in option values are ignored. This creation option's value cannot include leading
single quotes, leading double quotes, or semicolons.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 179

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813a963e6ce210149d1ebbd44cf13f64.html

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Users [page 66]
User Authentication [page 697]
UltraLite Database Connections [page 647]
User Authentication [page 697]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite Options [page 143]

1.12.1.24 UltraLite utf8_encoding Creation Option

Specify UTF-8 encoding (8-bit multibyte encoding for Unicode) for the database.

Syntax

utf8_encoding=value

Values

Boolean.

Default

1 (databases are UTF-8 encoded)

Remarks

UTF-8 characters are represented by one to four bytes. For other multibyte collations, one or two bytes are
used. For all provided multibyte collations, characters of two or more bytes are considered to be alphabetic.
You can use these characters in identifiers without requiring double quotes.

Characters in an UltraLite database are either from the codepage implicit in the chosen collation, or are UTF8
encoded. UltraLite databases that use the UTF8BIN collation are automatically UTF8 encoded. If the operating
system to which you are deploying your UltraLite application uses UTF8 or Unicode (like most Linux

180 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

distributions, Microsoft Windows Mobile, and Apple iOS) or if you plan to store characters from multiple
languages in your database, you should create your database using a UTF8 encoding. If you try synchronizing
UTF-8 encoded characters into a consolidated table that does not support Unicode, a user error is reported.

From SQL Central, you can choose UTF-8 encoding in any wizard that creates a database. On the New database
collation and character set page, click the Yes, use UTF-8 as the database character set option.

From a client application, set this option as one of the creation options for the CreateDatabase method on the
DatabaseManager/ULDatabaseManager class.

Related Information

UltraLite Platform Requirements for Character Set Encoding [page 33]
UltraLite Character Sets [page 32]
How to Access Creation Option Values [page 32]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Load XML to Database Utility (ulload) [page 234]

1.12.2 UltraLite Connection Parameters

UltraLite supports these connection parameters when connecting to an UltraLite database.

You can use a prefix with a connection parameter to specify that the parameter applies only when an
application is running on a particular type of platform.

Use the prefix desktop: with a connection parameter to indicate that the parameter only applies when the
application is running on the desktop.

Use the prefix device: with a connection parameter to indicate that the parameter only applies when the
application is running on the mobile device.

 Note
If the parameter is appropriate for both desktop and mobile device, then do not use the prefix.

device:DBF=\Documents\sample.udb;desktop:DBF=c:\Databases
\sample.udb;UID=DBA;device:DBKEY=secret

Parameter name Description

CACHE_MAX_SIZE Specifies the maximum amount of memory to allocate for
the file cache.

CACHE_MIN_SIZE Specifies the minimum amount of memory to allocate for
the file cache.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 181

Parameter name Description

CACHE_SIZE Specifies the initial amount of memory to allocate for the file
cache.

COMMIT_FLUSH Defines which transactions are recovered following a hard
ware failure or crash.

CON Names a connection so that switching to it is easier in multi-
connection applications.

DBF At creation time, this parameter sets the location of the da
tabase.

For subsequent connections, this parameter tells UltraLite
where to find the database file.

You can use DBF if you are creating a single-platform appli
cation or are connecting to a database from an UltraLite ad
ministration tool. Use the desktop: or device: prefixes if you
are programming an UltraLite client that connects to differ-
ent platform-specific databases.

DBKEY At creation-time, this parameter sets the encryption key
used to encrypt the database.

For subsequent connections, it specifies the encryption key
used to encrypt the database.

DBN Differentiates databases by name when applications con
nect to more than one database.

MIRROR_FILE Specifies the name of the database mirror file to which all
database writes will be issued (at the same time as they are
to the main database file).

PWD When creating a new UltraLite database, this connection pa
rameter sets the password for the default user. When con
necting to an existing database, it defines the password for a
user ID that is used for authentication.

RESERVE_SIZE Pre-allocates the file system space required for the UltraLite
database without actually inserting any data.

START Starts the UltraLite engine executable.

TEMP_DIR Specifies the name of the directory (which must already ex
ist) into which UltraLite will place a temporary file (with a
name derived from the database name).

182 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameter name Description

UID When creating a new UltraLite database, this connection pa
rameter sets the default user ID for the database. When con
necting to an existing database, it specifies the user ID with
which you connect to the database.

In this section:

UltraLite Connection Parameter Prefixes [page 184]
You can use a prefix with a connection parameter to specify that a parameter applies only when an
application is running on a particular type of platform.

UltraLite CACHE_MAX_SIZE Connection Parameter [page 185]
Defines the maximum size of the database cache. UltraLite manages the cache size automatically, so
setting this parameter should not be necessary.

UltraLite CACHE_MIN_SIZE Connection Parameter [page 186]
Defines the minimum size of the database cache. UltraLite manages the cache size automatically, so
setting this parameter should not be necessary.

UltraLite CACHE_SIZE Connection Parameter [page 187]
Defines the initial size of the database cache. UltraLite manages the cache size automatically, so
setting this parameter should not be necessary.

UltraLite COMMIT_FLUSH Connection Parameter [page 188]
Determines when committed transactions are flushed to storage after a commit call. If no calls to
commit are made by the UltraLite application, no flush can occur.

UltraLite CON Connection Parameter [page 190]
Names a connection so that switching to it is easier in multi-connection applications.

UltraLite DBF Connection Parameter [page 191]
Specify the path and file name for an UltraLite database.

UltraLite DBKEY Connection Parameter [page 192]
When creating a new UltraLite database, this connection parameter provides an encryption key for the
database.

UltraLite DBN Connection Parameter [page 193]
Differentiates databases by name when applications connect to more than one database.

UltraLite Desktop Connection Parameter Prefix [page 194]
Use the prefix desktop: with a connection parameter to indicate that the parameter only applies when
the application is running on the desktop.

UltraLite Device Connection Parameter Prefix [page 195]
Use the prefix device: with a connection parameter to indicate that the parameter only applies when
the application is running on the mobile device.

UltraLite MIRROR_FILE Connection Parameter [page 196]
Specifies the name of the database mirror file to which all database writes are be issued (at the same
time as they are to the main database file).

UltraLite PWD Connection Parameter [page 198]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 183

When creating a new UltraLite database, this connection parameter sets the password for the default
user.

UltraLite RESERVE_SIZE Connection Parameter [page 199]
Pre-allocates the file system space required for your UltraLite database, without actually inserting any
data. Reserving the file system space prevents the space from being used up by other files.

UltraLite START Connection Parameter [page 200]
Starts the UltraLite engine executable. This parameter is not supported for UltraLite for Android. This
parameter is only required if the engine is not in one of the expected locations.

UltraLite TEMP_DIR Connection Parameter [page 201]
Specifies the name of the directory (which must already exist) into which UltraLite will place the
temporary file (with a name derived from the database name).

UltraLite UID Connection Parameter [page 202]
When creating a new UltraLite database, this connection parameter sets the default user ID for the
database.

Related Information

UltraLite Connection Strings and Parameters [page 39]

1.12.2.1 UltraLite Connection Parameter Prefixes

You can use a prefix with a connection parameter to specify that a parameter applies only when an application
is running on a particular type of platform.

Use the prefix desktop: with a connection parameter to indicate that the parameter only applies when the
application is running on the desktop.

Use the prefix device: with a connection parameter to indicate that the parameter only applies when the
application is running on the mobile device.

 Note
If the connection parameter is appropriate for both desktop and mobile device, then do not use the prefix.

device:DBF=\Documents\sample.udb;desktop:DBF=c:\Databases
\sample.udb;UID=DBA;device:CACHE_SIZE=100k

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Connection Parameters [page 181]

184 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.12.2.2 UltraLite CACHE_MAX_SIZE Connection Parameter

Defines the maximum size of the database cache. UltraLite manages the cache size automatically, so setting
this parameter should not be necessary.

 Syntax

CACHE_MAX_SIZE=number{ k | m }

Default

The default maximum cache size is 20 MB for devices and 50 MB for desktops.

Remarks

The cache_max_size connection parameter specifies the maximum amount of memory to allocate for the file
cache. By default, the size is in bytes. Use k or m to specify units of kilobytes or megabytes.

If you exceed the maximum cache size, your platform's upper cache size limit is used instead. UltraLite does
not grow the cache size beyond the actual file size of the database.

If you specify a cache size limit that is greater than the size of your database, the excess space might be used
for caching rows.

Any leading or trailing spaces in connection parameter values are ignored. This connection parameter's value
cannot include leading single quotes, leading double quotes, or semicolons.

Example

The following connection string fragment sets the maximum cache size to 100 MB.

"CACHE_MAX_SIZE=100m"

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
Cache Size Adjustment for an UltraLite Database [page 569]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 185

UltraLite CACHE_MIN_SIZE Connection Parameter [page 186]
UltraLite CACHE_SIZE Connection Parameter [page 187]
UltraLite cache_allocation Option [page 207]
UltraLite page_size Creation Option [page 166]
UltraLite RESERVE_SIZE Connection Parameter [page 199]

1.12.2.3 UltraLite CACHE_MIN_SIZE Connection Parameter

Defines the minimum size of the database cache. UltraLite manages the cache size automatically, so setting
this parameter should not be necessary.

 Syntax

CACHE_MIN_SIZE=number{ k | m }

Default

The default cache size for devices is 256 KB. The default cache size for desktops is 512 KB.

Remarks

The cache_min_size connection parameter specifies the minimum amount of memory to allocate for the file
cache. By default, the size is in bytes. Use k or m to specify units of kilobytes or megabytes.

If you set the minimum cache size to be greater than the maximum cache size, UltraLite returns an error
message and the connection fails.

Any leading or trailing spaces in connection parameter values are ignored. This connection parameter's value
cannot include leading single quotes, leading double quotes, or semicolons.

Example

The following connection string fragment sets the minimum cache size to 1 MB.

"CACHE_MIN_SIZE=1m"

186 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite CACHE_MAX_SIZE Connection Parameter [page 185]
UltraLite CACHE_SIZE Connection Parameter [page 187]
UltraLite cache_allocation Option [page 207]
UltraLite page_size Creation Option [page 166]
UltraLite RESERVE_SIZE Connection Parameter [page 199]

1.12.2.4 UltraLite CACHE_SIZE Connection Parameter

Defines the initial size of the database cache. UltraLite manages the cache size automatically, so setting this
parameter should not be necessary.

For Android devices, you can use Configuration.setPageSize as an alternative to setting this connection
parameter.

 Syntax

CACHE_SIZE=number{ k | m }

Default

The default initial cache size is determined by the amount of memory available on your system and the size of
the database.

Remarks

The cache_size connection parameter specifies the initial amount of memory to allocate for the file cache. This
cache is used to hold recently used pages from the database file in memory so they can be accessed quickly
when needed again, and also to collect multiple modifications to a page before writing it back to storage.
Accessing a page from the cache is many times faster than reading from storage. Writing to storage is more
expensive, so grouping multiple modifications in a single write is important for performance. Encrypted
databases also benefit from the cache because decryption occurs only when the page is loaded into the cache,
and encryption occurs before the page is written back to storage. If the cache is sufficiently large, the overhead
of encryption becomes negligible.

As an example of cache usage, consider synchronization. While UltraLite is receiving a download, the rows are
inserted into the database, and referential integrity checks are performed. When inserted, the rows are also

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 187

indexed; they are added to each index on the table. So, while synchronizing, the cache tends to hold the pages
where the new rows are stored, as well as the index pages for the current table. Synchronization performance
depends on whether the cache is large enough to contain an appropriate working set of pages for a table being
synchronized. If the cache is too small, row inserts may require repeated reads of index pages from storage,
incurring a noticeable performance penalty over the case when the required index pages fit in the cache.

By default, the size is in bytes. Use k or m to specify units of kilobytes or megabytes.

If you exceed the permissible maximum cache size, it is automatically replaced with your platform's upper
cache size limit.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

Example

The following connection string fragment sets the cache size to 20 MB.

"CACHE_SIZE=20m"

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite CACHE_MAX_SIZE Connection Parameter [page 185]
UltraLite CACHE_MIN_SIZE Connection Parameter [page 186]
UltraLite cache_allocation Option [page 207]
UltraLite page_size Creation Option [page 166]
UltraLite RESERVE_SIZE Connection Parameter [page 199]

1.12.2.5 UltraLite COMMIT_FLUSH Connection Parameter

Determines when committed transactions are flushed to storage after a commit call. If no calls to commit are
made by the UltraLite application, no flush can occur.

 Syntax

COMMIT_FLUSH={ immediate | grouped | on_checkpoint }

188 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Default

immediate

Remarks

This connection parameter defines which transactions are recovered following a hardware failure or crash. You
can group logical autocommit operations as a single recovery point.

By grouping these operations, you can improve UltraLite performance, but at the expense of data
recoverability. There is a slight chance that a transaction may be lost, even though it has been committed, if a
hardware failure or crash occurs after a commit, but before the transaction is flushed to storage.

The following parameters are supported:

immediate

Committed transactions are flushed to storage immediately upon a commit call before the commit
operation completes.
grouped

Committed transactions are flushed to storage on a commit call, but only after a threshold you configure
has been reached. You can configure either a transaction count threshold with the commit_flush_count
database option or a time-based threshold with the commit_flush_timeout database option.

If set, both the commit_flush_count and the commit_flush_timeout options act as possible triggers for the
commit flush; the first threshold that is met triggers the flush. When the flush occurs, UltraLite sets the
counter and the timer back to 0. Then, both the counter and timer are monitored, until one of these
thresholds is reached again.
on_checkpoint

Committed transactions are flushed to storage on a checkpoint operation. You can perform a checkpoint
with any of the following:

• The CHECKPOINT statement. APIs that do not have a checkpoint method must use this SQL
statement.

• The ULCheckpoint function for UltraLite Embedded SQL.
• The Checkpoint method on a connection object in a C++ component.

Related Information

Flush Single or Grouped Transactions [page 586]
UltraLite commit_flush_count Option [Temporary] [page 208]
UltraLite commit_flush_timeout Option [Temporary] [page 209]
CHECKPOINT Statement [UltraLite] [page 529]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 189

1.12.2.6 UltraLite CON Connection Parameter

Names a connection so that switching to it is easier in multi-connection applications.

 Syntax

CON=name

Default

No connection name.

Remarks

The CON connection parameter is global to the application.

Do not use this connection parameter unless you are going to establish and switch between two or more
concurrent connections.

The connection name is not the same as the database name.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

Example

The following connection string fragment sets the first connection name to MyFirstCon.

"CON=MyFirstCon"

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite DBN Connection Parameter [page 193]

190 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.12.2.7 UltraLite DBF Connection Parameter

Specify the path and file name for an UltraLite database.

Use this connection parameter to specify the path and file name for a new database file or when connecting to
an existing database file.

 Syntax

DBF=ul-db

Behavior

1. On connect, look to see if the database is already running. If DBN is specified, look for a matching database
and connect if found, proceed to auto-start if not.

2. If DBF is specified, look for a matching database (identical filename) and connect if found, proceed to auto-
start if not.

3. If neither DBN nor DBF is specified, and a single database is running, connect to it.
4. A database is auto-started when required if DBF is specified. If DBN is also specified, it becomes the name

of the running database, otherwise a name is generated from the base filename.

Remarks

If you are connecting to multiple databases on different devices from a single connection string, you can use
the following parameters to name platform-specific alternates:

• desktop:DBF
• device:DBF

If specified, these platform-specific connection parameters take precedence over DBF.

The value of DBF must meet the file name requirements for the platform.

Microsoft Windows Mobile

If you are deploying to a Microsoft Windows Mobile device, UltraLite administration tools running on the
Microsoft Windows desktop can connect to an UltraLite database on an attached Microsoft Windows
Mobile device. To identify a file on a Microsoft Windows Mobile device, you must specify the required
absolute path, and use the wce: file prefix.

You cannot use the wce: file prefix in an application running on the Microsoft Windows Mobile device.

Any leading or trailing spaces in parameter values are ignored. The value cannot include leading single quotes,
leading double quotes, or semicolons.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 191

Example

To connect to the database, MyULdb.udb, installed in the desktop directory c:\Databases, use the following
connection string:

"DBF=c:\Databases\MyULdb.udb"

Note that this file path is Microsoft Windows desktop-specific and not appropriate for a mobile device.

The following example illustrates how to connect from an application to the MyULdb.udb database using
platform-specific file paths:

"desktop:DBF=c:\databases\MyULdb.udb;device:DBF=\Documents\MyULdb.udb"

When the application is running on the desktop platform, the desktop:DBF connection parameter is used.
When the application is running on the mobile device, the device:DBF connection parameter is used.

To connect from the desktop (using an administration tool) to the MyULdb.udb database that is deployed to
the Documents folder of the attached Microsoft Windows Mobile device, use the following connection string:

"DBF=wce:\Documents\MyULdb.udb"

Connections to databases on mobile devices from the desktop is supported for Microsoft Windows/Microsoft
Windows Mobile only.

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite File Path Formats in Connection Parameters [page 42]
Precedence of Connection Parameters for UltraLite Administration Tools [page 41]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite DBN Connection Parameter [page 193]

1.12.2.8 UltraLite DBKEY Connection Parameter

When creating a new UltraLite database, this connection parameter provides an encryption key for the
database.

When opening a connection to an existing database, it provides the encryption key for the database.

 Syntax

DBKEY=string

192 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Default

No key is provided.

Remarks

If you do not specify the correct encryption key for the database, the connection fails.

If a database is created using an encryption key, the database file is strongly encrypted by using either the 256-
bit AES or FIPS-certified 256-bit AES algorithm. By using strong encryption, you have increased security
against skilled and determined attempts to gain access to the data.

Any leading or trailing spaces in parameter values are ignored. The value cannot include leading single quotes,
leading double quotes, or semicolons.

Related Information

UltraLite Connection Strings and Parameters [page 39]
Database Security [page 35]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite obfuscate Creation Option [page 165]

1.12.2.9 UltraLite DBN Connection Parameter

Differentiates databases by name when applications connect to more than one database.

 Syntax

DBN=db-name

Default

None.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 193

Behavior

1. On connect, look to see if the database is already running. If DBN is specified, look for a matching database
and connect if found, proceed to auto-start if not.

2. If DBF is specified, look for a matching database (identical filename) and connect if found, proceed to auto-
start if not.

3. If neither DBN nor DBF is specified, and a single database is running, connect to it.
4. A database is auto-started when required if DBF is specified. If DBN is also specified, it becomes the name

of the running database, otherwise a name is generated from the base filename.

Remarks

UltraLite sets the database name after the database has been opened. Client applications can then connect to
this database via its name instead of its file.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

Example

Use the following parameters to connect to the running UltraLite database named Kitchener:

DBN=Kitchener;DBF=cities.udb

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite DBF Connection Parameter [page 191]

1.12.2.10 UltraLite Desktop Connection Parameter Prefix

Use the prefix desktop: with a connection parameter to indicate that the parameter only applies when the
application is running on the desktop.

If the connection parameter is appropriate for both desktop and mobile device, then do not use the prefix.

194 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

 Syntax

desktop:connection-parameter=value

Remarks

Use the desktop connection parameter prefix for UltraLite client applications that run on a variety of devices.

Connection parameters with a desktop or device prefix take precedence over parameters without a prefix.

Example

The following example identifies different database files for the desktop and the mobile device, the location of
the temporary directory on the desktop, and the cache_size for the mobile device:

"desktop:DBF=C:\dir\db.udb;device:DBF=\SD Card\db.udb;desktop:temp_dir=
\Temp;device:cache_size=4M"

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite File Path Formats in Connection Parameters [page 42]
Precedence of Connection Parameters for UltraLite Administration Tools [page 41]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite DBF Connection Parameter [page 191]

1.12.2.11 UltraLite Device Connection Parameter Prefix

Use the prefix device: with a connection parameter to indicate that the parameter only applies when the
application is running on the mobile device.

If the connection parameter is appropriate for both desktop and mobile device, then do not use the prefix.

 Syntax

device:connection-parameter=value

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 195

Remarks

Use the device connection parameter prefix for UltraLite client applications that run on a variety of devices.

Connection parameters with a desktop or device prefix take precedence over parameters without a prefix.

Example

The following example identifies different database files for the desktop and the mobile device, the location of
the temporary directory on the mobile device, and the cache_size for the mobile device:

"desktop:DBF=C:\dir\db.udb;device:DBF=\SD Card\db.udb;device:temp_dir=
\Temp;device:cache_size=4M"

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite File Path Formats in Connection Parameters [page 42]
Precedence of Connection Parameters for UltraLite Administration Tools [page 41]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite DBF Connection Parameter [page 191]

1.12.2.12 UltraLite MIRROR_FILE Connection Parameter

Specifies the name of the database mirror file to which all database writes are be issued (at the same time as
they are to the main database file).

 Syntax

MIRROR_FILE=path\mirrorfile-db

Default

None.

196 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

UltraLite provides basic database file mirroring to improve fault tolerance on potentially unreliable storage
systems. This is accomplished using the mirror file. All database writes are issued to the mirror file at the same
time as they are to the main database file (write overhead is therefore doubled; read overhead is not affected).
If a corrupt page is read from the database file, the page is recovered by reading from the mirror file.

Mirroring is supported on all platforms using a file-based store.

When the mirror_file option is specified when you start the database, UltraLite will open the named file and
verify that it matches the main database file before continuing. If the mirror file does not exist, it is created at
that point by copying the main file. If the mirror is not a database file, or is corrupt, an error is reported and the
database will not start until the file is removed or a different mirror is specified. If the mirror does not match the
database, SQLE_MIRROR_FILE_MISMATCH is generated and the database will not start. When a corrupt page
is recovered, the warning SQLE_CORRUPT_PAGE_READ_RETRY is generated. (Without mirroring, or if the
mirror file is also corrupt, the error SQLE_DEVICE_ERROR is generated and the database is halted.)

To effectively protect against media failures, page checksums must be enabled when you use a mirror file.
(With or without mirroring, page checksums allow UltraLite to detect page corruption as soon as the page is
loaded and avoid referencing corrupt data.) Starting with version 17.0.10, checksum validation is enabled by
default. The checksum_level database creation option controls checksum validation. UltraLite will generate the
warning SQLE_MIRROR_FILE_REQUIRES_CHECKSUMS if checksums are not enabled when using a mirror file.

Because the mirror is an exact copy of the database file, it can be started directly as a database. The ulvalid
utility reports corrupt pages.

Example

The following example creates a new connection and creates a mirror file:

Connection = DatabaseMgr.OpenConnection("DBF=c:\Dbfile.udb; UID=JDoe;PWD=ULdb; MIRROR_FILE=c:\test\MyMirrorDB.udb")

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite File Path Formats in Connection Parameters [page 42]
Precedence of Connection Parameters for UltraLite Administration Tools [page 41]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite checksum_level Creation Option [page 149]
UltraLite Validate Database Utility (ulvalid) [page 246]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 197

1.12.2.13 UltraLite PWD Connection Parameter

When creating a new UltraLite database, this connection parameter sets the password for the default user.

When connecting to an existing database, it defines the password for a user ID that is used for authentication.

For Android devices, you can use Configuration.setPassword as an alternative to setting this connection
parameter.

 Syntax

PWD=password

Default

If you do not set both the UID and PWD, UltraLite opens connections with UID=DBA and PWD=sql.

Remarks

Every user of a database has a password. UltraLite supports up to four user ID/password combinations.

You can set passwords to NULL or an empty string.

A random 4-byte salt value is generated when a new user is created or an existing user changes their password.
The salt value is appended to the user's password when calculating the password hash and is stored in the
database along with the hash. Salting significantly decreases vulnerability to dictionary attacks and also
ensures that users with the same password will have different password hashes.

This connection parameter is not encrypted. However, UltraLite hashes the password before saving it, so you
can only modify a password using SQL Central.

Example

The following partial connection string supplies the user ID DBA and password sql:

"UID=DBA;PWD=sql"

The following partial connection string supplies the user ID DBA and an empty password:

"UID=DBA;PWD=''"

198 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

Users
UltraLite Connection Strings and Parameters [page 39]
UltraLite Users [page 66]
User Authentication [page 697]
UltraLite Database Connections [page 647]
User Authentication [page 697]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite UID Connection Parameter [page 202]

1.12.2.14 UltraLite RESERVE_SIZE Connection Parameter

Pre-allocates the file system space required for your UltraLite database, without actually inserting any data.
Reserving the file system space prevents the space from being used up by other files.

 Syntax

RESERVE_SIZE= number{ k | m | g }

Default

0 (no reserve size).

Remarks

The value you supply can be any value from 0 to your maximum database size. Use k, m, or g to specify units of
kilobytes, megabytes, or gigabytes, respectively. If you do not specify a unit, bytes are assumed by default.

You should run the database with test data and observe the database size and choose a reserve size that suits
your UltraLite deployment.

If the RESERVE_SIZE value is smaller than the database size, UltraLite ignores the parameter.

Reserving file system space can improve performance slightly because it may:

• Reduce the degree of file fragmentation compared to growing incrementally.
• Prevent out-of-storage memory failures.

Because an UltraLite database consists of data and metadata, the database size grows only when required
(when the application updates the database).

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 199

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/815363536ce210148cfcdafcf813783b.html

Example

The following connection string fragment sets the reserve size to 128 KB so the system reserves that much
system space for the database upon startup.

"RESERVE_SIZE=128K"

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite CACHE_SIZE Connection Parameter [page 187]
UltraLite page_size Creation Option [page 166]

1.12.2.15 UltraLite START Connection Parameter

Starts the UltraLite engine executable. This parameter is not supported for UltraLite for Android. This
parameter is only required if the engine is not in one of the expected locations.

 Syntax

START=path\uleng17

Remarks

Only supply a StartLine (START) connection parameter if you are connecting to an engine that is not currently
running.

Paths with spaces require quotes. Otherwise, the client returns SQLE_UNABLE_TO_CONNECT_OR_START.

Example

The following command starts the UltraLite engine that is located in the Program Files directory:

Start="\Program Files\uleng17.exe"

200 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

UltraLite Engine Startup [page 133]
UltraLite Data Management Components for Microsoft Windows Mobile [page 21]
UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]
UltraLite Engine Utility (uleng17) [page 223]

1.12.2.16 UltraLite TEMP_DIR Connection Parameter

Specifies the name of the directory (which must already exist) into which UltraLite will place the temporary file
(with a name derived from the database name).

 Syntax

TEMP_DIR=path

Remarks

In addition to the database file, UltraLite creates and maintains a temporary file during database operation. You
do not need to work with or maintain the file in any way.

By default, UltraLite maintains its temporary file in the same folder (if one exists) as the UltraLite database
itself. The temporary file has the same file name as the database, but for file-based platforms the tilde is
included in the extension of the file. For example, if you run the CustDB.udb sample database, the temporary
file called CustDB.~db is maintained in the same directory as the database file.

Specifying a temporary directory with faster I/O characteristics can improve the performance of things like
temporary tables which are large relative to the cache size. Long-running transactions can also consume
noticeable space in the temp file.

Paths with spaces require quotes. Otherwise, the client returns SQLE_UNABLE_TO_CONNECT_OR_START.

Example

The following connection string fragment puts the temporary file in the \Temp directory:

temp_dir=\Temp;

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 201

Related Information

UltraLite Database Connections [page 647]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]

1.12.2.17 UltraLite UID Connection Parameter

When creating a new UltraLite database, this connection parameter sets the default user ID for the database.

When connecting to an existing database, it specifies the user ID with which you connect to the database. The
value must be an authenticated user for the database.

 Syntax

UID=user

Default

If you do not set the UID and PWD when connecting, UltraLite opens connections with UID=DBA and PWD=sql.

Remarks

Every user of a database has a user ID. UltraLite supports up to four user ID/password combinations.

UltraLite user IDs are separate from MobiLink user names and from other SQL Anywhere user IDs. You cannot
change a user ID once it is created. Instead, you must delete the user ID and then add a new one.

You cannot set the UID to NULL or an empty string. The maximum length for a user ID is 31 characters. User
IDs are case insensitive.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes, leading double quotes, or semicolons.

Example

The following connection string fragment supplies the user ID DBA and password sql for a database:

"UID=DBA;PWD=sql"

202 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

UltraLite Connection Strings and Parameters [page 39]
UltraLite Users [page 66]
User Authentication [page 697]
UltraLite Database Connections [page 647]
User Authentication [page 697]
UltraLite Database Connection Using Embedded SQL [page 682]
Connection Setup for an UltraLite Database [page 602]

1.12.3 UltraLite Database Properties

UltraLite database property values are defined when the database is first created.

Properties can be changed by re-creating the UltraLite database or editing their corresponding database
option, if available.

UltraLite supports the following database properties:

Property Description

cache_allocation Returns the current cache size as a percentage of the mini
mum and maximum settings. This property corresponds to
the cache_allocation option for the database.

CaseSensitive Returns the status of the case sensitivity feature. Returns On
if the database is case sensitive. Otherwise, it returns Off.

CharSet Returns the CHAR character set of the database. The char
acter set used by the database is determined by the databa
se's collation sequence and whether the data is UTF-8 en
coded.

ChecksumLevel Returns the level of checksum validation in the database,
one of 0 (do not add checksums), 1 (add checksums only to
important pages), or 2 (add checksums to all pages). The
default value is 2. This property corresponds to the check
sum_level creation option for the database.

Collation Returns the name of the database's collation sequence. This
property corresponds to the collation creation option for the
database.

commit_flush_count Returns the value of the commit_flush_count option that
sets a commit count threshold. This property corresponds
to the commit_flush_count option [temporary] for the data
base.

commit_flush_timeout Returns the value of the commit_flush_timeout option that
sets a time interval threshold. This property corresponds to
the commit_flush_timeout option [temporary] for the data
base.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 203

Property Description

ConnCount Returns the number of connections to the database. The
value is dynamic: it can vary depending on how many con
nections currently exist. UltraLite supports up to fourteen
concurrent database connections.

date_format Returns the date format the database uses for string conver
sions. This property corresponds to the date_format crea
tion option for the database.

date_order Returns the date order the database uses for string conver
sions. This property corresponds to the date_order creation
option for the database.

Encryption Returns the type of database encoding, one of None, Simple,
AES, or AES_FIPS.

The encoding used by the database is determined by
whether you have configured strong encryption (AES or
AES_FIPS) and the DBKEY creation parameter, or simple ob
fuscation.

The only time this property can change is when the value is
originally None (that is, neither fips nor obfuscation is used)
and you then change the encryption key by specifying a new
encryption key on the Connection object by calling the cor
rect function or method for your API. In this case, the value
would change to AES because the fips creation parameter
cannot be set after the database has been created.

You can use API methods to change the encryption key.

File Returns the name of the database root file for the current
connection, including the path. This is the value specified in
the DBF connection parameter value.

global_database_id Returns the value of the global_database_id option used for
global autoincrement columns. This property corresponds to
the global_database_id option for the database.

isolation_level Returns the current isolation level of the database. The value
can either be read_committed or read_uncommitted.This
property corresponds to the isolation_level option for the da
tabase.

MaxHashSize Returns the default number of maximum bytes to use for in
dex hashing. This property can be set on a per-index basis.
This property corresponds to the max_hash_size creation
option for the database.

ml_remote_id Returns the value of the ml_remote_id option that uniquely
identifies the database for MobiLink synchronization. This
property corresponds to the ml_remote_id option for the da
tabase.

204 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Property Description

Name Returns the name (or alias) of the database for the current
connection. The name returned matches the DBN connec
tion parameter value. If you did not use the DBN connection
parameter, the name returned is the database file without
the path and extension.

nearest_century Returns the nearest century the database uses for string
conversions. This property corresponds to the nearest_cen
tury creation option for this database.

PageSize Returns the page size of the database, in bytes. This prop
erty corresponds to the page_size creation option for the da
tabase.

PartialDownload Returns Yes or No to indicate whether the database contains
a partial download.

precision Returns the floating-point precision the database uses for
string conversions. This property corresponds to the preci
sion creation option for the database.

scale Returns the minimum number of digits after the decimal
point when an arithmetic result is truncated to the maximum
precision during string conversions by the database. This
property corresponds to the scale creation option for the da
tabase.

time_format Returns the time format the database uses for string conver
sions. This property corresponds to the time_format crea
tion option for the database.

timestamp_format Returns the timestamp format the database uses for string
conversions. This property corresponds to the time
stamp_format creation option for the database.

timestamp_increment Returns the minimum difference between two unique time
stamps, in microseconds. This property corresponds to the
timestamp_increment creation option for the database.

timestamp_with_time_zone_format Returns the timestamp format for TIMESTAMP WITH TIME
ZONE values. This property corresponds to the time
stamp_with_time_zone_format creation option for the data
base.

UploadUnknown Returns true if the last synchronization failed after the up
load was sent but before the upload acknowledgement from
the synchronization server was received. When this property
is true, on the next synchronization UltraLite first asks Mobi
Link if it received its last upload before continuing with the
new synchronization.

Related Information

UltraLite Database Options [page 206]
Isolation Levels [page 48]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 205

Database Security [page 35]
Reading Database Properties [page 43]
Accessing Database Options [page 45]
UltraLite Options [page 143]
UltraLite cache_allocation Option [page 207]
UltraLite case Creation Option [page 147]
UltraLite utf8_encoding Creation Option [page 180]
UltraLite collation Creation Option [page 150]
UltraLite checksum_level Creation Option [page 149]
UltraLite collation Creation Option [page 150]
UltraLite commit_flush_count Option [Temporary] [page 208]
UltraLite commit_flush_timeout Option [Temporary] [page 209]
UltraLite date_format Creation Option [page 151]
UltraLite date_order Creation Option [page 153]
UltraLite DBF Connection Parameter [page 191]
UltraLite global_database_id Option [page 210]
UltraLite max_hash_size Creation Option [page 161]
UltraLite ml_remote_id Option [page 211]
UltraLite DBN Connection Parameter [page 193]
UltraLite DBF Connection Parameter [page 191]
UltraLite nearest_century Creation Option [page 162]
UltraLite page_size Creation Option [page 166]
UltraLite Precision Creation Option [page 168]
UltraLite scale Creation Option [page 169]
UltraLite time_format Creation Option [page 171]
UltraLite timestamp_format Creation Option [page 173]
UltraLite timestamp_increment Creation Option [page 175]
UltraLite timestamp_with_time_zone_format Creation Option [page 177]
UltraLite fips Creation Option [page 159]
UltraLite obfuscate Creation Option [page 165]
UltraLite DBKEY Connection Parameter [page 192]

1.12.4 UltraLite Database Options

UltraLite database option values are defined when the database is first created and can be altered while
connected to the database.

In this section:

UltraLite cache_allocation Option [page 207]
Explicitly resizes the cache. The value is a percentage of the minimum-to-maximum range. A value of
zero means the minimum size, and a value of 100 means the maximum size.

UltraLite commit_flush_count Option [Temporary] [page 208]

206 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Sets a commit count threshold, after which a commit flush is performed.

UltraLite commit_flush_timeout Option [Temporary] [page 209]
Sets a time interval threshold, after which a grouped commit flush is performed.

UltraLite global_database_id Option [page 210]
Sets the database identification number.

UltraLite isolation_level Option [page 211]
Isolation levels define the degree to which the operations in one transaction are visible to the
operations in other concurrent transactions. UltraLite uses the default isolation level, read_committed,
for connections in auto-commit mode.

UltraLite ml_remote_id Option [page 211]
The remote ID is a unique identifier for an UltraLite database that is used by MobiLink to identify the
database for synchronization.

Related Information

Accessing Database Options [page 45]
Reading Database Properties [page 43]
UltraLite Options [page 143]

1.12.4.1 UltraLite cache_allocation Option

Explicitly resizes the cache. The value is a percentage of the minimum-to-maximum range. A value of zero
means the minimum size, and a value of 100 means the maximum size.

Allowed Values

Integer

Default

None.

Remarks

The cache_allocation property returns the current cache size as a percentage value of the minimum and
maximum cache size.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 207

Related Information

Accessing Database Options [page 45]
UltraLite Database Properties [page 203]
SET OPTION Statement [UltraLite] [page 560]
UltraLite CACHE_SIZE Connection Parameter [page 187]
UltraLite CACHE_MIN_SIZE Connection Parameter [page 186]
UltraLite CACHE_MAX_SIZE Connection Parameter [page 185]

1.12.4.2 UltraLite commit_flush_count Option [Temporary]

Sets a commit count threshold, after which a commit flush is performed.

Allowed Values

Integer

Default

10

Remarks

Use 0 to disable the transaction count. When the transaction count is disabled, the number of commits is
unlimited when a flush is triggered.

Both commit_flush_count and commit_flush_timeout are temporary database options. You must set these
options each time you start a database. They persist as long as the database continues to run. They are only
required when you set COMMIT_FLUSH=grouped as part of a connection string.

When you set this option and set the COMMIT_FLUSH connection parameter to grouped in your connection
string, either threshold triggers a flush. When the flush occurs, UltraLite sets the counter and the timer back to
0. Then, both the counter and timer are monitored until one of these thresholds is subsequently reached.

An important consideration for setting the commit flush options is how much the delay to flush committed
transactions poses a risk to the recoverability of your data. There is a slight chance that a transaction may be
lost, even though it has been committed. If a serious hardware failure occurs after a commit, but before the
transaction is flushed to storage, the transaction is rolled back on recovery. A longer delay can increase
UltraLite performance. You must choose an appropriate count threshold with care.

208 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

To set the commit_flush_count option from a client application, set the option using the set database option
function for the programming interface you are using or use the SET OPTION SQL statement.

Related Information

Flush Single or Grouped Transactions [page 586]
Accessing Database Options [page 45]
SET OPTION Statement [UltraLite] [page 560]
UltraLite commit_flush_timeout Option [Temporary] [page 209]
UltraLite COMMIT_FLUSH Connection Parameter [page 188]

1.12.4.3 UltraLite commit_flush_timeout Option [Temporary]

Sets a time interval threshold, after which a grouped commit flush is performed.

Allowed Values

Integer, in milliseconds

Default

10000 milliseconds

Remarks

Use 0 to disable the time threshold.

Both commit_flush_count and commit_flush_timeout are temporary database options. You must set these
options each time you start a database. They persist as long as the database continues to run. They are only
required when you set COMMIT_FLUSH=grouped as part of a connection string.

If you set this option in addition to the commit_flush_timeout option and if you have set the COMMIT_FLUSH
connection parameter to grouped, either threshold triggers a flush. When the flush occurs, UltraLite sets the
counter and the timer back to 0. Then, both the counter and timer are monitored until one of these thresholds
is subsequently reached.

An important consideration for setting the commit flush options is how much the delay to flush committed
transactions poses a risk to the recoverability of your data. There is a slight chance that a transaction may be
lost, even though it has been committed. If a serious hardware failure occurs after a commit, but before the

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 209

transaction is flushed to storage, the transaction is rolled back on recovery. A longer delay can increase
UltraLite performance. You must choose an appropriate timeout threshold with care.

To set the commit_flush_timeout option from a client application, set it using the set database option function
for the programming interface you are using or use the SET OPTION SQL statement.

Related Information

Accessing Database Options [page 45]
SET OPTION Statement [UltraLite] [page 560]
UltraLite commit_flush_count Option [Temporary] [page 208]
UltraLite COMMIT_FLUSH Connection Parameter [page 188]

1.12.4.4 UltraLite global_database_id Option

Sets the database identification number.

Allowed Values

Unique, non-negative integer

Default

The range of default values for a particular global autoincrement column is pn + 1 to p(n + 1), where p is the
partition size of the column and n is the global database identification number.

Remarks

To maintain primary key uniqueness when synchronizing with a MobiLink server, the global ID sets a starting
value for GLOBAL AUTOINCREMENT columns. The global ID must be set before default values can be
assigned. If a row is added to a table and does not have a value set already, UltraLite generates a value for the
column by combining the global_database_id value and the partition size.

When this option is set, UltraLite performs a commit.

When deploying an application, you must assign a different identification number to each database for
synchronization with the MobiLink server. You can change the global ID of an existing database at any time.

To set the global_database_id option from a client application, use the set database option function for the
programming interface you are using or use the SET OPTION SQL statement.

210 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

To autoincrement UltraLite database columns from 3001 to 4000, set the global ID to 3.

SET OPTION global_database_id=3

Related Information

GLOBAL AUTOINCREMENT
GLOBAL AUTOINCREMENT Columns in UltraLite [page 75]
Accessing Database Options [page 45]
SET OPTION Statement [UltraLite] [page 560]

1.12.4.5 UltraLite isolation_level Option

Isolation levels define the degree to which the operations in one transaction are visible to the operations in
other concurrent transactions. UltraLite uses the default isolation level, read_committed, for connections in
auto-commit mode.

Related Information

Isolation Levels [page 48]
Accessing Database Options [page 45]
SET OPTION Statement [UltraLite] [page 560]

1.12.4.6 UltraLite ml_remote_id Option

The remote ID is a unique identifier for an UltraLite database that is used by MobiLink to identify the database
for synchronization.

The remote ID can be any string that has meaning to you, as long as the string remains unique among all
remote MobiLink clients. The ID can also be set to NULL (NULL is the initial value). During synchronization, if
the remote ID is NULL, UltraLite will assign it to a generated GUID.

If you prepopulate an UltraLite database using synchronization for distribution to multiple devices, you must
reset the remote ID to NULL before distribution to ensure that each database has a unique remote ID. Upon
distribution, a new unique remote ID can be set explicitly or it can be left as NULL so that UltraLite will
automatically generate a new unique value.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 211

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c0bb4b6ce210149b7194db708ce61e.html

Allowed Values

Any value that uniquely identifies the database for MobiLink synchronization.

Default

Null

Remarks

MobiLink uses the remote ID to store the synchronization information for the remote database. Given the
remote ID, MobiLink user names are no longer required to be unique. The remote ID becomes particularly
useful when you have multiple MobiLink users synchronizing the same UltraLite database. In this case, your
synchronization scripts should reference the remote ID and not just the user name.

When this option is set, UltraLite performs a commit.

To set the ml_remote_id option from a client application, set it using the set database option function for the
programming interface you are using or use the SET OPTION SQL statement.

Related Information

Remote IDs
Accessing Database Options [page 45]
SET OPTION Statement [UltraLite] [page 560]
User Name Synchronization Parameter [page 120]

1.12.5 UltraLite Utilities

UltraLite provides utilities that are designed to perform basic database administration activities at a command
prompt. Many of these utilities share a similar functionality to the SQL Anywhere Server utilities. However, the
way options are used can vary.

Always refer to the UltraLite reference documentation for the UltraLite implementation of these options.

 Note
Options for the utilities documented are case sensitive, unless otherwise noted. Type options exactly as
they are displayed.

212 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abecb96ce210149cfae8b41cb3ae74.html

In this section:

Supported Exit Codes [page 214]
The ulload, ulsync, and ulunload utilities return exit codes to indicate whether the operation a utility
attempted to complete was successful. 0 indicates a successful operation. Any other value indicates
that the operation failed.

Interactive SQL for UltraLite Utility (dbisql) [page 214]
Executes SQL statements and runs script files against a database.

SQL preprocessor for UltraLite Utility (sqlpp) [page 219]
Preprocesses a C/C++ program that contains Embedded SQL (ESQL), so that code required for that
program can be generated before you run the compiler.

UltraLite Engine Utility (uleng17) [page 223]
Manages concurrent UltraLite database connections from applications, and allows the UltraLite engine
to run as a daemon using the -ud option.

UltraLite Engine Stop Utility (ulstop) [page 224]
Stops the UltraLite engine.

UltraLite Erase Utility (ulerase) [page 225]
Erases an UltraLite database.

UltraLite Information Utility (ulinfo) [page 226]
Displays information about an UltraLite database.

UltraLite Initialize Database Utility (ulinit) [page 227]
Creates a new UltraLite database.

UltraLite Load XML to Database Utility (ulload) [page 234]
Loads data from an XML file into a new or existing database.

UltraLite Synchronization Utility (ulsync) [page 238]
Synchronizes an UltraLite database with a MobiLink server. This tool can be used for testing
synchronization during application development.

UltraLite Synchronization Profile Options [page 241]
Specify synchronization profile options with the ulsync utility on the command line after you have
defined all other command line options. Keywords are case insensitive.

UltraLite Database Unload Utility (ulunload) [page 243]
Unloads either an entire UltraLite database to XML or SQL, or all or part of UltraLite data to XML or
SQL.

UltraLite Validate Database Utility (ulvalid) [page 246]
Performs a full (normal) validation of an UltraLite database.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 213

1.12.5.1 Supported Exit Codes

The ulload, ulsync, and ulunload utilities return exit codes to indicate whether the operation a utility attempted
to complete was successful. 0 indicates a successful operation. Any other value indicates that the operation
failed.

Exit code Status Description

0 EXIT_OKAY Operation successful.

1 EXIT_FAIL Operation failure.

3 EXIT_FILE_ERROR Database cannot be found.

4 EXIT_OUT_OF_MEMORY Exhausted the dynamic memory of the
device.

6 EXIT_COMMUNICATIONS_FAIL Communications error generated while
talking to the UltraLite engine.

9 EXIT_UNABLE_TO_CONNECT Invalid UID or PWD provided, therefore
cannot connect to the database.

12 EXIT_BAD_ENCRYPT_KEY Missing or invalid encryption key.

13 EXIT_DB_VER_NEWER Detected that the database version is
incompatible. The database must be
upgraded to a newer version.

255 EXIT_USAGE Invalid command line options.

1.12.5.2 Interactive SQL for UltraLite Utility (dbisql)

Executes SQL statements and runs script files against a database.

 Syntax

dbisql -c "connection-string" [options] [dbisql-statement | dbisql-script-
file]

dbisql -c "connection-string" -ul [options] [dbisql-statement | dbisql-script-
file]

dbisql-statement: A SQL statement or a series of sql statements separated by
a command-delimiter.

214 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Option Description

@data Reads options from the specified environment variable or
configuration file.

If both the environment variable and configuration file ex
ist with the same name, the environment variable is used.

To protect information in the configuration file, you can
use the File Hiding utility (dbfhide) to encode the contents
of the configuration file. Interactive SQL does not support
configuration files that are encrypted.

-c "keyword=value; ..." Specifies connection parameters. If Interactive SQL can
not connect, you are presented with a window where you
can enter the connection parameters. If you do not specify
both a user ID and a password, the default UID of DBA and
PWD of sql are assumed.

-d delimiter Specifies a command delimiter. Quotation marks around
the delimiter are optional, but are required when the com
mand shell itself interprets the delimiter in some special
way.

This option overrides the setting of the Interactive SQL
command_delimiter option.

-d1 Echoes all statements explicitly executed by the user to
the command window (STDOUT). This can provide useful
feedback for debugging SQL scripts, or when Interactive
SQL is processing a long SQL script. (The final character is
a number 1, not a lowercase L). This option is only availa
ble when you run Interactive SQL as a command line pro
gram.

-datasource DSN-name Specifies an ODBC data source to connect to.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 215

Option Description

-f filename Opens (but does not run) the file called filename in the
SQL Statements pane.

If the -f option is given, the -c option is ignored; that is, no
connection is made to the database.

The file name can be enclosed in quotation marks, and
must be enclosed in quotation marks if the file name con
tains a space.

If the file does not exist, or if it is really a directory instead
of a file, Interactive SQL prints an error message and then
quits.

If the file name does not include a full drive and path speci
fication, it is assumed to be relative to the current direc
tory.

This option is only supported when Interactive SQL is run
as a windowed application.

-host hostname Specifies the hostname or IP address of the computer on
which the database server is running. You can use the
name localhost to represent the current computer.

-nogui Runs Interactive SQL as a console application, with no
windowed user interface. This is useful for batch opera
tions.

If you specify either dbisql-statement or dbisql-
script-file, then -nogui is assumed.

In this mode, Interactive SQL sets the program exit code
to indicate success or failure. On Windows operating sys
tems, the environment variable ERRORLEVEL is set to the
program exit code.

-onerror { continue | exit } Controls what happens if an error is encountered while
reading statements from a script file. It is useful when us
ing Interactive SQL in batch operations. This option over
rides the Interactive SQL on_error option setting.

Define one of the following supported behavior values:

Continue

The error is ignored and Interactive SQL continues ex
ecuting statements.
Exit

Interactive SQL terminates.

216 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Option Description

-q Suppresses output messages. Sets the utility to run in
quiet mode. This is useful only if you start Interactive SQL
with a statement or script file. Specifying this option does
not suppress error messages, but it does suppress the fol
lowing:

• warnings and other non-fatal messages

• the printing of result sets

-ul Specifies that UltraLite databases are the default. Interac
tive SQL customizes the options available to you depend
ing on the type of database you are connected to.

By default, Interactive SQL assumes that you are connect
ing to SQL Anywhere databases. When you specify the -ul
option, the default changes to UltraLite databases. Re
gardless of the type of database set as the default, you can
connect to either SQL Anywhere or UltraLite databases by
choosing the database type from the Change Database
Type dropdown list on the Connect window.

-version Displays the version number of Interactive SQL. You can
also view the version number from within Interactive SQL;
from the Help menu, click About Interactive SQL.

-x Scans statements but does not execute them. This is use
ful for checking long script files for syntax errors.

dbisql-statement | dbisql-script-file Execute the SQL statement or execute the specified
dbisql-script-file.

If you do not specify a dbisql-statement or dbisql-
script-file, Interactive SQL enters interactive mode,
where you can type a statement into a command window.

Remarks

Interactive SQL allows you to browse the database, execute SQL statements, and run script files. It also
provides feedback about:

• the number of rows affected
• the time required for each statement
• the execution plan of queries
• any error messages

You can use Interactive SQL to connect to a SQL Anywhere database, an UltraLite database, an SAP IQ
database, an SAP HANA database, or a generic ODBC database.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 217

For Windows, there are two executables:

1. Batch scripts should call dbisql or dbisql.com, not dbisql.exe. The dbisql.com executable is linked
as a console application.

2. The dbisql.exe executable is linked as a windowed application and does not block the command shell
from which it was started. If dbisql.exe is run from a batch file, you won't see any output sent to the
standard output or standard error files.

The default encoding for Interactive SQL can also be temporarily set using the Interactive SQL
default_isql_encoding option.

You can specify the encoding to use when reading or writing files using the ENCODING clause of the INPUT,
OUTPUT, or READ statement.

• INPUT statement
• OUTPUT statement
• READ statement

Exit codes are 0 (success) or non-zero (failure). Non-zero exit codes are set only when you run Interactive SQL
in batch mode (with a command line that contains a SQL statement or the name of a script file).

In command-prompt mode, Interactive SQL sets the program exit code to indicate success or failure. On
Windows operating systems, the environment variable ERRORLEVEL is set to the program exit code.

When executing a reload.sql file with Interactive SQL and the database is encrypted, you must specify the
encryption key as a parameter. If you do not provide the key in the READ statement, Interactive SQL prompts
for the key.

You can start Interactive SQL in the following ways:

• From SQL Central, by clicking File Open Interactive SQL .

• From the Start menu by clicking Start Programs SQL Anywhere 17 Administration Tools
Interactive SQL .

• Using the dbisql command at a command prompt.

Example

The following command runs the script file mycom.sql against the CustDB.udb database for UltraLite.
Because a user ID and password are not defined, the default user ID DBA and password sql are assumed. The -
onerror option is defined as Exit; so, if there is an error in the script file, the process terminates.

dbisql -ul -c DBF=CustDB.udb -onerror exit mycom.sql

Related Information

SQL Statements for Interactive SQL
Interactive SQL
SQL Statements for Interactive SQL

218 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813657326ce21014a1b8c8c183133dd4.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8136f12c6ce21014b262c54a26e34739.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813657326ce21014a1b8c8c183133dd4.html

Interactive SQL
Configuration Files
Alphabetical List of Connection Parameters
File Hiding Utility (dbfhide)
INPUT Statement [Interactive SQL]
OUTPUT Statement [Interactive SQL]
READ Statement [Interactive SQL]
UltraLite Connection Parameters [page 181]
Supported Exit Codes [page 214]
command_delimiter Option [Interactive SQL]
default_isql_encoding Option [Interactive SQL]
on_error Option [Interactive SQL]

1.12.5.3 SQL preprocessor for UltraLite Utility (sqlpp)

Preprocesses a C/C++ program that contains Embedded SQL (ESQL), so that code required for that program
can be generated before you run the compiler.

The table below describes the entire set of options for completeness, but the only relevant options for UltraLite
are -eu and -wu.

 Syntax

sqlpp -u [options] esql-filename [output-filename]

Option Description

-d Generate code that reduces data space size, but increases
code size. Data structures are reused and initialized at exe
cution time before use.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 219

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8136f12c6ce21014b262c54a26e34739.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/81338cc16ce210148a6f92f876460da5.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817126526ce21014b4b6e257c19b45eb.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81721a6c6ce210148c6dd000d8e420e3.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/3be543076c5f10149d34eb5d898455b2.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/812fa1816ce2101481d5a13b152b1a6c.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bc90d766c5f10149643d368355ca6dd.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8148e50e6ce210148c16bce63e73dd73.html

Option Description

-e flag This option flags as an error any static Embedded SQL
that is not part of a specified standard. The level value
indicates the standard to use. For example, sqlpp -e
c03 ... flags any syntax that is not part of the core
SQL/2003 standard.

The allowed values of level are:

c03

Flag syntax that is not core SQL/2003 syntax
p03

Flag syntax that is not full SQL/2003 syntax
c99

Flag syntax that is not core SQL/1999 syntax
p99

Flag syntax that is not full SQL/1999 syntax
e92

Flag syntax that is not entry-level SQL/1992 syntax
i92

Flag syntax that is not intermediate-level SQL/1992
syntax
f92

Flag syntax that is not full-SQL/1992 syntax
t

Flag non-standard host variable types
u

Flag syntax that is not supported by UltraLite

For compatibility with previous SQL Anywhere versions,
you can also specify e, I, and f, which correspond to e92,
i92, and f92, respectively.

-h width Limits the maximum length of split lines output by sqlpp
to width in the .c file. Backslash characters are added to
the end of split lines, so that a C compiler can parse the
split lines as one continuous line. The default value is no
maximum line length (output lines are not split by default).

-k Notify the preprocessor that the program to be compiled
includes a user declaration of SQLCODE.

-m mode Cursor updatability mode. Either HISTORICAL or
READONLY.

220 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Option Description

-n Generate line number information in the C file by using
#line directives in the appropriate places in the gener
ated code.

Use this option to the report source errors and to debug
source on line numbers in the esql-filename file, rather
than in the output-filename file.

-o O/S spec Not applicable to UltraLite.

-q Set the utility to run in quiet mode. Suppress informational
banners, version numbers, and status messages. Error
messages are still displayed, however.

-r- Not applicable to UltraLite.

-s string-length Set the maximum size string that the preprocessor will put
into the C file. Strings longer than this value are initialized
using a list of characters ('a','b','c', and so on). Most
C compilers have a limit on the size of string literal they
can handle. This option is used to set that upper limit. The
default value is 500.

-u Required for UltraLite. Generate output specifically re
quired for UltraLite databases.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 221

Option Description

-w level Flag non-conforming SQL syntax as a warning. The level
value indicates the standard to use. For example, sqlpp
-w c03 ... flags any SQL syntax that is not part of the
core SQL/2003 syntax.

The allowed values of level are:

c03

Flag syntax that is not core SQL/2003 syntax
p03

Flag syntax that is not full SQL/2003 syntax
c99

Flag syntax that is not core SQL/1999 syntax
p99

Flag syntax that is not full SQL/1999 syntax
e92

Flag syntax that is not entry-level SQL/1992 syntax
i92

Flag syntax that is not intermediate-level SQL/1992
syntax
f92

Flag syntax that is not full-SQL/1992 syntax
t

Flag non-standard host variable types
u

Flag syntax that is not supported by UltraLite

For compatibility with previous SQL Anywhere versions,
you can also specify e, I, and f, which correspond to e92,
i92, and f92, respectively.

-x Change multibyte strings to escape sequences, so that
they can be passed through a compiler.

-z collation-sequence Specify the collation sequence.

Remarks

This preprocessor translates the SQL statements in the input-file into C/C++. It writes the result to the
output-filename. The normal extension for source files containing Embedded SQL is sqc. The default
output-filename is the esql-filename base name with an extension of c. However, if the esql-filename
already has the .c extension, the default output extension is .cc.

222 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The collation sequence is used to help the preprocessor understand the characters used in the source code of
the program. For example, in identifying alphabetic characters suitable for use in identifiers. In UltraLite,
collations include a code page plus a sort order. If you do not specify -z, the preprocessor attempts to
determine a reasonable collation to use based on the operating system.

To see a list of supported collations (and their corresponding codepages), run ulinit -Z.

 Note
The SQL preprocessor (sqlpp) has the ability to flag static SQL statements in an Embedded SQL
application at compile time. This feature can be especially useful when developing an UltraLite application,
to verify SQL statements for UltraLite compatibility. You can test compatibility of SQL for both SQL
Anywhere and UltraLite applications by using either -e and/or -w options.

Example

The following command preprocesses the srcfile.sqc Embedded SQL file in quiet mode for an UltraLite
application.

sqlpp -u -q MyEsqlFile.sqc

Related Information

SQL Compliance Testing Using the SQL Flagger
Embedded SQL
UltraLite Character Sets [page 32]

1.12.5.4 UltraLite Engine Utility (uleng17)

Manages concurrent UltraLite database connections from applications, and allows the UltraLite engine to run
as a daemon using the -ud option.

 Syntax

uleng17 [-ud]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 223

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/8184f05e6ce21014af2399c2e62365d9.html
https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/3bd7ac5d6c5f10148137bc349a883855.html

Option Description

-ud Lets you run the engine so that it continues running after
the current user session ends. When you start the daemon
directly using the -ud option, the uleng17 command cre
ates the daemon process and returns immediately (exiting
and allowing the next command to be executed) before
the daemon initializes itself or attempts to open any of the
databases specified in the command.

Remarks

The UltraLite engine does not display a messages window on startup.

The UltraLite engine should be used by an application in scenarios where multiple processes could be
accessing the same database at the same time. The engine is installed in the SQL Anywhere bin32 or bin64
directory because the UltraLite desktop administration tools use the engine to connect to databases.

Using the -ud option, you can run the UltraLite engine so that when you log off the computer, the database
engine remains running. (Normally when you log off the computer, all applications associated with the session
shut down.)

Related Information

UltraLite Deployment [page 123]
How to Build and Deploy UltraLite C++ Applications [page 667]
UltraLite Data Management Components for Microsoft Windows Mobile [page 21]
UltraLite Engine Stop Utility (ulstop) [page 224]
UltraLite START Connection Parameter [page 200]

1.12.5.5 UltraLite Engine Stop Utility (ulstop)

Stops the UltraLite engine.

 Syntax

ulstop

224 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

Use ulstop during development to shut down the engine manually. You typically do not require ulstop in live
deployments.

Related Information

UltraLite Data Management Components for Microsoft Windows Mobile [page 21]
UltraLite Engine Utility (uleng17) [page 223]

1.12.5.6 UltraLite Erase Utility (ulerase)

Erases an UltraLite database.

 Syntax

ulerase [options] [db-file-name]

Option Description

@ data Use this to read in options from the specified environment
variable or configuration file. If both exist with the same
name, the environment variable is used.

-k key

OR

--ek=key

Specify the encryption key for an encrypted database.

-p

OR

--ep

Specify that you want to be prompted for the encryption
key.

--log Log operations to the specified file.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational
banners, version numbers, and status messages. Error
messages are still displayed, however.

-u uid,pwd

OR

--dba=uid,pwd

Specify the userid and password required to access the
database.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 225

Option Description

-?

OR

--help

Displays utility usage information and exits.

db-file-name Erase the specified database.

Remarks

The database must be accessible. The user ID and password combination must allow a connection, otherwise
the database is not erased.

Encrypted databases require a key provided in the connection string, or using one of -k key or -p.

Related Information

Configuration Files

1.12.5.7 UltraLite Information Utility (ulinfo)

Displays information about an UltraLite database.

 Syntax

ulinfo -c options

Option Description

@ data Use this to read in options from the specified environment
variable or configuration file. If both exist with the same
name, the environment variable is used.

-c "connection-string"

OR

--connect="connection-string"

Supply database connection parameters. Required.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational
banners, version numbers, and status messages. Error
messages are still displayed, however.

226 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html

Option Description

--log=filename Log operations to the specified file.

-?

OR

--help

Displays utility usage information and exits.

Remarks

Warning messages generated when opening an UltraLite database are always displayed unless you use the -q
option.

Example

Show basic database internals for a file named cv_dbattr.udb that has already been synchronized:

ulinfo -c DBF=cv_dbattr.udb

Related Information

Configuration Files
UltraLite Connection Parameters [page 181]
UltraLite global_database_id Option [page 210]
UltraLite ml_remote_id Option [page 211]

1.12.5.8 UltraLite Initialize Database Utility (ulinit)

Creates a new UltraLite database.

This utility functions under one of the following modes:

Empty mode

Creates an empty database with characteristics specified with the command line arguments.
Extract mode

Creates a database based on a SQL Anywhere database.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 227

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html

An initial schema is created that matches tables and indexes in the SQL Anywhere reference database.
Many of the reference database characteristics are extracted and used in the new UltraLite database.

 Syntax

ulinit options dbname

 Note
If the mode is listed as Both In the table below, the option can be used in either empty or extract mode.

Option, Alternate Option Description Mode

@data Use this to read in options from the
specified environment variable or con
figuration file. If both exist with the
same name, the environment variable
is used.

Both

-a "keyword=value;...", --
SAconnect="keyword=value;..."

Sets the utility to extract mode and
connects to an existing database us
ing the specified connection parame
ters.

If this option is not present, the utility
creates a new database using the
specified connection parameters
(empty mode).

Both

-c, --case Enforce case sensitivity on all string
comparisons.

Both

-d, --datacopy For each table in the new UltraLite da
tabase, copy data from the corre
sponding table in the SQL Anywhere
database. The new database is initially
empty unless you use this option.

By default, this data is not uploaded in
subsequent synchronizations. To in
clude the data in the next upload syn
chronization, use -i with -d.

Extract

--date_format=format Sets the format for dates retrieved
from the database. Default is "YYYY-
MM-DD".

Empty

--date_order=date-format-
interpretation

Sets the interpretation of the date for
mat. Default is "YMD".

Empty

228 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Option, Alternate Option Description Mode

-e value, --fips=value On or off, 1 or 0, and so on. This option
controls the use of FIPS-certified AES
encryption.

Both

-f, --exactschema Fail if exact schema is not supported
in UltraLite; otherwise, warnings will
appear if schema differs.

Extract

-g id, --databaseid=id Set the initial global database ID to the
INTEGER value you assign. This initial
value is used with a partition size for
new rows that have global autoincre
ment columns. When deploying an ap
plication, you must assign a different
range of identification numbers to
each database for synchronization
with the MobiLink server.

Both

-i, --insertforupload Use with -d. Include inserted rows in
the next upload synchronization. By
default, rows inserted by this utility
are not uploaded during synchroniza
tion.

Extract

--identity-file=file Specify the file containing the client
TLS, PEM, or PKCS12 identity.

Both

--identity-password=password Specify the password for the client
TLS identity.

Both

-k key, --key=key Specify the encryption key for a new
encrypted database.

Both

-K, --prompt Specify that you want to be prompted
for the encryption key.

Both

-l filename, --sql=filename Log DDL database schema creation
SQL statements, as executed, to the
specified file.

Extract

--log=filename Log operations to the specified file. Both

-m filename, --
mirror_file=filename

Specify the database mirror file. Both

--max_hash_size=size Sets the maximum default primary
key or index hash size in bytes from 0
to 32. Default is 4.

Both

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 229

Option, Alternate Option Description Mode

-n pubname, --publication=pubname Required for extractions. Add tables to
the UltraLite database schema.

pubname specifies a publication in the
reference database. Tables in the pub
lication are added to the UltraLite da
tabase.

Specify the option multiple times to
add tables from multiple publications
to the UltraLite database. To add all
tables in the reference database to the
UltraLite database, specify -n*.

Extract

--nearest_century=yy Controls the interpretation of two-
digit years in string-to-date conver
sions. Default is 50.

Empty

-o value, --obfuscate=value On or off, 1 or 0, and so on. Controls
whether data in the database is obfus
cated. Obfuscation is not secure
against skilled and determined at
tempts to gain access to the data. De
fault is 0.

Both

-p size, --page_size=size Specify the database page size. De
fault is 4K.

Both

--precision=precision Specifies the maximum number of
digits in decimal point arithmetic re
sults. Default is 30.

Empty

-q, --quiet Set the utility to run in quiet mode.
Suppress informational banners, ver
sion numbers, and status messages.
Error messages and warnings are still
displayed, however.

Both

-r size, -reserve_size Pre-allocate the file system space re
quired for your UltraLite database,
without actually inserting any data.

Both

230 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Option, Alternate Option Description Mode

-s pubname, --sync_publication Create a publication in the UltraLite
database with the same definition as
pubname in the reference database.
Publications are used to configure
synchronization. Supply more than
one -s option to name more than one
synchronization publication.

The tables in this publication must be
included in a publication listed by the -
n option.

If -s is not supplied, the UltraLite re
mote database has no named publica
tions.

Extract

-S checksum_level, --
checksum_level=checksum_level

0, 1, or 2. Specifies the checksum level
validation on database pages. Default
is 0 (checksum validation is disabled).

Both

--scale=scale Specifies the minimum number of dig
its after the decimal point when an
arithmetic result is truncated to the
maximum precision. Default is 6.

Empty

-t file, --rootcert=file Specify the file containing the trusted
root certificate. This certificate is re
quired for server authentication.

Both

--time_format=format Sets the format for times retrieved
from the database. Default is
"HH:NN:SS.SSS".

Empty

--timestamp_format=format Sets the format for timestamps re
trieved from the database. Default is
"YYYY-MM-DD HH:NN:SS.SSS".

Empty

--timestamp_increment=increment Sets the resolution of timestamp val
ues from 1 to 60000000 microsec
onds. Default is 1.

Empty

--
timestamp_with_time_zone_format=f
ormat

This option sets the format for TIME
STAMP WITH TIME ZONE values re
trieved from the database. Default is
"YYYY-MM-DD HH:NN:SS.SSS
+HH:NN".

Empty

-u uid,pwd, --dba=uid,pwd Database connection only.

Specify the user ID and password.

Both

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 231

Option, Alternate Option Description Mode

--utf8_encoding=value On or off, 1 or 0, and so on. Encodes
data using the UTF-8 character set
format, 8-bit multibyte encoding for
Unicode. Default is On.

Both

-w, --nowarnings Do not display warnings. Both

-x table, --exclude Exclude the tables named in the list. Extract

-y, --overwrite Over-write the existing database file. Both

-z collation-sequence, --
collation=collation-sequence

Specify the collation sequence. Empty

-Z, --listcollation List the available collation sequences
and exit.

Both

-?, --help Display utility usage and exit. Both

Remarks

When run in extract mode, the ulinit utility attempts to create an UltraLite database that matches, as closely as
possible, the SQL Anywhere database. For example, if a column in the SQL Anywhere database includes a
clause that UltraLite does not support, the default value is ignored and the UltraLite default used instead. A
warning is generated and creation continues. This supports the case where SQL Anywhere tables cannot be
modified, but a reasonable UltraLite alternative is available. To enforce an exact schema match, use the -f
option. The ulinit utility fails if the schema does not support a reasonable UltraLite alternative.

Example

Create a file called customer.udb that contains the tables defined in TestPublication:

ulinit -a "DSN=MySADb;UID=JimmyB;PWD=secret" -n TestPublication -k mykey
customer.udb

This example connects to a SQL Anywhere database defined in the MySADb datasource. It creates an UltraLite
database with all the database options from that database and all the tables contained in the
TestPublication publication. The new UltraLite database is called customer.udb and is encrypted with the
key mykey.

232 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Create a file called customer.udb that contains two distinct publications. Specifically, Pub1 may contain a
small subset of data for priority synchronization, while Pub2 could contain the bulk of the data:

ulinit -a "DSN=MySADb;UID=JimmyB;PWD=secret" --exactschema -n Pub1 -n Pub2 -s
Pub1 -s Pub2 customer.udb

This example connects to a SQL Anywhere database defined in the MySADb datasource. It creates an UltraLite
database with all the database options from that database and all the tables contained in the publications Pub1
and Pub2. The new UltraLite database is also created with the publications Pub1 and Pub2. Since the --
exactschema option is set, ulinit will fail if it cannot extract the all precise schema.

Create a new blank database that overwrites another customer.udb file if it already exists. The new database
has no schema and all the database options are set to default values.

ulinit -y customer.udb

Related Information

Conversion from a SQL Anywhere Database to an UltraLite Database [page 37]
Synchronization Models
Configuration Files
Database Security [page 35]
Database Security [page 35]
UltraLite Character Sets [page 32]
Publishing Data in UltraLite [page 83]
UltraLite Connection Parameters [page 181]
UltraLite date_format Creation Option [page 151]
UltraLite date_order Creation Option [page 153]
UltraLite fips Creation Option [page 159]
UltraLite global_database_id Option [page 210]
identity MobiLink Client Network Protocol Option
identity_password MobiLink Client Network Protocol Option
UltraLite MIRROR_FILE Connection Parameter [page 196]
UltraLite max_hash_size Creation Option [page 161]
UltraLite nearest_century Creation Option [page 162]
UltraLite obfuscate Creation Option [page 165]
UltraLite Precision Creation Option [page 168]
UltraLite RESERVE_SIZE Connection Parameter [page 199]
UltraLite checksum_level Creation Option [page 149]
UltraLite scale Creation Option [page 169]
UltraLite time_format Creation Option [page 171]
UltraLite timestamp_format Creation Option [page 173]
UltraLite timestamp_increment Creation Option [page 175]
UltraLite utf8_encoding Creation Option [page 180]
UltraLite timestamp_with_time_zone_format Creation Option [page 177]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 233

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b672de6ce2101497d18ec27e4b3c37.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a80c7b6ce210148624faccf0ed97bb.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a7fa8c6ce2101492add7639d1bdb43.html

1.12.5.9 UltraLite Load XML to Database Utility (ulload)

Loads data from an XML file into a new or existing database.

 Syntax

ulload -c "connection-string" [options] xml-file

Option Description

@ data Use this to read in options from the specified environment
variable or configuration file. If both exist with the same
name, the environment variable is used.

-a

OR

--append

Add data and schema definitions into an existing data
base.

-c "connection-string"

OR

--connect="connection-string"

Supply the database connection parameters.

-d

OR

--dataonly

Load data only, ignoring any schema metadata in the XML
file input.

-d or --dataonly switches can only be used when -a is
specified (because it is loading data only, the UDB it is
loading the data into must exist with a schema that sup
ports the data being loaded into it).

-e value

OR

--fips= value

Specify on or off, 1 or 0, and so on. This option controls the
use of FIPS-certified AES encryption.

234 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Option Description

-E behavior

OR

--onerror=behavior

Control what happens if an error is encountered while
reading data from the XML file. Specify one of the follow
ing supported behavior values:

continue

ulload ignores the error and continues to load XML.
prompt

ulload prompts you to continue.
quit

ulload stops loading the XML and terminates with an
error. This behavior is the default behavior if none is
specified.
exit

ulload exits.

-f directory

OR

--filedir=directory

Set the directory that contains files with additional data to
load.

-g ID

OR

--databaseid=ID

Set the initial global database ID to the INTEGER value you
assign. This initial value is used with a partition size for
new rows that have global autoincrement columns. When
deploying an application, you must assign a different
range of identification numbers to each database for syn
chronization with the MobiLink server.

-i

OR

--insertforsync

Include inserted rows in the next upload synchronization.
By default, rows inserted by this utility are not uploaded
during synchronization.

--identity-file = file Specify the file containing the client TLS, PEM, or PKCS12
identity.

--identity-password = password Specify the password for the client TLS identity.

-l filename

OR

--log=filename

Log operations to the specified file.

-n

OR

--schemaonly

Load schema metadata only, ignoring any data in the XML
input file.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 235

Option Description

-o value

OR

--obfuscate=value

On or off, 1 or 0, and so on. Controls whether data in the
database is obfuscated. Obfuscation is not secure against
skilled and determined attempts to gain access to the
data.

-p page-size

OR

--page_size=page-size

Defines the database page size.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational
banners, version numbers, and status messages. Error
messages are still displayed, however.

-s file

OR

--sql=file

Log the SQL statements used to load the database into
the specified file.

-t file

OR

--rootcert=file

Specify the file containing the trusted root certificate. This
certificate is required for server authentication.

--utf8_encoding=value On or off, 1 or 0, and so on. Encodes data using the UTF-8
character set format, 8-bit multibyte encoding for Uni
code.

-v

OR

--verbose

Print verbose messages.

-y

OR

--overwrite

Overwrite the database file without confirmation. This only
applies when you use ulload to create a new database.

-?

OR

--help

Display the utility usage and exit.

Remarks

The ulload utility takes an input XML file generated by ulunload, ulunloadold (provided with SQL Anywhere 10),
or ulxml (in UltraLite versions 8 and 9). When used along with ulunload this utility provides you with the ability

236 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

to rebuild a database. An alternative method to rebuild a database is using ulunload to generate SQL
statements and then use DBISQL to read them into a new database.

The XML file can contain metadata for the schema and/or metadata for the database data. -d ignores the
schema metadata, only adding data to the .udb file. -n ignores the data and the metadata, only adding the
schema to the .udb file.

Setting an option or specifying a certificate on the command line overrides any settings in the xml-file that is
processed by ulload.

The ulload utility restores any synchronization profiles to the database when reading the XML.

This utility returns error codes. Any value other than 0 means that the operation failed.

Example

Create a new UltraLite database file, sample.udb, and load it with data in sample.xml:

ulload -c DBF=sample.udb sample.xml

Load the data from sample.xml into the existing database sample.udb, and if an error occurs, prompt for
action:

ulload -d -c DBF=sample.udb --onerror=prompt sample.xml

Create the schema and data stored in test_data.xml in the sample.udb database. Since the -a switch is
specified, sample.udb must exist prior to running this command. Moreover, any schema or data that conflicts
with what is already in sample.udb will mean the ULLOAD command will fail.

ulload -c DBF=sample.udb -a test_data.xml

Related Information

Configuration Files
Database Security [page 35]
Database Security [page 35]
UltraLite Character Sets [page 32]
UltraLite Connection Parameters [page 181]
UltraLite Database Unload Utility (ulunload) [page 243]
Supported Exit Codes [page 214]
UltraLite fips Creation Option [page 159]
UltraLite Database Unload Utility (ulunload) [page 243]
UltraLite global_database_id Option [page 210]
identity MobiLink Client Network Protocol Option
identity_password MobiLink Client Network Protocol Option
UltraLite obfuscate Creation Option [page 165]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 237

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a80c7b6ce210148624faccf0ed97bb.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a7fa8c6ce2101492add7639d1bdb43.html

UltraLite page_size Creation Option [page 166]
UltraLite global_database_id Option [page 210]
UltraLite utf8_encoding Creation Option [page 180]

1.12.5.10 UltraLite Synchronization Utility (ulsync)

Synchronizes an UltraLite database with a MobiLink server. This tool can be used for testing synchronization
during application development.

 Syntax

ulsync [options] [synchronization-parameters]

Option Description

@ data Use this to read in options from the specified environment
variable or configuration file. If both exist with the same
name, the environment variable is used.

-c "connection-string"

or

--connect="connection-string"

Required. Connect to the database as identified in the DBF
or file_name parameter of your connection-string. If
you do not specify both a user ID and a password, the de
fault UID of DBA and PWD of sql are assumed.

-p profile-name

or

--profile=profile

Synchronize using the named synchronization profile,
equivalent to:

SYNCHRONIZE profileName MERGE
syncOptions

where sync options are taken from the trailing ulsync op
tions. For example:

ulsync -p profileName
"MobiLinkUid=ml;ScriptVersion=Version
001...syncOptions"

-q

or

--quiet

Set the utility to run in quiet mode. Suppress informational
banners, version numbers, and status messages. Error
messages are still displayed, however.

-r

or

--result

Display last synchronization results and exit.

238 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Option Description

-v

or

--verbose

Display synchronization progress messages. This also de
termines whether progress is displayed for any synchroni
zation, whether using the C++ API or the SQL SYN
CHRONIZE PROFILE statement.

--log=filename Log operations to the specified file.

-?

or

--help

Display utility usage information and exit.

Remarks

Your certificate may be bundled with your application by including it in the Xcode project. If you specify the
bare name plus extension for a certificate file option, UltraLite will automatically look in the bundle to find it. If
you want, you can specify a full path.

The following options that were valid for versions 10 and earlier are no longer supported: -a authenticate-
parameters, -e sync-parms, -k stream-type, -n (no sync), and -x protocol options. -e keyword=value
is now part of the sync parameters string and -k and -x are now part of the Stream= stream{stream-parms}
sync parameters string.

Below, we show a ulsync example and the equivalent SQL statement.

ulsync -p profile "parms"

This command is equivalent to the following SQL statement.

SYNCHRONIZE PROFILE profile MERGE parms

The following is another example.

ulsync "parms"

This command is equivalent to the following SQL statement.

SYNCHRONIZE USING parms

For secure synchronization, the UltraLite application must have access to the public certificate. You can
reference a certificate by:

• Incorporating the certificate information into the UltraLite database at creation time with the -t file
option using ulinit or ulload.

• Referencing an external certificate file at synchronization time with the trusted_certificate= file stream
option.

This utility returns error codes. Any value other than 0 means that the operation failed.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 239

Example

The following command synchronizes a database file called myuldb.udb for a MobiLink user called remoteA.

ulsync -c DBF=myuldb.udb "MobiLinkUid=remoteA;Stream=http;ScriptVersion=2"

The following command synchronizes a database file called myuldb.udb over HTTPS with the C:\Users\Public
\Documents\SQL Anywhere 17\Samples\Certificates\rsaroot.crt certificate. The trusted_certificate=
file option must be used because the trusted certificate file was not added to the database when the
database was created. Additionally, the MobiLink user name is remoteB.

ulsync -c DBF=myuldb.udb "Stream=https{trusted_certificate=C:\Users\Public
\Documents\SQL Anywhere
 17\Samples\Certificates
\rsaroot.crt};MobiLinkUid=remoteB;ScriptVersion=2;UploadOnly=ON"

The following command displays the last synchronization results for a database file named synced.udb.

ulsync -r -c dbf=synced.udb

The previous synchronization results are listed as follows:

SQL Anywhere UltraLite Synchronization Utility Version 17.0.11.1293 Results of last synchronization:
 Succeeded
 Download timestamp: 2006-07-25 16:39:36.708000
 Upload OK
 No ignored rows
 Partial download retained Authentication value: 1000 (0x3e8)

The following example shows the command line used to synchronize the CustDB database with a user name of
50 over TCP/IP on a port of 2439. It uses verbose progress messages.

ulsync -c "dbf=C:\Users\Public\Documents\SQL Anywhere
 17\Samples\UltraLite\CustDB\custdb.udb"
"MobiLinkUid=50;ScriptVersion=custdb 17.0.11;Stream=tcpip{port=2439}"

The following command illustrates how to use TLS encryption with end-to-end encryption (E2EE):

ulsync -c "uid=dba;pwd=sql;dbf=myudb.db"
"MobiLinkUid=rem1;MobiLinkPwd=password;ScriptVersion=v1;Stream=tls{host=myServer;
port=2439;trusted_certificate=clientcert.pem;e2ee_public_key=e2eepublic.pem}"

Related Information

End-to-end Encryption
UltraLite Clients [page 73]
Configuration Files
UltraLite Synchronization Profile Options [page 241]
trusted_certificates MobiLink Client Network Protocol Option
UltraLite Connection Parameters [page 181]

240 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81a4bd466ce21014911cccbf09d2fcee.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8cebc6ce21014b365cf0c0d508409.html

Supported Exit Codes [page 214]
MobiLink File Transfer Utility (mlfiletransfer)
UltraLite Synchronization Profile Options [page 241]
CREATE SYNCHRONIZATION PROFILE Statement [UltraLite] [page 535]
trusted_certificates MobiLink Client Network Protocol Option

1.12.5.11 UltraLite Synchronization Profile Options

Specify synchronization profile options with the ulsync utility on the command line after you have defined all
other command line options. Keywords are case insensitive.

Synchronization profile option Valid values Description

AllowDownloadDupRows Boolean This option prevents errors from being
raised when multiple rows are down
loaded that have the same primary key.
This can be used to allow inconsistent
data to be synchronized without caus
ing the synchronization to fail. The de
fault value is "no."

AuthParms String (comma separated) Specifies the list of authentication pa
rameters sent to the MobiLink server.
You can use authentication parameters
to perform custom authentication in
MobiLink scripts.

CheckpointStore Boolean Adds additional checkpoints of the da
tabase during synchronization to limit
database growth during the synchroni
zation process.

ContinueDownload Boolean Restarts a previously failed download.
When continuing a download, only the
changes that were selected to be down
loaded with the failed synchronization
are received. By default, UltraLite does
not continue downloads.

DisableConcurrency Boolean Disallow database access from other
threads during synchronization.

DownloadOnly Boolean Performs a download-only synchroniza
tion.

KeepPartialDownload Boolean Controls whether UltraLite keeps a par
tial download if a communication error
occurs. By default, UltraLite does not
roll back partially downloaded changes.

MobiLinkPwd String Specifies the existing MobiLink pass
word associated with the user name.

MobiLinkUid String Specifies the MobiLink user name.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 241

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac09836ce21014913ed9c27368e76d.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8cebc6ce21014b365cf0c0d508409.html

Synchronization profile option Valid values Description

NewMobiLinkPwd String Supplies a new password for the Mobi
Link user. Use this option when you
want to change an existing password.

Ping Boolean Confirms communications with the
server only; no synchronization is per
formed.

Publications String (comma separated) Specifies the publications(s) to syn
chronize. The publications determine
the tables on the remote database that
are involved in synchronization. If this
parameter is blank (the default) then all
tables are synchronized. If the parame
ter is an asterisk (*) then all publica
tions are synchronized.

ScriptVersion String Specifies the MobiLink script version.
The script version determines which
scripts are run by MobiLink on the con
solidated database during synchroniza
tion. If you do not specify a script ver
sion, 'default' is used.

SendDownloadACK Boolean Specifies that a download acknowl
edgement should be sent from the cli
ent to the server. By default, the Mobi
Link server does not provide a down
load acknowledgement.

Stream String (with sub-list) Specifies the MobiLink network syn
chronization protocol.

TableOrder String (comma separated) Specifies the order of tables in the up
load. By default, UltraLite selects an or
der based on foreign key relationships.

UploadOnly String Specifies that synchronization will only
include an upload, and no download will
occur.

The Boolean values can be specified as Yes/No, 1/0, True/False, On/Off. In all the Boolean cases, the default is
No. For all other values, the default is simply unspecified.

Related Information

Resumption of Failed Downloads
Publishing Data in UltraLite [page 83]
Additional Parameters Synchronization Parameter [page 95]
Authentication Parameters Synchronization Parameter [page 98]
Download Only Synchronization Parameter [page 101]
Keep Partial Download Synchronization Parameter [page 103]
MobiLinkPwd (mp) Extended Option

242 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c69c6b6ce210149820c7f6169e80b1.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aaf3016ce21014930fca10bee5b6d2.html

-mn dbmlsync Option
Ping Synchronization Parameter [page 108]
ScriptVersion (sv) Extended Option
Send Download Acknowledgement Synchronization Parameter [page 111]
Stream Type Synchronization Parameter [page 114]
Upload Only Synchronization Parameter [page 118]
ALTER SYNCHRONIZATION PROFILE Statement [UltraLite] [page 522]
DROP SYNCHRONIZATION PROFILE Statement [UltraLite] [page 547]
SYNCHRONIZE Statement [UltraLite] [page 563]
UltraLite Options [page 143]

1.12.5.12 UltraLite Database Unload Utility (ulunload)

Unloads either an entire UltraLite database to XML or SQL, or all or part of UltraLite data to XML or SQL.

 Syntax

ulunload -c "connection-string" [options] output-file

Option Description

@ data Use this to read in options from the specified environment
variable or configuration file. If both exist with the same
name, the environment variable is used.

-b max-size

OR

--maxblob=max-size

Set the maximum size of column data to be stored in the
XML file. The default is 10 KB. To store all data in the XML
file (no maximum size), use -b -1.

-c "connection-string"

OR

--connect="connection-string"

Required. Connect to the database as identified in the DBF
or file_name parameter of your connection-string. If
you do not specify both a user ID and a password, the de
fault UID of DBA and PWD of sql are assumed.

-d

OR

--dataonly

Only unload the data from the database to the output file.
Do not unload any schema information.

-e table,...

OR

--exclude=table,...

Exclude the named table when unloading the database.
You can name multiple tables in a comma-separated list.
For example:

-e mydbtable1,mydbtable5

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 243

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac42286ce21014b640fc68bfcabfd1.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ab140d6ce21014b279c5860c77ae73.html

Option Description

-f directory

OR

--filedir=directory

Set the directory to store data larger than the maximum
size specified by -b. The default is the same directory as
the output file.

-l filename

OR

--log=filename

Log operations to the specified file.

-n

OR

--schemaonly

Unload schema only, ignoring any data in the database.

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational
banners, version numbers, and status messages. Error
messages are still displayed, however.

-s

OR

--sql

Unload as SQL Anywhere-compatible SQL statements.
SQL file output can be read by UltraLite or SQL Anywhere
using DBISQL.

-t table,...

OR

--include=table,...

Unload data in the named table only. You can name mul
tiple tables in a comma separated list. For example:

-t mydbtable2,mydbtable6

-v

OR

--verbose

Print verbose messages.

-x owner

OR

--owner=owner

Output tables so they are owned by a specific user ID. You
can use this option with the -s option.

-y

OR

--overwrite

Overwrite output-file without confirmation.

-?

OR

--help

Displays utility usage information and exits.

244 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Option Description

output-file Required. Set the name of the file that the database is un
loaded into. If you use the -s option, database is unloaded
as SQL statements. Otherwise, the database is unloaded
as XML.

Remarks

By default, ulunload outputs XML that describes the schema and data in the database. You can use the output
for archival purposes, or to keep the UltraLite database portable across all releases.

Saving a database with a synchronization profile results in XML that is incompatible with earlier versions of the
UltraLite utilities. A workaround is to edit the XML and remove the text section marked with

<syncprofiles>...</syncprofiles>

Unloading a database does not preserve:

• Synchronization state, stored synchronization counts, and row deletions. Ensure you synchronize the
database before unloading it.

• UltraLite user entries.

To confirm what database options or properties have been preserved, run ulinfo after you have reloaded your
database with the ulload utility.

If column data exceeds the maximum size you specified with -b, the overflow is saved to a *.bin file in either:

• the same directory as the XML file
• the directory specified by -f.

The file follows this naming convention:

tablename-columnname-rownumber.bin

The -x option allows you to assign ownership to UltraLite tables. You only need to assign an owner to a table if
you intend to use the resulting SQL statements for creating or modifying a SQL Anywhere database. When read
by UltraLite, the owner names are silently ignored.

This utility returns error codes. Any value other than 0 means that the operation failed.

If you are using this utility to unload a database on the Microsoft Windows Mobile device directly, UltraLite
cannot back up the database before the unload or action occurs. You must perform this action manually before
running these wizards.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 245

Example

Unload the sample.udb database into the sample.xml file.

ulunload -c DBF=sample.udb sample.xml

Unload the data from the sample.udb database into a SQL file called sample.sql. Overwrite the SQL file if it
exists.

ulunload -c DBF=sample.udb -d -y -s sample.sql

Related Information

Configuration Files
UltraLite Connection Parameters [page 181]
Supported Exit Codes [page 214]
UltraLite Load XML to Database Utility (ulload) [page 234]
UltraLite Information Utility (ulinfo) [page 226]

1.12.5.13 UltraLite Validate Database Utility (ulvalid)

Performs a full (normal) validation of an UltraLite database.

 Syntax

ulvalid -c "connection-string" [options]

Option Description

@ data Use this to read in options from the specified environment
variable or configuration file. If both exist with the same
name, the environment variable is used.

-c "connection-string"

OR

--connect="connection-string"

Required. Connect to the database as identified in
connection-string. If you do not specify both a user ID
and a password, the default UID of DBA and PWD of sql
are assumed.

-e

OR

--express

Express validation. Only perform table validation. This op
tion provides a faster validation than normal validation.

246 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html

Option Description

-q

OR

--quiet

Set the utility to run in quiet mode. Suppress informational
banners, version numbers, and status messages. Error
messages are still displayed, however.

-v

OR

--verbose

Print verbose messages.

--log=filename Log operations to the specified file.

-?

OR

--help

Displays utility usage information and exits.

Remarks

Validating a database verifies the accuracy of the table metadata and ensures the file has not been corrupted.

The validation includes:

Database pages

Validate all database pages, using checksums when enabled. Certain critical pages always have checksums
and even pages without checksums undergo a basic validity check.
Tables

Validate table(s) by checking that the table row count matches the count in each index.
Indexes

Validate indexes by checking that entries refer to valid rows. ulvalid -e performs an express check, which
includes only table validation.

Example

An example of an express validation of a database named sample.udb run in quiet mode.

ulvalid -c DBF=sample.udb -e -q

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 247

Related Information

Configuration Files
Validating an UltraLite Database [page 51]
UltraLite checksum_level Creation Option [page 149]

1.12.6 UltraLite System Tables

The schema of an UltraLite database is stored in a proprietary format.

Earlier versions of UltraLite databases were stored in several system tables. These system tables (system
views) can still be queried for backward compatibility, but they only contain information about user schema
(like tables, columns, indexes) not system schema. For example, you cannot query the systable to find the
properties of systable itself. You can only query the systable to find the properties of user-created tables.

Each UltraLite programming API supports objects and methods that can be used to query the database about
its schema. Use these objects and APIs to explore schema rather than querying the system views.

All queries performed on these system views are equivalent to full table scans. Index scans are not supported
on these system views.

In this section:

sysarticle System Table [page 249]
Each row in the sysarticle system table describes a table that belongs to a publication.

syscolumn System Table [page 249]
Each row in the syscolumn system table describes one column.

sysindex System Table [page 250]
Each row in the sysindex system table describes one index in the database.

sysixcol System Table [page 251]
Each row in the sysixcol system table describes one column of an index listed in sysindex.

syspublication System Table [page 252]
Each row in the syspublication system table describes a publication.

syssyncresult System Table [page 252]
Any row in the syssyncresult system table contains information about the most recent synchronization.

systable System Table [page 254]
Each row in the systable system table describes one table in the database.

248 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html

1.12.6.1 sysarticle System Table

Each row in the sysarticle system table describes a table that belongs to a publication.

Column name Column type Description

publication_id UNSIGNED INT An identifier for the publication that this
article belongs to.

table_id UNSIGNED INT The identifier of the table that belongs
to the publication.

where_expr VARCHAR(2048) An optional predicate to filter rows.

Constraints

PRIMARY KEY (publication_id, table_id)

FOREIGN KEY (publication_id) REFERENCES syspublication (publication_id)

FOREIGN KEY (table_id) REFERENCES systable (object_id)

Related Information

syspublication System Table [page 252]

1.12.6.2 syscolumn System Table

Each row in the syscolumn system table describes one column.

Column name Column type Description

column_name VARCHAR(128) The name of the column.

default VARCHAR(128) The default value for this column. For
example, autoincrement.

domain UNSIGNED INT The column domain, which is an enum
erated value indicating the domain of
the column.

domain_info UNSIGNED INT Used with a variable sized domain.

nulls VARCHAR(1) Determines if the column allows nulls
default.

object_id UNSIGNED INT A unique identifier for that column.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 249

Column name Column type Description

table_id UNSIGNED INT The identifier of the table to which the
column belongs.

Constraints

PRIMARY KEY(table_id, object_id)

FOREIGN KEY (table_id) REFERENCES systable (object_id)

1.12.6.3 sysindex System Table

Each row in the sysindex system table describes one index in the database.

Column name Column type Description

check_on_commit BIT Indicates when referential integrity is
checked to ensure there is a matching
primary row for every foreign key. It is
only required if type is foreign.

index_name VARCHAR(128) The name of the index.

ixcol_count UNSIGNED INT The number of columns in the index.

nullable BIT Only required if type is foreign. Indicates
if nulls are allowed.

object_id UNSIGNED INT A unique identifier for an index.

primary_index_id UNSIGNED INT Only required if type is foreign. Lists the
identifier of the primary index.

primary_table_id UNSIGNED INT Only required if type is foreign. Lists the
identifier of the primary table.

root_handle UNSIGNED INT For internal use only.

table_id UNSIGNED INT A unique identifier for the table to which
the index applies.

type VARCHAR(10) The type of index. Can be one of:

• primary
• foreign
• key
• unique
• index

hash_size UNSIGNED SHORTINT Stores the hash size used for index
hashing.

250 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Constraints

PRIMARY KEY (table_id, object_id)

FOREIGN KEY(table_id) REFERENCES systable(object_id)

Related Information

sysixcol System Table [page 251]

1.12.6.4 sysixcol System Table

Each row in the sysixcol system table describes one column of an index listed in sysindex.

Column name Column type Description

column_id UNSIGNED INT A unique identifier for the column being
indexed.

index_id UNSIGNED INT A unique identifier for the index that
this index-column belongs to.

order VARCHAR(1) Indicates whether the column in the in
dex is kept in ascending (A) or descend
ing (D) order.

sequence UNSIGNED INT The order of the column in the index.

table_id UNSIGNED INT A unique identifier for the table to which
the index applies.

Constraints

PRIMARY KEY(table_id, index_id, sequence)

FOREIGN KEY(table_id, index_id) REFERENCES sysindex(table_id, object_id)

FOREIGN KEY(table_id, column_id) REFERENCES syscolumn(table_id, object_id)

Related Information

sysindex System Table [page 250]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 251

1.12.6.5 syspublication System Table

Each row in the syspublication system table describes a publication.

Column name Column type Description

download_timestamp TIMESTAMP The time of the last download.

last_sync UNSIGNED BIGINT Used to keep track of upload progress.

publication_id UNSIGNED INT A unique identifier for the publication.

publication_name VARCHAR(128) The name of the publication.

Constraints

PRIMARY KEY (publication_id)

Related Information

sysarticle System Table [page 249]

1.12.6.6 syssyncresult System Table

Any row in the syssyncresult system table contains information about the most recent synchronization.

Column name Column type Description

sql_code INTEGER The SQL code from the last synchroni
zation.

error_string CHAR(200) The error message from the last syn
chronization.

stream_error_code SMALLINT The specific stream error. See the
ss_error_code enumeration for possible
values.

system_error_code INTEGER A system-specific error code. For more
information about error codes, see your
platform documentation.

stream_error_string CHAR(80) A string with additional information, if
available, for the stream_error_code
value.

upload_ok BIT True if the upload was successful; false
otherwise.

252 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Column name Column type Description

ignored_rows BIT True if uploaded rows were ignored;
false otherwise.

auth_status UNSIGNED SMALLINT The synchronization authentication sta
tus.

auth_value INTEGER The value used by the MobiLink server
to determine the auth_status result.

auth_info CHAR(1024) The authentication message returned
from the MobiLink user authentication
script.

partial_download_retained BIT The value that tells you whether a par
tial download was retained.

timestamp TIMESTAMP The time and date of the last synchroni
zation.

sent_bytes UNSIGNED INT The number of bytes currently sent for
the upload.

sent_inserts UNSIGNED INT The number of rows currently inserted
for the upload.

sent_updates UNSIGNED INT The number of updated rows currently
sent for the upload.

sent_deletes UNSIGNED INT The number of deleted rows currently
sent for the upload.

received_bytes UNSIGNED INT The number of bytes currently sent for
the download.

received_inserts UNSIGNED INT The number of rows currently inserted
for the download.

received_updates UNSIGNED INT The number of updated rows currently
sent for the download.

received_ignored_updates UNSIGNED INT The number of duplicate rows that were
received in the download.

received_deletes UNSIGNED INT The number of deleted rows currently
sent for the download.

received_ignored_deletes UNSIGNED INT The number of deleted rows that were
received in the download of rows that
have already been deleted.

received_truncate_deletes UNSIGNED INT The number of rows that were deleted
in the download by a truncate opera
tion.

Related Information

Keep Partial Download Synchronization Parameter [page 103]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 253

1.12.6.7 systable System Table

Each row in the systable system table describes one table in the database.

Column name Column type Description

column_count UNSIGNED INT The number of columns in the table.

index_count UNSIGNED INT The number of indexes in the table.

ixcol_count UNSIGNED INT The total number of columns in all in
dexes in the table.

table_name VARCHAR(128) The name of the table.

object_id UNSIGNED INT A unique identifier for that table.

sync_type VARCHAR(32) Used for MobiLink synchronization. Can
be one of either no_sync for no syn
chronization, all_sync to synchronize
every row, or normal_sync for synchron
ize changed rows only.

table_type VARCHAR(32) user to indicate user-created tables.

Constraints

PRIMARY KEY (object_id)

1.13 UltraLite SQL reference

UltraLite supports many SQL language features and elements.

In this section:

UltraLite SQL Language Elements [page 255]
UltraLite supports many SQL elements.

SQL Data Types [page 288]
UltraLite supports a subset of the data types available in SQL Anywhere.

Spatial Data Types [page 320]
Spatial data is data that describes the position, shape, and orientation of objects in a defined space.
UltraLite provides storage and data management features for spatial data, in the form of points,
allowing you to store information such as geographic locations and routing information.

User-defined Data Types and Their Equivalents [page 322]
Unlike SQL Anywhere databases, UltraLite does not support user-defined data types.

SQL Functions [page 323]
Functions are used to return information from the database. They can be called anywhere an
expression is allowed.

254 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite SQL Statements [page 516]
The SQL statements supported by UltraLite SQL are a subset of the statements supported by SQL
Anywhere databases.

1.13.1 UltraLite SQL Language Elements

UltraLite supports many SQL elements.

In this section:

Keywords in UltraLite [page 256]
Each SQL statement contains one or more keywords. SQL keywords are case insensitive, but
throughout the documentation, keywords are indicated in uppercase. Some keywords cannot be used
as identifiers without surrounding them in double quotes. These are called reserved words.

Identifiers in UltraLite [page 256]
Identifiers are the names of objects in the database, such as user IDs, tables, and columns.

Strings in UltraLite [page 257]
Strings are used to hold character data in the database. UltraLite supports the same rules for strings as
SQL Anywhere.

Comments in UltraLite [page 257]
Comments are used to attach explanatory text to SQL statements or statement blocks. The UltraLite
runtime does not execute comments.

Numbers in UltraLite [page 258]
Numbers are used to hold numerical data in the database.

The NULL Value in UltraLite [page 259]
As with SQL Anywhere, NULL is a special value that is different from any valid value for any data type.
However, the NULL value is a legal value in any data type. NULL is used to represent unknown (no
value) or inapplicable information.

Special Values in UltraLite [page 259]
You can use special values in expressions, and as column defaults when you create tables.

Dates and Times in UltraLite [page 264]
Many of the date and time functions use dates built from date and time parts. UltraLite and SQL
Anywhere support the same date parts.

Expressions in UltraLite [page 264]
Expressions are formed by combining data, often in the form of column references, with operators or
functions.

Search Conditions in UltraLite [page 272]
A search condition is the criteria for a WHERE clause, a HAVING clause, an ON phrase in a join, or an IF
expression. A search condition is also called a predicate.

Operators in UltraLite [page 285]
Operators are used to compute values, which may in turn be used as operands in a higher-level
expression.

Variables in UltraLite [page 288]
You cannot use SQL variables (including global variables) in UltraLite applications.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 255

1.13.1.1 Keywords in UltraLite

Each SQL statement contains one or more keywords. SQL keywords are case insensitive, but throughout the
documentation, keywords are indicated in uppercase. Some keywords cannot be used as identifiers without
surrounding them in double quotes. These are called reserved words.

 Note
UltraLite only supports a subset of SQL Anywhere keywords. However, to avoid potential problems in future
releases, you should assume that all the reserved words for SQL Anywhere apply to UltraLite as well.

Related Information

Reserved Words

1.13.1.2 Identifiers in UltraLite

Identifiers are the names of objects in the database, such as user IDs, tables, and columns.

Identifiers have a maximum length of 128 bytes and are composed from alphabetic characters and digits, as
well as the underscore character (_) and at sign (@). Leading digits are allowed but the identifier must be
quoted. Other special characters are allowed but the identifier must be quoted. The database collation
sequence dictates which characters are considered alphabetic or digit characters.

Double quotes (") are not permitted in identifiers:

Quoting Identifiers

If any of the following conditions are true, then always enclose an identifier in double quotes:

• The identifier contains leading, trailing, or embedded spaces.
• The first character of the identifier is not an alphabetic character, the underscore character (_), or at sign

(@). For example, the first character is a digit.
• The identifier contains characters other than the alphabetic characters, digits, underscore character (_),

and at sign (@).
• The identifier is a reserved word.

For compatibility with other database management systems, it is recommended that you avoid the use of
special characters in identifier names, including but not limited to any of the following:

• Leading or trailing whitespace
• Leading single quote
• Semicolons

256 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/8168db566ce2101487ccc699b5175a42.html

Related Information

Reserved Words

1.13.1.3 Strings in UltraLite

Strings are used to hold character data in the database. UltraLite supports the same rules for strings as SQL
Anywhere.

The results of comparisons on strings, and the sort order of strings, depends on the case sensitivity of the
database, the character set, and the collation sequence. These properties are set when the database is
created.

Related Information

Strings
UltraLite Character Sets [page 32]

1.13.1.4 Comments in UltraLite

Comments are used to attach explanatory text to SQL statements or statement blocks. The UltraLite runtime
does not execute comments.

The following comment indicators are available in UltraLite:

-- (Double hyphen)

The database server ignores any remaining characters on the line. This indicator is the ANSI/ISO SQL
Standard comment indicator.
// (Double slash)

The double slash has the same meaning as the double hyphen.
/* ... */ (Slash-asterisk)

Any characters between the two comment markers are ignored. The two comment markers may be on the
same or different lines. Comments indicated in this style can be nested. This style of commenting is also
called C-style comments.

 Note
The percent sign (%) is not supported in UltraLite.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 257

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/8168db566ce2101487ccc699b5175a42.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817b3d006ce21014ad07f050c018135e.html

Example

• The following example illustrates the use of double-hyphen comments:

CREATE TABLE borrowed_book (loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 FOREIGN KEY book REFERENCES library_books (isbn),
)
--This statement creates a table for a library database to hold information
on borrowed books.
--The default value for date_borrowed indicates that the book is borrowed on
the day the entry is made. --The date_returned column is NULL until the book is returned.

• The following example illustrates the use of C-style comments:

CREATE TABLE borrowed_book (loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 FOREIGN KEY book REFERENCES library_books (isbn),
)
/* This statement creates a table for a library database to hold information
on borrowed books.
The default value for date_borrowed indicates that the book is borrowed on
the day the entry is made. The date_returned column is NULL until the book is returned. */

1.13.1.5 Numbers in UltraLite

Numbers are used to hold numerical data in the database.

A number can:

• be any sequence of digits
• be appended with decimal parts
• include an optional negative sign (-) or a plus sign (+)
• be followed by an e and then a numerical exponent value

For example, all numbers shown below are supported by UltraLite:

42

-4.038

.001

3.4e10

1e-10

258 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.1.6 The NULL Value in UltraLite

As with SQL Anywhere, NULL is a special value that is different from any valid value for any data type. However,
the NULL value is a legal value in any data type. NULL is used to represent unknown (no value) or inapplicable
information.

Related Information

NULL Special Value

1.13.1.7 Special Values in UltraLite

You can use special values in expressions, and as column defaults when you create tables.

In this section:

CURRENT DATE Special Value - UltraLite [page 260]
Returns the current year, month, and day.

CURRENT TIME Special Value - UltraLite [page 260]
The current hour, minute, second, and fraction of a second.

CURRENT TIMESTAMP Special Value - UltraLite [page 261]
Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP value containing the year,
month, day, hour, minute, second, and fraction of a second.

CURRENT UTC TIMESTAMP Special Value - UltraLite [page 262]
Returns a TIMESTAMP WITH TIME ZONE value that reflects the current UTC time containing the year,
month, and day.

SQLCODE Special Value [page 263]
Current SQLCODE value at the time the special value was evaluated.

Related Information

SQL Data Types [page 288]
SQL Functions [page 323]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 259

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/8171f2c56ce21014a5d6cc9b01cd3a05.html

1.13.1.7.1 CURRENT DATE Special Value - UltraLite

Returns the current year, month, and day.

Data Type

DATE

Remarks

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT DATE with any of the following, all values are based on separate clock
readings:

• CURRENT DATE multiple times within the same statement
• CURRENT DATE with CURRENT TIME or CURRENT TIMESTAMP within a single statement
• CURRENT DATE with the NOW function or GETDATE function within a single statement

Related Information

Expressions in UltraLite [page 264]
GETDATE Function [Date and Time] [page 401]
NOW Function [Date and Time] [page 446]

1.13.1.7.2 CURRENT TIME Special Value - UltraLite

The current hour, minute, second, and fraction of a second.

Data Type

TIME

260 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The fraction of a second is stored to 6 decimal places. The accuracy of the current time is limited by the
accuracy of the system clock.

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT TIME with any of the following, all values are based on separate clock
readings:

• CURRENT TIME multiple times within the same statement
• CURRENT TIME with CURRENT DATE or CURRENT TIMESTAMP within a single statement
• CURRENT TIME with the NOW function or GETDATE function within a single statement

Related Information

Expressions in UltraLite [page 264]
GETDATE Function [Date and Time] [page 401]
NOW Function [Date and Time] [page 446]

1.13.1.7.3 CURRENT TIMESTAMP Special Value - UltraLite

Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP value containing the year, month, day,
hour, minute, second, and fraction of a second.

Data Type

TIMESTAMP

Remarks

The fraction of a second is stored to 3 decimal places. The accuracy is limited by the accuracy of the system
clock.

Columns declared with DEFAULT CURRENT TIMESTAMP do not necessarily contain unique values.

The information CURRENT TIMESTAMP returns is equivalent to the information returned by the GETDATE and
NOW functions.

CURRENT_TIMESTAMP is equivalent to CURRENT TIMESTAMP.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 261

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT TIMESTAMP with any of the following, all values are based on separate
clock readings:

• CURRENT TIMESTAMP multiple times within the same statement
• CURRENT TIMESTAMP with CURRENT DATE or CURRENT TIME within a single statement
• CURRENT TIMESTAMP with the NOW function or GETDATE function within a single statement

Related Information

CURRENT TIME Special Value - UltraLite [page 260]
Expressions in UltraLite [page 264]
NOW Function [Date and Time] [page 446]
GETDATE Function [Date and Time] [page 401]

1.13.1.7.4 CURRENT UTC TIMESTAMP Special Value -
UltraLite

Returns a TIMESTAMP WITH TIME ZONE value that reflects the current UTC time containing the year, month,
and day.

Data Type

DATE

Remarks

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime.

• CURRENT DATE multiple times within the same statement
• CURRENT DATE with CURRENT TIME or CURRENT TIMESTAMP within a single statement
• CURRENT DATE with the NOW function or GETDATE function within a single statement

Related Information

CURRENT TIMESTAMP Special Value - UltraLite [page 261]

262 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Expressions in UltraLite [page 264]
GETDATE Function [Date and Time] [page 401]
NOW Function [Date and Time] [page 446]

1.13.1.7.5 SQLCODE Special Value

Current SQLCODE value at the time the special value was evaluated.

Data Type

String

Remarks

The SQLCODE value is set after each statement. You can check the SQLCODE to determine if the statement
succeeded.

Example

Use a SELECT statement to produce an error code for each attempt to fetch a new row from the result set. For
example: SELECT a, b, SQLCODE FROM MyTable.

Related Information

Expressions in UltraLite [page 264]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 263

1.13.1.8 Dates and Times in UltraLite

Many of the date and time functions use dates built from date and time parts. UltraLite and SQL Anywhere
support the same date parts.

Related Information

Specifying Date Parts [page 328]

1.13.1.9 Expressions in UltraLite

Expressions are formed by combining data, often in the form of column references, with operators or functions.

 Syntax

expression: case-expression | constant | [correlation-name.]column-name | - expression | expression operator expression | (expression) | function-name (expression, ...) | if-expression | special value | input-parameter

Parameters

case-expression: CASE expression WHEN expression THEN expression,... [ELSE expression] END

alternative form of case-expression: CASE WHEN search-condition THEN expression,... [ELSE expression] END

constant: integer | number | string | host-variable

264 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

special-value: CURRENT { DATE | TIME | TIMESTAMP } | NULL | SQLCODE | SQLSTATE

if-expression: IF condition THEN expression [ELSE expression] ENDIF

input-parameter: { ? | :name [: indicator-name] }

operator: { + | - | * | / | || | % }

In this section:

Constants in Expressions [page 266]
In UltraLite, constants are numbers or string literals.

Column Names in Expressions - UltraLite [page 266]
An identifier in an expression.

IF Expressions - UltraLite [page 267]
Sets a search condition to return a specific subset of data.

CASE Expressions - UltraLite [page 268]
Provides conditional SQL expressions.

Aggregate Expressions - UltraLite [page 269]
Performs an aggregate computation that the UltraLite runtime does not provide.

Subqueries in Expressions - UltraLite [page 270]
A SELECT statement that is nested inside another SELECT statement.

Input Parameters [page 271]
Acts as placeholders to allow end-users to supply values to a prepared statement. These user-supplied
values are then used to execute the statement.

Related Information

SQL Data Types [page 288]
SQL Functions [page 323]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 265

1.13.1.9.1 Constants in Expressions

In UltraLite, constants are numbers or string literals.

 Syntax

' constant '

Usage

String constants are enclosed in single quotes (').

An apostrophe is represented inside a string by two single quotes in a row ('').

Example

To use a possessive phrase, type the string literal as follows:

'John''s database'

Related Information

Escape Sequences

1.13.1.9.2 Column Names in Expressions - UltraLite

An identifier in an expression.

 Syntax

correlation-name.column-name

Remarks

A column name is preceded by an optional correlation name, which typically is the name of a table.

266 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817a3ded6ce21014bd99f3e554573180.html

If a column name is a keyword or has characters other than letters, digits and underscore, it must be
surrounded by quotation marks (" "). For example, the following are valid column names:

Employees.Name address
"date hired" "salary"."date paid"

Related Information

FROM Clause [UltraLite] [page 550]

1.13.1.9.3 IF Expressions - UltraLite

Sets a search condition to return a specific subset of data.

Syntax

IF search-condition THEN expression1 [ELSE expression2] ENDIF

Remarks

For compatibility reasons, this expression can end in either ENDIF or END IF.

This expression returns the following:

• If search-condition is TRUE, the IF expression returns expression1.
• If search-condition is FALSE and an ELSE clause is specified, the IF expression returns expression2.
• If search-condition is FALSE, and there is no expression2, the IF expression returns NULL.
• If search-condition is UNKNOWN, the IF expression returns NULL.

Related Information

NULL Special Value
Search Conditions

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 267

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/8171f2c56ce21014a5d6cc9b01cd3a05.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817807dc6ce210148b41ac4bdd9dabc1.html

1.13.1.9.4 CASE Expressions - UltraLite

Provides conditional SQL expressions.

Syntax 1

CASE expression1 WHEN expression2 THEN expression3, ... [ELSE expression4] END

SELECT ID, (CASE name
 WHEN 'Tee Shirt' THEN 'Shirt'
 WHEN 'Sweatshirt' THEN 'Shirt'
 WHEN 'Baseball Cap' THEN 'Hat'
 ELSE 'Unknown'
 END) as Type FROM Product

Syntax 2

CASE WHEN search-condition THEN expression1, ... [ELSE expression2] END

Remarks

For compatibility reasons, you can end this expression with either ENDCASE or END CASE.

You can use case expressions anywhere you can use regular expression.

Syntax 1

If the expression following the CASE keyword is equal to the expression following the first WHEN keyword,
then the expression following the associated THEN keyword is returned. Otherwise the expression
following the ELSE keyword is returned, if specified.

For example, the following code uses a case expression as the second clause in a SELECT statement. It
selects a row from the Product table where the name column has a value of Sweatshirt.
Syntax 2

If the search-condition following the first WHEN keyword is TRUE, the expression following the associate
THEN keyword is returned. Otherwise the expression following the ELSE clause is returned, if specified.

268 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

NULLIF function for abbreviated CASE expressions

The NULLIF function provides a way to write some CASE statements in short form. The syntax for NULLIF
is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression equals the second expression,
NULLIF returns NULL. If the first expression does not equal the second expression, NULLIF returns the first
expression.

Example

The following statement uses a CASE expression as the third clause of a SELECT statement to associate a
string with a search condition. If the name column's value is Tee Shirt, this query returns Sale. And if the
name column's value is not Tee Shirt and the quantity is greater than fifty, it returns Big Sale. However, for
all others, the query then returns Regular price.

SELECT ID, name, (CASE
 WHEN name='Tee Shirt' THEN 'Sale'
 WHEN quantity >= 50 THEN 'Big Sale'
 ELSE 'Regular price'
 END) as Type FROM Product

1.13.1.9.5 Aggregate Expressions - UltraLite

Performs an aggregate computation that the UltraLite runtime does not provide.

 Syntax

SUM(expression)

Remarks

An aggregate expression calculates a single value from a range of rows.

An aggregate expression is one in which either an aggregate function is used, or in which one or more of the
operands is an aggregate expression.

When a SELECT statement does not have a GROUP BY clause, the expressions in the SELECT list must either
contain all aggregate expressions or no aggregate expressions. When a SELECT statement does have a GROUP
BY clause, any non-aggregate expression in the SELECT list must appear in the GROUP BY list.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 269

Example

For example, the following query computes the total payroll for employees in the employee table. In this query,
SUM(salary) is an aggregate expression:

SELECT SUM(salary) FROM employee

1.13.1.9.6 Subqueries in Expressions - UltraLite

A SELECT statement that is nested inside another SELECT statement.

 Syntax
A subquery is structured like a regular query.

Remarks

In UltraLite, you can only use subquery references in the following situations:

• As a table expression in the FROM clause. This form of table expression (also called derived tables) must
have a derived table name and column names in which values in the SELECT list are fetched.

• To supply values for the EXISTS, ANY, ALL, and IN search conditions.

You can write subqueries about names that are specified before (to the left of) the subquery, sometimes known
as outer references to the left. However, you cannot have references to items within subqueries (sometimes
known as inner references).

Example

The following subquery is used to list all product IDs for items that are low in stock (that is, less than 20 items).

FROM SalesOrderItems (SELECT ID
 FROM Products WHERE Quantity < 20)

Related Information

Use of Subqueries
SELECT Statement [UltraLite] [page 558]

270 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/8192dc7f6ce21014b238b58d627af416.html

Search Conditions in UltraLite [page 272]

1.13.1.9.7 Input Parameters

Acts as placeholders to allow end-users to supply values to a prepared statement. These user-supplied values
are then used to execute the statement.

 Syntax

{ ? | :name [: indicator-name] }

Remarks

Use the placeholder character of ? or the named form in expressions. You can use input parameters whenever
you can use a column name or constant.

The precise mechanism used to supply the values to the statement are dependent upon the API you use to
create your UltraLite client.

Using the named form

The named form of an input parameter has special meaning. In general, name is always used to specify
multiple locations where an actual value is supplied.

For Embedded SQL applications only, the indicator-name supplies the variable into which the null
indicator is placed. If you use the named form with the other components, indicator-name is ignored.
Deducing data types

The data type of the input parameter is deduced when the statement is prepared from one of the following
patterns:

• CAST (? AS type)
In this case, type is a database type specification such as CHAR(32).

• Exactly one operand of a binary operator is an input parameter. The type is deduced to be the type of
the operand.

If the type cannot be deduced, UltraLite generates an error. For example:

• -?: the operand is unary.
• ? + ?: both are input parameters.

Example

The following Embedded SQL statement has two input parameters:

INSERT INTO MyTable VALUES (:v1, :v2, :v1)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 271

The first instance of v1 supplies its value to both the v2 and v1 locations in the statement.

Related Information

Host Variables [page 683]
Prepared Statements
Data Modification in UltraLite C++ Using INSERT, UPDATE, and DELETE [page 650]
Data Modification in UltraLite.NET Using INSERT, UPDATE, and DELETE [page 605]

1.13.1.10 Search Conditions in UltraLite

A search condition is the criteria for a WHERE clause, a HAVING clause, an ON phrase in a join, or an IF
expression. A search condition is also called a predicate.

 Syntax

search-condition: expression comparison-operator expression | expression IS [NOT] NULL | expression [NOT] BETWEEN expression AND expression | expression [NOT] IN (expression, ...) | expression [NOT] IN (subquery) | expression [NOT] { ANY | ALL } (subquery) | expression [NOT] EXISTS (subquery) | expression [NOT] LIKE (pattern) | NOT search-condition | search-condition AND search-condition | search-condition OR search-condition | (search-condition IS [NOT] {TRUE | FALSE | UNKNOWN }

comparison-operator : = | > | < | >= | <= | <> | != | !< | !>

Parameters

The different types of search conditions supported by UltraLite include:

• ALL condition

272 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/3be13cfb6c5f10148ddba4385f67c530.html

• ANY condition
• BETWEEN condition
• EXISTS condition
• IN condition
• LIKE condition

Remarks

In UltraLite, search conditions can appear in the:

• WHERE clause
• HAVING clause
• ON phrase
• SQL queries

Search conditions can be used to choose a subset of the rows from a table in a FROM clause in a SELECT
statement, or in expressions such as an IF or CASE to select specific values. In UltraLite, every condition
evaluates as one of three states: TRUE, FALSE, or UNKNOWN. When combined, these states are referred to as
three-valued logic. The result of a comparison is UNKNOWN if either value being compared is the NULL value.
Search conditions are satisfied only if the result of the condition is TRUE.

In this section:

Comparison Operators - UltraLite [page 274]
Any operator that allows two or more expressions to be compared with in a search condition.

Logical Operators - UltraLite [page 275]
Logical operators can be used as search conditions (for example, AND, OR, and NOT), or test the truth
or NULL value of an IS expressions.

ALL Search Condition - UltraLite [page 277]
Use the ALL condition with comparison operators to compare a single value to the data values
produced by the subquery.

ANY Search Condition - UltraLite [page 278]
Use the ANY condition with comparison operators to compare a single value to the column of data
values produced by the subquery.

BETWEEN Search Condition - UltraLite [page 279]
Specifies an inclusive range, in which the lower value and the upper value and the values they delimit
are searched for.

EXISTS Search Condition - UltraLite [page 280]
Checks whether a subquery produces any rows of query results

IN Search Condition - UltraLite [page 280]
Checks membership by searching a value from the main query with another value in the subquery.

LIKE Search Condition - UltraLite [page 281]
Checks whether a pattern is found in an expression.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 273

Related Information

SQL Data Types [page 288]
SQL Functions [page 323]
Queries
Pattern Matching Character Strings in the WHERE Clause
Three-valued Logic
Subqueries in Expressions - UltraLite [page 270]

1.13.1.10.1 Comparison Operators - UltraLite

Any operator that allows two or more expressions to be compared with in a search condition.

 Syntax

expression operator expression

Parameters

Operator Interpretation

= equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

<> not equal to

!> not greater than

!< not less than

Remarks

Comparing dates

274 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/819ab1a06ce21014b0e58e218a806bd9.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/819a71d36ce210149e33d773557b6c15.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/816b62a26ce210148145ec872c8d8927.html

In comparing dates, < means earlier and > means later.
Comparing LONG VARCHAR or LONG BINARY values

UltraLite does not support comparisons using LONG VARCHAR or LONG BINARY values.
Case-sensitivity

In UltraLite, comparisons are carried out with the same attention to case as the database on which they are
operating. By default, UltraLite databases are created as case insensitive.
NOT operator

The NOT operator negates an expression.

Example

Either of the following two queries will find all Tee shirts and baseball caps that cost $10 or less. However, note
the difference in position between the negative logical operator (NOT) and the negative comparison operator (!
>).

SELECT ID, Name, Quantity FROM Products
WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap') AND NOT UnitPrice > 10

SELECT ID, Name, Quantity FROM Products
WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap') AND UnitPrice !> 10

Related Information

Logical Operators - UltraLite [page 275]

1.13.1.10.2 Logical Operators - UltraLite

Logical operators can be used as search conditions (for example, AND, OR, and NOT), or test the truth or NULL
value of an IS expressions.

Syntax 1

condition1 logical-operator condition2

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 275

Syntax 2

NOT condition

Syntax 3

expression IS [NOT] { truth-value | NULL }

Remarks

Search conditions can be used to choose a subset of the rows from a table in a FROM clause in a SELECT
statement, or in expressions such as an IF or CASE to select specific values. In UltraLite, every condition
evaluates as one of three states: TRUE, FALSE, or UNKNOWN. When combined, these states are referred to as
three-valued logic. The result of a comparison is UNKNOWN if either value being compared is the NULL value.
Search conditions are satisfied only if the result of the condition is TRUE.

AND

The combined condition is TRUE if both conditions are TRUE, FALSE if either condition is FALSE, and
UNKNOWN otherwise.

condition1 AND condition2

OR

The combined condition is TRUE if either condition is TRUE, FALSE if both conditions are FALSE, and
UNKNOWN otherwise.
NOT

The NOT condition is TRUE if condition is FALSE, FALSE if condition is TRUE, and UNKNOWN if
condition is UNKNOWN.
IS

The condition is TRUE if the expression evaluates to the supplied truth-value, which must be one of
TRUE, FALSE, or UNKNOWN. Otherwise, the value is FALSE.

Example

The IS NULL condition is satisfied if the column contains a NULL value. If you use the IS NOT NULL operator,
the condition is satisfied when the column contains a value that is not NULL. This example shows an IS NULL
condition: WHERE paid_date IS NULL.

276 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

Three-valued Logic
Comparison Operators - UltraLite [page 274]

1.13.1.10.3 ALL Search Condition - UltraLite

Use the ALL condition with comparison operators to compare a single value to the data values produced by the
subquery.

 Syntax

expression compare [NOT] ALL (subquery)

Parameters

compare: = | > | < | >= | <= | <> | != | !< | !>

Remarks

UltraLite uses the specified comparison operator to compare the test value to each data value in the result set.
If all the comparisons yield TRUE results, the ALL test returns TRUE.

Example

Find the order and customer IDs of those orders placed after all products of order #2001 were shipped.

SELECT ID, CustomerID FROM SalesOrders
WHERE OrderDate > ALL (
 SELECT ShipDate
 FROM SalesOrderItems WHERE ID=2001)

Related Information

Subqueries and the ALL Test

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 277

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/816b62a26ce210148145ec872c8d8927.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/8181b2a06ce21014982efaa68bd2c770.html

Comparison Operators - UltraLite [page 274]

1.13.1.10.4 ANY Search Condition - UltraLite

Use the ANY condition with comparison operators to compare a single value to the column of data values
produced by the subquery.

Syntax 1

expression compare [NOT] ANY (subquery)

Syntax 2

expression = ANY (subquery)

Parameters

compare: = | > | < | >= | <= | <> | != | !< | !>

Remarks

UltraLite uses the specified comparison operator to compare the test value to each data value in the column. If
any of the comparisons yields a TRUE result, the ANY test returns TRUE.

Syntax 1

is TRUE if expression is equal to any of the values in the result of the subquery, and FALSE if the
expression is not NULL and does not equal any of the values returned by the subquery. The ANY condition
is UNKNOWN if expression is the NULL value, unless the result of the subquery has no rows, in which
case the condition is always FALSE.

278 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

Find the order and customer IDs of those orders placed after the first product of the order #2005 was shipped.

SELECT ID, CustomerID FROM SalesOrders
WHERE OrderDate > ANY (
 SELECT ShipDate
 FROM SalesOrderItems WHERE ID=2005)

Related Information

Subqueries and the ANY Test
Comparison Operators - UltraLite [page 274]

1.13.1.10.5 BETWEEN Search Condition - UltraLite

Specifies an inclusive range, in which the lower value and the upper value and the values they delimit are
searched for.

 Syntax

expression [NOT] BETWEEN start-expression AND end-expression

Remarks

The BETWEEN condition can evaluate to TRUE, FALSE, or UNKNOWN. Without the NOT keyword, the condition
evaluates as TRUE if expression is between start-expression and end-expression. The NOT keyword
reverses the meaning of the condition, but leaves UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two inequalities:

[NOT] (expression >= start-expression AND expression <= end-expression)

Example

List all the products less expensive than $10 or more expensive than $15.

SELECT Name, UnitPrice

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 279

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/8181f7ac6ce2101485528ccd16f6f23a.html

 FROM Products WHERE UnitPrice NOT BETWEEN 10 AND 15

1.13.1.10.6 EXISTS Search Condition - UltraLite

Checks whether a subquery produces any rows of query results

 Syntax

 [NOT] EXISTS (subquery)

Remarks

The EXISTS condition is TRUE if the subquery result contains at least one row, and FALSE if the subquery result
does not contain any rows. The EXISTS condition cannot be UNKNOWN.

You can reverse the logic of the EXISTS condition by using the NOT EXISTS form. In this case, the test returns
TRUE if the subquery produces no rows, and FALSE otherwise.

Example

List the customers who placed orders after July 13, 2001.

SELECT GivenName, Surname FROM Customers
WHERE EXISTS (
 SELECT *
 FROM SalesOrders
 WHERE (OrderDate > '2001-07-13') AND (Customers.ID = SalesOrders.CustomerID))

1.13.1.10.7 IN Search Condition - UltraLite

Checks membership by searching a value from the main query with another value in the subquery.

 Syntax

expression [NOT] IN { (subquery) | (value-expr, ...) }

280 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

value-expr are expressions that take on a single value, which may be a string, a number, a date, or any other
SQL data type.

Remarks

An IN condition, without the NOT keyword, evaluates according to the following rules:

• TRUE if expression is not NULL and equals at least one of the values.
• UNKNOWN if expression is NULL and the values list is not empty, or if at least one of the values is NULL

and expression does not equal any of the other values.
• FALSE if expression is NULL and subquery returns no values; or if expression is not NULL, none of the

values are NULL, and expression does not equal any of the values.

You can reverse the logic of the IN condition by using the NOT IN form.

The following search condition expression IN (values) is identical to the search condition expression =
ANY (values). The search condition expression NOT IN (values) is identical to the search condition
expression <> ALL (values).

Example

Select the company name and state for customers who live in the following Canadian provinces: Ontario,
Manitoba, and Quebec.

SELECT CompanyName , Province FROM Customers WHERE State IN('ON', 'MB', 'PQ')

1.13.1.10.8 LIKE Search Condition - UltraLite

Checks whether a pattern is found in an expression.

 Syntax
The syntax for the LIKE search condition is as follows:

expression [NOT] LIKE pattern

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 281

Parameters

expression

The string to be searched.
pattern

The pattern to search for within expression.

Remarks

The LIKE search condition attempts to match expression with pattern and evaluates to TRUE, FALSE, or
UNKNOWN. The search condition evaluates to TRUE if expression matches pattern (assuming NOT was
not specified). If either expression or pattern is the NULL value, the search condition evaluates to
UNKNOWN.

The NOT keyword reverses the meaning of the search condition, but leaves UNKNOWN unchanged.

expression and pattern are interpreted as CHAR strings. pattern can contain any number of the
supported wildcards from the following table:

Wildcard Matches

_ (underscore) Any one character. For example, a_ matches ab and ac, but
not a.

% (percent) Any string of zero or more characters. For example, bl%
matches bl and bla.

[] Any single character in the specified range or set. For exam
ple, T[oi]m matches Tom or Tim.

[^] Any single character not in the specified range or set. For ex
ample, M[^c] matches Mb and Md, but not Mc.

Different Ways to Use the LIKE Search Condition

To search for Example Additional information

One of a set of characters LIKE 'sm[iy]th' A set of characters to look for is speci
fied by listing the characters inside
square brackets. In this example, the
search condition matches smith and
smyth.

282 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

To search for Example Additional information

One of a range of characters LIKE '[a-r]ough' A range of characters to look for is
specified by giving the ends of the
range inside square brackets, sepa
rated by a hyphen. In this example, the
search condition matches bough and
rough, but not tough.

The range of characters [a-z] is inter
preted as "greater than or equal to a,
and less than or equal to z", where the
greater than and less than operations
are carried out within the collation of
the database.

The lower end of the range must pre
cede the higher end of the range. For
example, [z-a] does not match any
thing because no character matches
the [z-a] range.

Ranges and sets combined ... LIKE '[a-rt]ough' You can combine ranges and sets within
square brackets. In this example, ...
LIKE '[a-rt]ough' matches
bough, rough, and tough.

The pattern [a-rt] is interpreted as ex
actly one character that is either in the
range a to r inclusive, or is t.

One character not in a range ... LIKE '[^a-r]ough' The caret character (^) is used to spec
ify a range of characters that is ex
cluded from a search. In this example,
LIKE '[^a-r]ough' matches the
string tough, but not the strings rough
or bough.

The caret negates the rest of the con
tents of the brackets. For example, the
bracket [^a-rt] is interpreted as exactly
one character that is not in the range a
to r inclusive, and is not t.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 283

To search for Example Additional information

Search patterns with trailing blanks '90 ', '90[]' and '90_' When your search pattern includes
trailing blanks, the database server
matches the pattern only to values that
contain blanks. It does not blank pad
strings. For example, the patterns '90 ',
'90[]', and '90_' match the expression
'90 ', but do not match the expression
'90', even if the value being tested is in
a CHAR or VARCHAR column that is
three or more characters in width.

Special Cases of Ranges and Sets

Any single character in square brackets means that character. For example, [a] matches just the character a.
[^] matches just the caret character, [%] matches just the percent character (the percent character does not
act as a wildcard in this context), and [_] matches just the underscore character. Also, [[] matches just the
character [.

• The pattern [a-] matches either of the characters a or -.
• The pattern [] is never matched and always returns no rows.
• The patterns [or [abp-q return syntax errors because they are missing the closing bracket.
• You cannot use wildcards inside square brackets. The pattern [a%b] finds one of a, %, or b.
• You cannot use the caret character to negate ranges except as the first character in the bracket. The

pattern [a^b] finds one of a, ^, or b.

Case Sensitivity and How Comparisons are Performed

If the database collation is case sensitive, the search condition is also case sensitive. To perform a case
insensitive search with a case sensitive collation, you must include upper and lower characters. For example,
the following search condition evaluates to true for the strings Bough, rough, and TOUGH:

LIKE '[a-zA-Z][oO][uU][gG][hH]'

Example

The following search condition returns TRUE for any row where column-name starts with the letter a and has
the letter b as its second last character:

SELECT * FROM table-name WHERE column-name LIKE 'a%b_'

284 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.1.11 Operators in UltraLite

Operators are used to compute values, which may in turn be used as operands in a higher-level expression.

UltraLite SQL supports the following types of operators:

• Comparison operators evaluate and return a result using one (unary) or two (binary) comparison
operands. Comparisons result in the usual three logical values: true, false, and unknown.

• Arithmetic operators evaluate and return a result set for all floating-point, decimal, and integer numbers.
• String operators concatenate two string values together. For example, "my" + "string" returns the string

"my string".
• Bitwise operators evaluate and turn specific bits on or off within the internal representation of an integer.
• Logical operators evaluate search conditions. Logical evaluations result in the usual three logical values:

true, false, and unknown.

The normal precedence of operations applies.

In this section:

Arithmetic Operators - UltraLite [page 285]
Arithmetic operators allow you to perform calculations.

String Operators - UltraLite [page 286]
String operators allow you to concatenate strings, except for LONGVARCHAR and LONGBINARY data
types.

Bitwise Operators - UltraLite [page 287]
Bitwise operators perform bit manipulations between two expressions. The following operators can be
used on integer data types in UltraLite.

Operator Precedence - UltraLite [page 287]
The order of operators in an expression is significant because it impacts the order in which the sub-
expressions are evaluated.

Related Information

Comparison Operators - UltraLite [page 274]
Logical Operators - UltraLite [page 275]

1.13.1.11.1 Arithmetic Operators - UltraLite

Arithmetic operators allow you to perform calculations.

expression + expression

Addition. If either expression is NULL, the result is NULL.
expression - expression

Subtraction. If either expression is NULL, the result is NULL.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 285

- expression

Negation. If the expression is NULL, the result is NULL.
expression * expression

Multiplication. If either expression is NULL, the result is NULL.
expression / expression

Division. If either expression is NULL or if the second expression is 0, the result is NULL.
expression % expression

Modulo finds the integer remainder after a division involving two whole numbers. For example, 21 % 11 = 10
because 21 divided by 11 equals 1 with a remainder of 10. If either expression is NULL, the result is NULL.

Related Information

Computed Values in the SELECT List

1.13.1.11.2 String Operators - UltraLite

String operators allow you to concatenate strings, except for LONGVARCHAR and LONGBINARY data types.

expression || expression

String concatenation (two vertical bars). If either string is NULL, it is treated as the empty string for
concatenation.
expression + expression

Alternative string concatenation. When using the + concatenation operator, you must ensure the operands
are explicitly set to character data types rather than relying on implicit data conversion.

For example, the following query returns the integer value 579:

SELECT 123 + 456

However, the following query returns the character string 123456:

SELECT '123' + '456'

You can use the CAST or CONVERT functions to explicitly convert data types.

286 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/819a42926ce21014a2b2ba2091ce9a18.html

1.13.1.11.3 Bitwise Operators - UltraLite

Bitwise operators perform bit manipulations between two expressions. The following operators can be used on
integer data types in UltraLite.

Operator Description

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ bitwise NOT

The bitwise operators &, |, and ~ are not interchangeable with the logical operators AND, OR, and NOT. The
bitwise operators operate on integer values using the bit representation of the values.

Example

The following statement selects rows in which the specified bits are set.

SELECT * FROM tableA WHERE (options & 0x0101) <> 0

1.13.1.11.4 Operator Precedence - UltraLite

The order of operators in an expression is significant because it impacts the order in which the sub-expressions
are evaluated.

Expressions in parentheses are evaluated first, then multiplication and division before addition and subtraction.
String concatenation happens after addition and subtraction. The operators at the top of the list are evaluated
before those at the bottom of the list.

 Note
Make the order of operation explicit. For example, use parentheses, rather than relying on an operator
precedence, when specifying more than one operator in an expression.

1. names, functions, constants, IF expressions, CASE expressions
2. ()
3. unary operators (operators that require a single operand): +, -
4. ~
5. &, | , ^
6. *, /, %

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 287

7. +, -
8. ||
9. comparisons: >, <, <>, !=, <=, >=, [NOT] BETWEEN, [NOT] IN, [NOT] LIKE
10. comparisons: IS [NOT] TRUE, FALSE, UNKNOWN
11. NOT
12. AND
13. OR

1.13.1.12 Variables in UltraLite

You cannot use SQL variables (including global variables) in UltraLite applications.

1.13.2 SQL Data Types

UltraLite supports a subset of the data types available in SQL Anywhere.

In this section:

Character Data Types [page 288]
Character data types store strings of letters, numbers, and other symbols.

Numeric Data Types [page 294]
Numeric data types store numerical data.

Date and Time Data Types [page 306]
Date values can be output in full century format, and the internal storage of dates always explicitly
includes the century portion of a year value.

Binary Data Types [page 315]
Binary data types store binary data, including images and other types of information that are not
interpreted by the database.

1.13.2.1 Character Data Types

Character data types store strings of letters, numbers, and other symbols.

There are classes of character data types and some domains defined using those types:

CHAR, VARCHAR, LONG VARCHAR

Character data stored in a single- or multibyte character set, often chosen to correspond most closely to
the primary language or languages stored in the database.
NCHAR, NVARCHAR, LONG NVARCHAR

Character data stored in the UTF-8 Unicode encoding. All Unicode code points can be stored using these
types, regardless of the primary language or languages stored in the database.

288 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

TEXT, UNIQUEIDENTIFIERSTR, XML

Domains based on other character data types.

UltraLite: UltraLite supports the CHAR, VARCHAR, and LONG VARCHAR data types, which are stored in a
single- or multi- byte character set, and are often chosen to correspond most closely to the primary language
or languages stored in the database.

Storage

All character data values are stored in the same manner. By default, values up to 128 bytes are stored in a
single piece. Values longer than 128 bytes are stored with a 4-byte prefix kept locally on the database page and
the full value stored in one or more other database pages. These default sizes are controlled by the INLINE and
PREFIX clauses of the CREATE TABLE statement.

UltraLite: Fixed character types, such as VARCHAR, are embedded in the row whereas long character types,
such as LONG VARCHAR, are stored separately. Consider your page size when creating a table with many
columns of large fixed types. A full row must fit on a page, and fixed character column types are stored with a
row. For example, a database created with a page size of 1000 cannot hold character values larger than 1000
because they cannot fit on the page.

In this section:

CHAR Data Type [page 289]
The CHAR data type stores character data, up to 32767 bytes.

LONG VARCHAR Data Type [page 291]
The LONG VARCHAR data type stores character data of arbitrary length.

VARCHAR Data Type [page 292]
The VARCHAR data type stores character data, up to 32767 bytes.

Related Information

CREATE TABLE Statement [UltraLite] [page 537]

1.13.2.1.1 CHAR Data Type
The CHAR data type stores character data, up to 32767 bytes.

 Syntax

CHAR [(max-length [CHAR | CHARACTER])]

UltraLite:

CHAR [(max-length)]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 289

Parameters

max-length

The maximum length of the string. If byte-length semantics are used (CHAR or CHARACTER is not
specified as part of the length), then the length is in bytes, and the length must be in the range 1 to 32767. If
the length is not specified, then it is 1.

If character-length semantics are used (CHAR or CHARACTER is specified as part of the length), then the
length is in characters, and you must specify max-length. max-length can be a maximum of 32767
characters.

Remarks

Multibyte characters can be stored as CHAR, but the declared length refers to bytes, not characters, unless
character-length semantics are used.

CHAR can also be specified as CHARACTER. Regardless of which syntax is used, the data type is described as
CHAR.

CHAR is semantically equivalent to VARCHAR, although they are different types. CHAR is a variable-length
type. In other relational database management systems, CHAR is a fixed-length type, and data is padded with
blanks to max-length bytes of storage. SQL Anywhere does not blank-pad stored character data.

How CHAR columns are described depends on the client interface, the character sets used, and if character-
length semantics are used. For example, in Embedded SQL the described length is the maximum number of
bytes in the client character set. If the described length would be more than 32767 bytes, the column is
described as type DT_LONGVARCHAR. The following table shows some Embedded SQL examples and the
results returned when a DESCRIBE is performed:

Type being described Database character set Client character set Result of DESCRIBE

CHAR(10) Windows-1252 Windows-1252 DT_FIXCHAR length 10

CHAR(10) UTF-8 UTF-8 DT_FIXCHAR length 10

CHAR(10) Windows-1252 UTF-8 DT_FIXCHAR length 30

CHAR(20000) Windows-31J UTF-8 DT_LONGVARCHAR

CHAR(10 CHAR) Windows-1252 Windows-1252 DT_FIXCHAR length 10

CHAR(10 CHAR) UTF-8 UTF-8 DT_FIXCHAR length 40

For ODBC, CHAR is described as either SQL_CHAR or SQL_VARCHAR depending on the
odbc_distinguish_char_and_varchar option.

UltraLite: CHAR is a domain, implemented as VARCHAR.

Standards

ANSI/ISO SQL Standard

290 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Compatible with the ANSI/ISO SQL Standard. In the standard, character-length semantics are the default,
whereas in the software, byte-length semantics are the default. There are minor inconsistencies with the
SQL standard due to case-insensitive collation support and the software's support for blank-padding.

The ANSI/ISO SQL Standard supports explicit character- or byte-length semantics as SQL Language
Feature T061.

Related Information

VARCHAR Data Type [page 292]

1.13.2.1.2 LONG VARCHAR Data Type

The LONG VARCHAR data type stores character data of arbitrary length.

 Syntax

LONG VARCHAR

Remarks

The maximum size in bytes is 2 GB minus 1 (231 - 1) or 2 147 483 647.

Multibyte characters can be stored as LONG VARCHAR, but the length is in bytes, not characters.

UltraLite:

• You can cast strings to/from LONG VARCHAR data.
• LONG VARCHAR data cannot be concatenated.
• LONG VARCHAR columns can be included in the result set of a SELECT query.
• Indexes cannot be created on a LONG VARCHAR type.
• A LONG VARCHAR type can only be used in the LENGTH and CAST functions.
• Conditions in SQL statements, such as in the WHERE clause, cannot operate on LONG VARCHAR columns.
• Only INSERT, UPDATE, and DELETE operations are allowed on LONG VARCHAR column.

Standards

ANSI/ISO SQL Standard

Large object support is SQL Language Feature T041.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 291

Related Information

CHAR Data Type [page 289]
VARCHAR Data Type [page 292]
LENGTH Function [String] [page 417]
CAST Function [Data Type Conversion] [page 358]

1.13.2.1.3 VARCHAR Data Type

The VARCHAR data type stores character data, up to 32767 bytes.

 Syntax

VARCHAR [(max-length [CHAR | CHARACTER])]

UltraLite:

VARCHAR [(max-length)]

Parameters

max-length

The maximum length of the string. This default value is 1.

If byte-length semantics are used (CHAR or CHARACTER is not specified as part of the length), then the
length is in bytes, and the length must be in the range of 1 to 32767.

If character-length semantics are used (CHAR or CHARACTER is specified as part of the length), then the
length is in characters, and you must specify max-length. max-length can be a maximum of 32767
characters.

UltraLite: UltraLite databases only support byte-length semantics. A non-English character can require up
to 3 bytes of storage.

Remarks

Multibyte characters can be stored as VARCHAR, but the declared length refers to bytes, not characters, unless
character-length semantics are used.

UltraLite: UltraLite compacts data as much as possible. When a VARCHAR value does not require the number
of bytes specified by max-length, then only the number of bytes needed to store the value is used. When
evaluating expressions, the maximum length for a temporary character value is 2048 bytes.

292 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

 Caution
UltraLite:

Although it is possible to create a table with a VARCHAR column where the max-length exceeds the page
size, an error occurs if you insert a value with a length exceeding that page size.

VARCHAR can also be specified as CHAR VARYING or CHARACTER VARYING. Regardless of which syntax is
used, the data type is described as VARCHAR.

VARCHAR is semantically equivalent to CHAR, although they are different types. In SQL Anywhere, CHAR is a
variable-length type. In other relational database management systems, CHAR is a fixed-length type, and data
is padded with blanks to max-length bytes of storage. SQL Anywhere does not blank-pad stored character
data.

How VARCHAR columns are described depends on the client interface, the character sets used, and if
character-length semantics are used. For example, in Embedded SQL the described length is the maximum
number of bytes in the client character set. If the described length would be more than 32767 bytes, the
column is described as type DT_LONGVARCHAR. The following table shows some Embedded SQL examples
and the results returned when a DESCRIBE is performed:

Type being described Database character set Client character set Result of DESCRIBE

VARCHAR(10) Windows-1252 Windows-1252 DT_VARCHAR length 10

VARCHAR(10) UTF-8 UTF-8 DT_VARCHAR length 10

VARCHAR(10) Windows-1252 UTF-8 DT_VARCHAR length 30

VARCHAR(20000) Windows-31J UTF-8 DT_LONGVARCHAR

VARCHAR(10 CHAR) Windows-1252 Windows-1252 DT_VARCHAR length 10

VARCHAR(10 CHAR) UTF-8 UTF-8 DT_VARCHAR length 40

For ODBC, VARCHAR is described as SQL_VARCHAR.

Standards

ANSI/ISO SQL Standard

Compatible with the ANSI/ISO SQL Standard. In the standard, character-length semantics are the default,
whereas in the software, byte-length semantics are the default. There are minor inconsistencies with the
SQL standard due to case-insensitive collation support and support for blank-padding by the software.

The ANSI/ISO SQL Standard supports explicit character- or byte-length semantics as SQL Language
Feature T061.

Related Information

CHAR Data Type [page 289]
LONG VARCHAR Data Type [page 291]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 293

1.13.2.2 Numeric Data Types

Numeric data types store numerical data.

The NUMERIC and DECIMAL data types, and the various INTEGER data types, are sometimes called exact
numeric data types, in contrast to the approximate numeric data types FLOAT, DOUBLE, and REAL.

The exact numeric data types are those for which precision and scale values can be specified, while
approximate numeric data types are stored in a predefined manner. Only exact numeric data is guaranteed
accurate to the least significant digit specified after an arithmetic operation.

Data type lengths and precision of less than one are not allowed.

Compatibility

Be careful when using default precision and scale settings for NUMERIC and DECIMAL data types because
these settings could be different in other database solutions. The default precision is 30 and the default scale is
6.

The FLOAT (p) data type is a synonym for REAL or DOUBLE, depending on the value of p. For SQL Anywhere,
the cutoff is platform-dependent, but on all platforms the cutoff value is greater than 15.

Only the NUMERIC data type with scale = 0 can be used for the Transact-SQL identity column. Avoid default
precision and scale settings for NUMERIC and DECIMAL data types, because these are different between SQL
Anywhere and Adaptive Server Enterprise. In SQL Anywhere, the default precision is 30 and the default scale is
6. In Adaptive Server Enterprise, the default precision is 18 and the default scale is 0.

In this section:

BIGINT Data Type [page 295]
The BIGINT data type stores BIGINTs, which are integers requiring 8 bytes of storage.

BIT Data Type [page 296]
The BIT data type stores a bit (0 or 1).

DECIMAL Data Type [page 297]
The DECIMAL data type is a decimal number with precision total digits and with scale digits after
the decimal point.

DOUBLE Data Type [page 298]
The DOUBLE data type stores double-precision floating-point numbers.

FLOAT Data Type [page 299]
The FLOAT data type stores a floating-point number, which can be single or double precision.

INTEGER Data Type [page 300]
The INTEGER data type stores integers that require 4 bytes of storage.

NUMERIC Data Type [page 301]
The NUMERIC data type stores decimal numbers with precision total digits and with scale digits
after the decimal point.

REAL Data Type [page 303]
The REAL data type stores single-precision floating-point numbers stored in 4 bytes.

294 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

SMALLINT Data Type [page 304]
The SMALLINT data type stores integers that require 2 bytes of storage.

TINYINT Data Type [page 305]
The TINYINT data type stores unsigned integers requiring 1 byte of storage.

1.13.2.2.1 BIGINT Data Type

The BIGINT data type stores BIGINTs, which are integers requiring 8 bytes of storage.

 Syntax

[UNSIGNED] BIGINT

Remarks

The BIGINT data type is an exact numeric data type: its accuracy is preserved after arithmetic operations.

A BIGINT value requires 8 bytes of storage.

The range for BIGINT values is -263 to 263 - 1, or -9223372036854775808 to 9223372036854775807.

The range for UNSIGNED BIGINT values is 0 to 264 - 1, or 0 to 18446744073709551615.

By default, the data type is signed.

When converting a string to a BIGINT, leading and trailing spaces are removed. If the leading character is +, it is
ignored. If the leading character is -, the remaining digits are interpreted as a negative number. Leading 0
characters are skipped, and the remaining characters are converted to an integer value. An error is returned if
the value is out of the valid range for the destination data type, if the string contains illegal characters, or if the
string cannot be decoded as an integer value.

Standards

ANSI/ISO SQL Standard

SQL Language Feature T071.
MySQL

The UNSIGNED keyword may follow BIGINT.

Related Information

Numeric Functions [page 332]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 295

Aggregate Functions [page 324]
BIT Data Type [page 296]
VARCHAR Data Type [page 292]
SMALLINT Data Type [page 304]
TINYINT Data Type [page 305]

1.13.2.2.2 BIT Data Type

The BIT data type stores a bit (0 or 1).

 Syntax

BIT

Remarks

BIT is an integer type that can store the values 0 or 1.

By default, the BIT data type does not allow NULL.

When converting a string to a BIT, leading and trailing spaces are removed. If the leading character is +, it is
ignored. If the leading character is -, the remaining digits are interpreted as a negative number. Leading 0
characters are skipped, and the remaining characters are converted to an integer value. An error is returned if
the value is not 0 or 1.

A BIT value requires 1 byte of storage.

UltraLite: A BIT value requires 1 bit of storage.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Related Information

Numeric Functions [page 332]
Aggregate Functions [page 324]
BIGINT Data Type [page 295]
VARCHAR Data Type [page 292]

296 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

SMALLINT Data Type [page 304]
TINYINT Data Type [page 305]

1.13.2.2.3 DECIMAL Data Type

The DECIMAL data type is a decimal number with precision total digits and with scale digits after the
decimal point.

 Syntax

DECIMAL [(precision [, scale])]

Parameters

precision

An integer expression between 1 and 127, inclusive, that specifies the number of digits in the expression.
The default setting is 30.
scale

An integer expression between 0 and 127, inclusive, that specifies the number of digits after the decimal
point. The scale value should always be less than, or equal to, the precision value.

If precision and scale are both omitted, the default scale is 6. If precision is specified but scale is omitted,
the default scale is 0.

UltraLite: Change the defaults by setting the appropriate creation parameter.

Remarks

The DECIMAL data type is an exact numeric data type; its accuracy is preserved to the least significant digit
after arithmetic operations.

The number of bytes required to store a decimal number can be estimated as

2 + INT(((precision - scale) + 1) / 2) + INT((scale + 1) / 2);

The INT function takes the integer portion of its argument. The storage is based on the value being stored, not
on the maximum precision and scale allowed in the column.

If you are using a precision of 20 or less and a scale of 0, it may be possible to use one of the integer data types
(BIGINT, INTEGER, SMALLINT, or TINYINT) instead. Integer values require less storage space than NUMERIC
and DECIMAL values with a similar number of significant digits. Operations on integer values, such as fetching
or inserting, and arithmetic operators, typically perform better than operations on NUMERIC and DECIMAL
values.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 297

 Note
If you create a column or variable of a DECIMAL data type with a precision or scale that exceeds the
precision and scale settings for the database, values are truncated to the database settings. So, if you
notice truncated values in a column or variable defined as DECIMAL, check that precision and scale do not
exceed the database option settings.

DECIMAL can also be specified as DEC. Regardless of which syntax is used, the data type is described as
DECIMAL. DECIMAL is semantically equivalent to NUMERIC.

Standards

ANSI/ISO SQL Standard

Core Feature.

Example

DECLARE d1 DECIMAL; // the default scale is 6 DECLARE d2 DECIMAL (20); // the default scale is 0

Related Information

Numeric Functions [page 332]
Aggregate Functions [page 324]
FLOAT Data Type [page 299]
REAL Data Type [page 303]
DOUBLE Data Type [page 298]
NUMERIC Data Type [page 301]
UltraLite Precision Creation Option [page 168]
UltraLite scale Creation Option [page 169]

1.13.2.2.4 DOUBLE Data Type

The DOUBLE data type stores double-precision floating-point numbers.

 Syntax

DOUBLE

298 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The DOUBLE data type is an approximate numeric data type and subject to rounding errors after arithmetic
operations. The approximate nature of DOUBLE values means that queries using equalities should generally be
avoided when comparing DOUBLE values.

DOUBLE values require 8 bytes of storage.

The range of values is -1.79769313486231e+308 to 1.79769313486231e+308, with numbers close to zero as
small as 2.22507385850721e-308. Values held as DOUBLE are accurate to 15 significant digits, but may be
subject to rounding errors beyond the fifteenth digit.

Standards

ANSI/ISO SQL Standard

Core Feature

Related Information

Numeric Functions [page 332]
Aggregate Functions [page 324]
FLOAT Data Type [page 299]
REAL Data Type [page 303]
DECIMAL Data Type [page 297]
NUMERIC Data Type [page 301]

1.13.2.2.5 FLOAT Data Type

The FLOAT data type stores a floating-point number, which can be single or double precision.

 Syntax

FLOAT [(precision)]

Parameters

precision

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 299

An integer expression that specifies the number of bits in the mantissa, the decimal part of a logarithm. For
example, in the number 5.63428, the mantissa is 0.63428. The IEEE standard 754 floating-point precision
is as follows:

Supplied precision value Decimal precision Equivalent SQL data type Storage size

1-24 7 decimal digits REAL 4 bytes

25-53 15 decimal digits DOUBLE 8 bytes

Remarks

When a column is created using the FLOAT (precision) data type, columns on all platforms are guaranteed
to hold the values to at least the specified minimum precision. REAL and DOUBLE do not guarantee a platform-
independent minimum precision.

If precision is not supplied, the FLOAT data type is a single-precision floating-point number, equivalent to the
REAL data type, and requires 4 bytes of storage.

If precision is supplied, the FLOAT data type is either single or double precision, depending on the value of
precision specified. The cutoff between REAL and DOUBLE is platform-dependent. Single-precision FLOAT
values require 4 bytes of storage, and double-precision FLOAT values require 8 bytes.

The FLOAT data type is an approximate numeric data type. It is subject to rounding errors after arithmetic
operations. The approximate nature of FLOAT values means that queries using equalities should be avoided
when comparing FLOAT values.

Standards

ANSI/ISO SQL Standard

Core Feature.

1.13.2.2.6 INTEGER Data Type

The INTEGER data type stores integers that require 4 bytes of storage.

 Syntax

[UNSIGNED] INTEGER

300 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The INTEGER data type is an exact numeric data type; its accuracy is preserved after arithmetic operations.

If you specify UNSIGNED, the integer can never be assigned a negative number. By default, the data type is
signed.

The range for INTEGER values is -231 to 231 - 1, or -2147483648 to 2147483647.

The range for UNSIGNED INTEGER values is 0 to 232 - 1, or 0 to 4294967295.

When converting a string to an INTEGER, leading and trailing spaces are removed. If the leading character is +,
it is ignored. If the leading character is -, the remaining digits are interpreted as a negative number. Leading 0
characters are skipped, and the remaining characters are converted to an integer value. An error is returned if
the value is out of the valid range for the destination data type, if the string contains illegal characters, or if the
string cannot be decoded as an integer value.

Standards

ANSI/ISO SQL Standard

Core Feature. However, the UNSIGNED keyword is not in the standard.
MySQL

The UNSIGNED keyword may follow INTEGER.

Related Information

Numeric Functions [page 332]
Aggregate Functions [page 324]
BIGINT Data Type [page 295]
BIT Data Type [page 296]
SMALLINT Data Type [page 304]
TINYINT Data Type [page 305]

1.13.2.2.7 NUMERIC Data Type

The NUMERIC data type stores decimal numbers with precision total digits and with scale digits after the
decimal point.

 Syntax

NUMERIC [(precision [, scale])]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 301

Parameters

precision

An integer expression between 1 and 127, inclusive, that specifies the number of digits in the expression.
The default setting is 30.
scale

An integer expression between 0 and 127, inclusive, that specifies the number of digits after the decimal
point. The scale value should always be less than or equal to the precision value. The default setting is 6.

Remarks

The NUMERIC data type is an exact numeric data type; its accuracy is preserved to the least significant digit
after arithmetic operations.

UltraLite: NUMERIC is a domain, implemented as DECIMAL.

The number of bytes required to store a decimal number can be estimated as

2 + INT((BEFORE+1)/2) + INT((AFTER+1)/2);

The INT function takes the integer portion of its argument, and BEFORE and AFTER are the number of
significant digits before and after the decimal point. The storage is based on the value being stored, not on the
maximum precision and scale allowed in the column.

If you are using a precision of 20 or less and a scale of 0, it may be possible to use one of the integer data types
(BIGINT, INTEGER, SMALLINT, or TINYINT) instead. Integer values require less storage space than NUMERIC
and DECIMAL values with a similar number of significant digits. Operations on integer values, such as fetching
or inserting, and arithmetic operators, typically perform better than operations on NUMERIC and DECIMAL
values.

NUMERIC is semantically equivalent to DECIMAL.

 Note
If you create a column or variable of a NUMERIC data type with a precision or scale that exceeds the
precision and scale settings for the database, values are truncated to the database settings. So, if you
notice truncated values in a column or variable defined as NUMERIC, check that precision and scale do not
exceed the database option settings.

Standards

ANSI/ISO SQL Standard

Compatible with ANSI/ISO SQL Standard if the scale option is set to zero.

302 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

UltraLite scale Creation Option [page 169]
DECIMAL Data Type [page 297]

1.13.2.2.8 REAL Data Type

The REAL data type stores single-precision floating-point numbers stored in 4 bytes.

 Syntax

REAL

Remarks

The REAL data type is an approximate numeric data type and subject to rounding errors after arithmetic
operations. The approximate nature of REAL values means that queries using equalities should generally be
avoided when comparing REAL values.

REAL values require 4 bytes of storage.

The range of values is -3.402823e+38 to 3.402823e+38, with numbers close to zero as small as
1.175494351e-38. Values held as REAL are accurate to 7 significant digits, but may be subject to rounding error
beyond the sixth digit.

Standards

ANSI/ISO SQL Standard

Core Feature.

Related Information

Numeric Functions [page 332]
Aggregate Functions [page 324]
DOUBLE Data Type [page 298]
DOUBLE Data Type [page 298]
DECIMAL Data Type [page 297]
NUMERIC Data Type [page 301]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 303

1.13.2.2.9 SMALLINT Data Type

The SMALLINT data type stores integers that require 2 bytes of storage.

 Syntax

[UNSIGNED] SMALLINT

Remarks

The SMALLINT data type is an exact numeric data type; its accuracy is preserved after arithmetic operations. It
requires 2 bytes of storage.

The range for SMALLINT values is -215 to 215 - 1, or -32768 to 32767.

The range for UNSIGNED SMALLINT values is 0 to 216 - 1, or 0 to 65535.

When converting a string to a SMALLINT, leading and trailing spaces are removed. If the leading character is +,
it is ignored. If the leading character is -, the remaining digits are interpreted as a negative number. Leading 0
characters are skipped, and the remaining characters are converted to an integer value. An error is returned if
the value is out of the valid range for the destination data type, if the string contains illegal characters, or if the
string cannot be decoded as an integer value.

Standards

ANSI/ISO SQL Standard

Compatible with the standard. However, the UNSIGNED keyword is not in the standard.
MySQL

The UNSIGNED keyword may follow SMALLINT.

Related Information

Numeric Functions [page 332]
Aggregate Functions [page 324]
BIGINT Data Type [page 295]
BIT Data Type [page 296]
INTEGER Data Type [page 300]
TINYINT Data Type [page 305]

304 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.2.2.10 TINYINT Data Type

The TINYINT data type stores unsigned integers requiring 1 byte of storage.

 Syntax

TINYINT

Remarks

The TINYINT data type is an exact numeric data type; its accuracy is preserved after arithmetic operations.

The range for TINYINT values is 0 to 28 - 1, or 0 to 255.

When converting a string to a TINYINT, leading and trailing spaces are removed. If the leading character is +, it
is ignored. If the leading character is -, the remaining digits are interpreted as a negative number. Leading 0
characters are skipped, and the remaining characters are converted to an integer value. An error is returned if
the value is out of the valid range for the destination data type, if the string contains illegal characters, or if the
string cannot be decoded as an integer value.

In Embedded SQL, TINYINT columns should not be fetched into variables defined as CHAR or UNSIGNED
CHAR, since the result is an attempt to convert the value of the column to a string and then assign the first byte
to the variable in the program. Instead, TINYINT columns should be fetched into 2-byte or 4-byte integer
columns. To send a TINYINT value to a database from an application written in C, the type of the C variable
should be INTEGER.

UltraLite: In Embedded SQL, TINYINT columns should not be fetched into variables defined as CHAR, since
the result is an attempt to convert the value of the column to a string and then assign the first byte to the
variable in the program. Instead, TINYINT columns should be fetched into 2-byte or 4-byte integer columns. To
send a TINYINT value to a database from an application written in C, the type of the C variable should be
INTEGER.

Standards

ANSI/ISO SQL Standard

Not in the standard.
MySQL

The UNSIGNED keyword may precede or follow TINYINT, but the UNSIGNED modifier has no effect as the
type is always unsigned.

Related Information

Numeric Functions [page 332]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 305

Aggregate Functions [page 324]
BIGINT Data Type [page 295]
BIT Data Type [page 296]
VARCHAR Data Type [page 292]
SMALLINT Data Type [page 304]

1.13.2.3 Date and Time Data Types

Date values can be output in full century format, and the internal storage of dates always explicitly includes the
century portion of a year value.

Correct values are always returned for any legal arithmetic and logical operations on dates, regardless of
whether the calculated values span different centuries.

In this section:

DATE Data Type [page 306]
The DATE data type stores calendar dates, such as a year, month, and day.

DATETIME Data Type [page 308]
The DATETIME data type is a Transact-SQL compatible alias for TIMESTAMP, used to store date and
time of day.

DATETIMEOFFSET Data Type [page 309]
The DATETIMEOFFSET data type is a Transact-SQL compatible alias for TIMESTAMP WITH TIME ZONE,
used to store date, time of day, and time zone information.

TIME Data Type [page 310]
The TIME data type stores the time of day, containing the hour, minute, second, and fraction of a
second.

TIMESTAMP Data Type [page 312]
The TIMESTAMP data type stores a point in time containing the year, month, day, hour, minute, second,
and fraction of a second stored to 6 decimal places.

TIMESTAMP WITH TIME ZONE Data Type [page 313]
The TIMESTAMP WITH TIME ZONE data type stores a point in time with a time zone offset.

1.13.2.3.1 DATE Data Type

The DATE data type stores calendar dates, such as a year, month, and day.

 Syntax

DATE

306 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

A DATE value requires 4 bytes of storage.

The format in which DATE values are retrieved as strings by applications is controlled by the date_format
option setting. For example, a DATE value representing the 19th of July, 2010 can be returned to an application
as 2010/07/19, or as Jul 19, 2010 depending on the date_format option setting.

UltraLite: The format in which DATE values are retrieved as strings by applications is controlled by the
date_format creation parameter. For example, a DATE value representing the 19th of July, 2010 can be returned
to an application as 2010/07/19, or as Jul 19, 2010 depending on the date_format creation parameter.

Standards

ANSI/ISO SQL Standard

A feature in the standard.
Transact-SQL

Supported by Adaptive Server Enterprise.

Related Information

CURRENT TIME Special Value - UltraLite [page 260]
CURRENT TIMESTAMP Special Value - UltraLite [page 261]
Date and Time Functions [page 326]
CURRENT TIMESTAMP Special Value - UltraLite [page 261]
DATE Function [Date and Time] [page 376]
UltraLite date_format Creation Option [page 151]
UltraLite date_order Creation Option [page 153]
DATETIME Data Type [page 308]
DATETIME Function [Date and Time] [page 385]
ISDATE Function [Data Type Conversion] [page 412]
UltraLite nearest_century Creation Option [page 162]
NOW Function [Date and Time] [page 446]
TIME Data Type [page 310]
TIMESTAMP Data Type [page 312]
TIMESTAMP WITH TIME ZONE Data Type [page 313]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 307

1.13.2.3.2 DATETIME Data Type

The DATETIME data type is a Transact-SQL compatible alias for TIMESTAMP, used to store date and time of
day.

 Syntax

DATETIME

Remarks

A DATETIME value requires 8 bytes of storage.

The format in which DATETIME values are retrieved as strings by applications is controlled by the
timestamp_format option setting. For example, the DATETIME value 2010/04/01T23:59:59.999999 can be
returned to an application as 2010/04/01 23:59:59, or as April 1, 2010 23:59:59.999999 depending on the
timestamp_format option setting.

 Note
Although the range of possible dates for the DATETIME data type is the same as the DATE type (covering
years 0001 to 9999), the useful range of the DATETIME date type is from 0001-01-01 00:00:00 up to, but
not including, 7911-01-01 00:00:00. Beyond this range, the hours and minutes portion of the DATETIME
value is not retained, but seconds and fractional seconds are. In this case, built-in functions that pertain to
minutes or seconds may produce meaningless results.

When a DATETIME value is converted to a DATETIMEOFFSET, the connection's time_zone_adjustment setting
is used for the time zone offset in the result. In other words, the value is considered to be local to the
connection. When a DATETIMEOFFSET value is converted to DATETIME, the offset is discarded.

UltraLite: When a DATETIME value is converted to DATETIMEOFFSET, the local time zone offset on the system
is used in the final result.

Standards

ANSI/ISO SQL Standard

Not in the standard.
Transact-SQL

DATETIME, rather than TIMESTAMP, is used by Adaptive Server Enterprise. The DATETIME type in Adaptive
Server Enterprise supports dates between January 1, 1753 and December 31, 9999 and supports less
precision with the time portion of the value. In SQL Anywhere, DATETIME is implemented as a TIMESTAMP
without these restrictions. You should be aware of these differences when migrating data between SQL
Anywhere and Adaptive Server Enterprise.

308 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

TIMESTAMP Data Type [page 312]

1.13.2.3.3 DATETIMEOFFSET Data Type

The DATETIMEOFFSET data type is a Transact-SQL compatible alias for TIMESTAMP WITH TIME ZONE, used
to store date, time of day, and time zone information.

 Syntax

DATETIMEOFFSET

Remarks

The DATETIMEOFFSET value contains the year, month, day, hour, minute, second, fraction of a second, and
number of hours and minutes before or after Coordinated Universal Time (UTC). The fraction is stored to 6
decimal places.

A DATETIMEOFFSET value requires 10 bytes of storage.

The format in which DATETIMEOFFSET values are retrieved as strings by applications is controlled by the
timestamp_with_time_zone_format setting . For example, the DATETIMEOFFSET value
2010/04/01T23:59:59.999999-6:00 can be returned to an application as 2010/04/01 23:59:59 -06:00 or as
April 1, 2010 23:59:59.999999 -06:00, depending on the timestamp_with_time_zone_format setting.

 Note
Although the range of possible dates for the DATETIMEOFFSET data type is the same as the DATE type
(covering years 0001 to 9999), the useful range of the DATETIMEOFFSET date type is from 0001-01-01
00:00:00 up to, but not including, 7911-01-01 00:00:00. Beyond this range, the hours and minutes portion
of the DATETIMEOFFSET value is not retained, but seconds and fractional seconds are. In this case, built-in
functions that pertain to minutes or seconds may produce meaningless results.

Do not use DATETIMEOFFSET for computed columns or in materialized views because the value of the
governing time_zone_adjustment option varies between connections based on their location and the time of
year.

Two DATETIMEOFFSET values are considered identical when they represent the same instant in UTC,
regardless of the TIME ZONE offset applied. For example, the following statement returns Yes because the
results are considered identical:

SELECT IF CAST('2009-07-15 08:00:00 -08:00' AS DATETIMEOFFSET) =
 CAST('2009-07-15 11:00:00 -05:00' AS DATETIMEOFFSET)
 THEN 'Yes'
 ELSE 'No'

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 309

END IF;

If you omit the time zone offset from a DATETIMEOFFSET value, it defaults to the current UTC offset of the
client regardless of whether the timestamp represents a date and time in standard time or daylight time. For
example, if the client is located in the Eastern Standard time zone and executes the following statement while
daylight time is in effect, then a timestamp with a time zone appropriate for the Atlantic Standard time zone (-4
hours from UTC) is returned.

SELECT CAST('2009/01/30 12:34:55' AS DATETIMEOFFSET)

Comparing DATETIMEOFFSET with other data types

The comparison of DATETIMEOFFSET values with timestamps without time zones is not recommended
because the default time zone offset of the client varies with the geographic location of the client and with
the time of the year.

Execute the following statement to determine the current time zone offset in minutes for a client:

SELECT CONNECTION_PROPERTY('TimeZoneAdjustment');

UltraLite: The TimeZoneAdjustment connection property is not supported in UltraLite databases.
Converting to or from DATETIMEOFFSET

When a DATETIME value is converted to DATETIMEOFFSET, the connection's time_zone_adjustment
setting is used for the time zone offset in the result. In other words, the value is considered to be local to
the connection. When a DATETIMEOFFSET value is converted to DATETIME, the offset is discarded.
Conversions to or from types other than strings, date, or date-time types is not supported.

UltraLite: When a DATETIME value is converted to DATETIMEOFFSET, the client's time zone is used for the
time zone offset in the result. In other words, the value is considered to be local to the connection. When a
DATETIMEOFFSET value is converted to DATETIME, the offset is discarded. Conversions to or from types
other than strings, date, or date-time types is not supported.

Standards

ANSI/ISO SQL Standard

The specific use of DATETIMEOFFSET is not in the standard. To be compatible with the ANSI/ISO SQL
Standard, use TIMESTAMP WITH TIME ZONE. The TIMESTAMP WITH TIME ZONE type is optional
ANSI/ISO SQL Language Feature F411.

1.13.2.3.4 TIME Data Type

The TIME data type stores the time of day, containing the hour, minute, second, and fraction of a second.

 Syntax

TIME

310 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

A TIME value requires 8 bytes of storage.

When using ODBC, a TIME value sent or retrieved as a binary value (using an ODBC TIME_STRUCT structure)
is restricted to an accuracy of hours, minutes, and seconds. Fractional seconds are not part of the structure.
For this reason, TIME values should be sent or retrieved as strings if increased accuracy is desired. The format
in which TIME values are retrieved as strings by applications is controlled by the time_format option setting.
For example, the TIME value 23:59:59.999999 can be returned to an application as 23:59:59, 23:59:59.999, or
23:59:59.999999 depending on the time_format option setting.

UltraLite: The format in which TIME values are retrieved as strings by applications is controlled by the
time_format creation parameter. For example, the TIME value 23:59:59.999999 can be returned to an
application as 23:59:59, 23:59:59.999, or 23:59:59.999999 depending on the time_format creation parameter.

Standards

ANSI/ISO SQL Standard

A feature in the standard.
Transact-SQL

The TIME data type is supported by Adaptive Server Enterprise. However, Adaptive Server Enterprise
supports millisecond resolution (three digits) rather than microsecond resolution (six digits). You should be
aware of these differences when migrating data between SQL Anywhere and Adaptive Server Enterprise. To
migrate TIME values, use the Adaptive Server Enterprise BIGTIME data type.

Related Information

CURRENT TIME Special Value - UltraLite [page 260]
CURRENT TIMESTAMP Special Value - UltraLite [page 261]
CURRENT UTC TIMESTAMP Special Value - UltraLite [page 262]
Date and Time Functions [page 326]
DATE Data Type [page 306]
DATETIME Data Type [page 308]
DATE Function [Date and Time] [page 376]
DATETIME Function [Date and Time] [page 385]
Expressions in UltraLite [page 264]
GETDATE Function [Date and Time] [page 401]
ISDATE Function [Data Type Conversion] [page 412]
NOW Function [Date and Time] [page 446]
TIMESTAMP Data Type [page 312]
TIMESTAMP WITH TIME ZONE Data Type [page 313]
UltraLite timestamp_format Creation Option [page 173]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 311

UltraLite timestamp_with_time_zone_format Creation Option [page 177]

1.13.2.3.5 TIMESTAMP Data Type

The TIMESTAMP data type stores a point in time containing the year, month, day, hour, minute, second, and
fraction of a second stored to 6 decimal places.

 Syntax

TIMESTAMP

Remarks

A TIMESTAMP value requires 8 bytes of storage.

The format in which TIMESTAMP values are retrieved as strings by applications is controlled by the
timestamp_format setting. For example, the TIMESTAMP value 2010/04/01T23:59:59.999999 can be
returned to an application as 2010/04/01 23:59:59 or as April 1, 2010 23:59:59.999999, depending on the
timestamp_format setting.

 Note
Although the range of possible dates for the TIMESTAMP data type is the same as the DATE type (covering
years 0001 to 9999), the useful range of the TIMESTAMP date type is from 0001-01-01 00:00:00 up to, but
not including, 7911-01-01 00:00:00. Beyond this range, the hours and minutes portion of the TIMESTAMP
value is not retained, but seconds and fractional seconds are. In this case, built-in functions that pertain to
minutes or seconds may produce meaningless results.

When a TIMESTAMP value is converted to TIMESTAMP WITH TIME ZONE, the connection's
time_zone_adjustment setting is used for the time zone offset in the result. In other words, the value is
considered to be local to the connection. When a TIMESTAMP WITH TIME ZONE value is converted to
TIMESTAMP, the offset is discarded.

UltraLite: When a TIMESTAMP value is converted to TIMESTAMP WITH TIME ZONE, the local time zone offset
on the system is used in the final result.

Standards

ANSI/ISO SQL Standard

Compatible with the standard.
Transact-SQL

Adaptive Server Enterprise uses the DATETIME type for TIMESTAMP values.

312 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

CURRENT TIME Special Value - UltraLite [page 260]
CURRENT TIMESTAMP Special Value - UltraLite [page 261]
CURRENT UTC TIMESTAMP Special Value - UltraLite [page 262]
Date and Time Functions [page 326]
DATE Data Type [page 306]
DATETIME Data Type [page 308]
DATE Function [Date and Time] [page 376]
DATETIME Function [Date and Time] [page 385]
UltraLite date_order Creation Option [page 153]
Expressions in UltraLite [page 264]
GETDATE Function [Date and Time] [page 401]
ISDATE Function [Data Type Conversion] [page 412]
UltraLite nearest_century Creation Option [page 162]
NOW Function [Date and Time] [page 446]
TIME Data Type [page 310]
TIMESTAMP WITH TIME ZONE Data Type [page 313]
UltraLite timestamp_format Creation Option [page 173]
UltraLite timestamp_with_time_zone_format Creation Option [page 177]

1.13.2.3.6 TIMESTAMP WITH TIME ZONE Data Type

The TIMESTAMP WITH TIME ZONE data type stores a point in time with a time zone offset.

 Syntax

TIMESTAMP WITH TIME ZONE

Remarks

The TIMESTAMP WITH TIME ZONE value contains the year, month, day, hour, minute, second, fraction of a
second, and number of hours and minutes before or after Coordinated Universal Time (UTC). The fraction is
stored to 6 decimal places.

A TIMESTAMP WITH TIME ZONE value requires 10 bytes of storage.

The format in which TIMESTAMP WITH TIME ZONE values are retrieved as strings by applications is controlled
by the timestamp_with_time_zone_format setting . For example, the TIMESTAMP WITH TIME ZONE value
2010/04/01T23:59:59.999999-6:00 can be returned to an application as 2010/04/01 23:59:59 -06:00 or as
April 1, 2010 23:59:59.999999 -06:00, depending on the timestamp_with_time_zone_format setting.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 313

 Note
Although the range of possible dates for the TIMESTAMP WITH TIME ZONE data type is the same as the
DATE type (covering years 0001 to 9999), the useful range of the TIMESTAMP WITH TIME ZONE date type
is from 0001-01-01 00:00:00 up to, but not including, 7911-01-01 00:00:00. Beyond this range, the hours
and minutes portion of the TIMESTAMP WITH TIME ZONE value is not retained, but seconds and fractional
seconds are. In this case, built-in functions that pertain to minutes or seconds may produce meaningless
results.

Do not use TIMESTAMP WITH TIME ZONE for computed columns or in materialized views because the value of
the governing time_zone_adjustment option varies between connections based on their location and the time
of year.

Two TIMESTAMP WITH TIME ZONE values are considered identical when they represent the same instant in
UTC, regardless of the TIME ZONE offset applied. For example, the following statement returns Yes because the
results are considered identical:

SELECT IF CAST('2009-07-15 08:00:00 -08:00' AS TIMESTAMP WITH TIME ZONE) =
 CAST('2009-07-15 11:00:00 -05:00' AS TIMESTAMP WITH TIME ZONE)
 THEN 'Yes'
 ELSE 'No' END IF;

If you omit the time zone offset from a TIMESTAMP WITH TIME ZONE value, it defaults to the current UTC
offset of the client regardless of whether the timestamp represents a date and time in standard time or daylight
time. For example, if the client is located in the Eastern Standard time zone and executes the following
statement while daylight time is in effect, then a timestamp with a time zone appropriate for the Atlantic
Standard time zone (-4 hours from UTC) is returned.

SELECT CAST('2009/01/30 12:34:55' AS TIMESTAMP WITH TIME ZONE)

Comparing TIMESTAMP WITH TIME ZONE with other data types

The comparison of TIMESTAMP WITH TIME ZONE values with timestamps without time zones is not
recommended because the default time zone offset of the client varies with the geographic location of the
client and with the time of the year.

Execute the following statement to determine the current time zone offset in minutes for a client:

SELECT CONNECTION_PROPERTY('TimeZoneAdjustment');

UltraLite: The TimeZoneAdjustment connection property is not supported in UltraLite databases.
Converting to or from TIMESTAMP WITH TIME ZONE

When a TIMESTAMP value is converted to TIMESTAMP WITH TIME ZONE, the connection's
time_zone_adjustment setting is used for the time zone offset in the result. In other words, the value is
considered to be local to the connection. When a TIMESTAMP WITH TIME ZONE value is converted to
TIMESTAMP, the offset is discarded. Conversions to or from types other than strings, date, or date-time
types is not supported.

UltraLite: When a TIMESTAMP value is converted to TIMESTAMP WITH TIME ZONE, the client's time zone
is used for the time zone offset in the result. In other words, the value is considered to be local to the
connection. When a TIMESTAMP WITH TIME ZONE value is converted to TIMESTAMP, the offset is
discarded. Conversions to or from types other than strings, date, or date-time types is not supported.

314 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Standards

ANSI/ISO SQL Standard

TIMESTAMP WITH TIME ZONE is part of optional ANSI/ISO SQL Language Feature F411.

Related Information

CURRENT TIME Special Value - UltraLite [page 260]
CURRENT TIMESTAMP Special Value - UltraLite [page 261]
CURRENT UTC TIMESTAMP Special Value - UltraLite [page 262]
Date and Time Functions [page 326]
DATE Data Type [page 306]
DATETIME Data Type [page 308]
DATE Function [Date and Time] [page 376]
DATETIME Function [Date and Time] [page 385]
UltraLite date_order Creation Option [page 153]
Expressions in UltraLite [page 264]
GETDATE Function [Date and Time] [page 401]
ISDATE Function [Data Type Conversion] [page 412]
UltraLite nearest_century Creation Option [page 162]
NOW Function [Date and Time] [page 446]
TIME Data Type [page 310]
TIMESTAMP Data Type [page 312]
UltraLite timestamp_format Creation Option [page 173]
UltraLite timestamp_with_time_zone_format Creation Option [page 177]

1.13.2.4 Binary Data Types

Binary data types store binary data, including images and other types of information that are not interpreted by
the database.

In this section:

BINARY Data Type [page 316]
The BINARY data type stores binary data of a specified maximum length (in bytes).

LONG BINARY Data Type [page 317]
The LONG BINARY data type stores binary data of arbitrary length.

UNIQUEIDENTIFIER Data Type [page 318]
The UNIQUEIDENTIFIER data type stores UUID (also known as GUID) values.

VARBINARY Data Type [page 319]
The VARBINARY data type stores binary data of a specified maximum length (in bytes).

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 315

1.13.2.4.1 BINARY Data Type

The BINARY data type stores binary data of a specified maximum length (in bytes).

 Syntax

BINARY [(max-length)]

Parameters

max-length

The maximum length of the value, in bytes. If the length is not specified, then it is 1.

The length must be in the 1 to 32767 range.

Remarks

During comparisons, BINARY values are compared exactly byte for byte. This differs from the CHAR data type,
where values are compared using the collation sequence of the database.

If one binary string is a prefix of the other, the shorter string is considered to be less than the longer string.

Unlike CHAR values, BINARY values are not transformed during character set conversion.

BINARY is semantically equivalent to VARBINARY. It is a variable-length type. In other database management
systems, BINARY is a fixed-length type.

UltraLite: BINARY is a domain, implemented as VARBINARY.

Standards

ANSI/ISO SQL Standard

SQL Language Feature T021.

Related Information

VARBINARY Data Type [page 319]

316 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.2.4.2 LONG BINARY Data Type

The LONG BINARY data type stores binary data of arbitrary length.

 Syntax

LONG BINARY

Remarks

The maximum size in bytes is 2 GB minus 1 byte (231 - 1) or or 2 147 483 647.

UltraLite:

• You can cast strings to/from LONG BINARY data.
• LONG BINARY data cannot be concatenated.
• LONG BINARY columns can be included in the result set of a SELECT query.
• Indexes cannot be created on a LONG BINARY type.
• A LONG BINARY type can only be used in the LENGTH and CAST functions.
• Conditions in SQL statements, such as in the WHERE clause, cannot operate on LONG BINARY columns.
• Only INSERT, UPDATE, and DELETE operations are allowed on LONG BINARY column.

Standards

ANSI/ISO SQL Standard

The LONG BINARY data type comprises SQL Language Features T021, "BINARY and VARBINARY data
types", and T041, "Basic LOB data type support".

Related Information

BINARY Data Type [page 316]
VARBINARY Data Type [page 319]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 317

1.13.2.4.3 UNIQUEIDENTIFIER Data Type

The UNIQUEIDENTIFIER data type stores UUID (also known as GUID) values.

 Syntax

UNIQUEIDENTIFIER

Remarks

The UNIQUEIDENTIFIER data type is typically used for a primary key or other unique column to hold UUID
(Universally Unique Identifier) values that uniquely identify rows. The NEWID function generates UUID values in
such a way that a value produced on one computer does not match a UUID produced on another computer.
UNIQUEIDENTIFIER values generated using NEWID can therefore be used as keys in a synchronization
environment.

For example:

CREATE TABLE T1 (pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(), c1 INT);

UUID values are also referred to as GUID (Globally Unique Identifier) values.

UNIQUEIDENTIFIER values are stored as BINARY(16) but are described to client applications as BINARY(36).
This description ensures that if the client fetches the value as a string, it has allocated enough space for the
result.

For SQL Anywhere ODBC client applications, uniqueidentifier values appear as a SQL_GUID type.

UNIQUEIDENTIFIER values are automatically converted between string and binary values as needed. Input
string values may contain hyphens, but must be properly formatted if they do. The following illustrates two
permissible input formats.

SELECT STRTOUUID('9752b904beef4bd8adb5642ea2c71986'), STRTOUUID('9752b904-beef-4bd8-adb5-642ea2c71986');

UNIQUEIDENTIFIER string values are formatted with hyphens so they are compatible with other RDBMSs.

You can change this by setting the uuid_has_hyphens option to Off.

UltraLite: There is no comparable setting for UltraLite. UNIQUEIDENTIFIER string values are always formatted
with hyphens. Input string values must be properly formatted with hyphens.

Standards

ANSI/ISO SQL Standard

Not in the standard.

318 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

NEWID Function [Miscellaneous] [page 445]
UUIDTOSTR Function [String] [page 509]
STRTOUUID Function [String] [page 491]
STRING Function [String] [page 490]

1.13.2.4.4 VARBINARY Data Type

The VARBINARY data type stores binary data of a specified maximum length (in bytes).

 Syntax

VARBINARY [(max-length)]

Parameters

max-length

The maximum length of the value, in bytes. If the length is not specified, then it is 1.

The length must be in the 1 to 32767 range.

Remarks

During comparisons, VARBINARY values are compared exactly byte for byte. This behavior differs from the
CHAR data type, where values are compared using the collation sequence of the database.

VARBINARY values are not transformed during character set conversion.

VARBINARY can also be specified as BINARY VARYING. Regardless of which syntax is used, the data type is
described as VARBINARY. If one binary string is a prefix of the other, the shorter string is considered to be less
than the longer string.

UltraLite: If one binary string is a prefix of the other, the shorter string is compared to the other as though the
shorter string were padded with zeros. When evaluating expressions, the maximum length for a temporary
character value is 2048 bytes.

Standards

ANSI/ISO SQL Standard

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 319

SQL Language Feature T021, "BINARY and VARBINARY data types".

Related Information

Bitwise Operators - UltraLite [page 287]
BINARY Data Type [page 316]
STRING Function [String] [page 490]

1.13.3 Spatial Data Types

Spatial data is data that describes the position, shape, and orientation of objects in a defined space. UltraLite
provides storage and data management features for spatial data, in the form of points, allowing you to store
information such as geographic locations and routing information.

Points are defined using a spatial type, ST_GEOMETRY. You use functions and constructors to access and
manipulate the spatial data. UltraLite also provides a set of SQL spatial functions designed for compatibility
with other products.

A point defines a single location in space. A point geometry does not have length or area. A point always has an
X and Y coordinate.

In GIS data, points are typically used to represent locations such as addresses, or geographic features such as
a mountain.

In this section:

ST_GEOMETRY Data Type - UltraLite [page 321]
The ST_GEOMETRY type is used to store spatial data in the form of points.

Related Information

Recommended Reading on Spatial Topics

320 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/38dd8ef2e6264ea5a637d3ff464ffe5b/17.0.01/en-US/3c20581c6c5f1014a095fa8de2f13330.html

1.13.3.1 ST_GEOMETRY Data Type - UltraLite

The ST_GEOMETRY type is used to store spatial data in the form of points.

Remarks

The ST_GEOMETRY type is the maximal supertype of the geometry type hierarchy. The ST_GEOMETRY type
supports methods that can be applied to any spatial value. The ST_GEOMETRY type cannot be instantiated;
instead, a subtype should be instantiated. When working with original formats (WKT or WKB), you can use
methods such as ST_PointFromText/ST_PointFromWKB to instantiate the appropriate concrete type
representing the value in the original format.

The ST_SRID method can be used to retrieve the spatial reference system associated with the value.

Columns of the ST_GEOMETRY type or any of its subtypes cannot be included in a primary key, unique index,
or unique constraint.

Column and Object Definitions

UltraLite provides a fixed set of three different reference systems that you can attribute to a column during its
creation. Individual geometry objects can be associated with any SRID value except the undefined reference
system, and can only be stored in a column associated with a matching SRID value or the undefined reference
system.

The predefined reference systems are:

Undefined or "null" reference system

This is the default reference system if no SRID value is provided. It allows contained geometry values to be
in any valid reference system. This reference system allows for catch-all columns that do not enforce any
reference system consistency among their geometry objects.
Default planar reference system

Defined by specifying a SRID value of 0 during column creation, this column can contain only geometry
values associated with this reference system. The values are treated as being in 2D planar space.
WGS 84 Geodetic Reference System

Defined by specifying a SRID value of 4326 during column creation, this column can only contain geometry
values associated with this reference system. The values are treated as being on the Earth's surface and
operations are applied accordingly.

 Note
A point in SRID 4326 can be stored in a column with the WGS 84 reference system or with the undefined
reference system, but not in the default planar system.

No transformations between reference systems are supported.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 321

Example

The following example illustrates how to create a table with one column associated with the default planar
reference system and one with an undefined reference system:

CREATE TABLE T1 (V1 INTEGER PRIMARY KEY,
 V2 ST_GEOMETRY(SRID=0),
 V3 ST_GEOMETRY)

The following SQL statement illustrates how to insert data into the T1 table from the previous example:

INSERT INTO T1(V1, V2, V3) VALUES (1, ST_POINTFROMTEXT('POINT(10 20)', 0), ST_POINT(5, 6, 2163))

Related Information

ST_AsBinary Function [Spatial] - UltraLite [page 477]
ST_AsText Function [Spatial] - UltraLite [page 478]
ST_Distance Function [Spatial] - UltraLite [page 479]
ST_Equals Function [Spatial] - UltraLite [page 480]
ST_IntersectsRect Function [Spatial] - UltraLite [page 481]
ST_Point Function [Spatial] - UltraLite [page 482]
ST_PointFromExtText Function [Spatial] - UltraLite [page 483]
ST_PointFromText Function [Spatial] - UltraLite [page 484]
ST_PointFromWKB Function [Spatial] - UltraLite [page 485]
ST_SRID Function [Spatial] - UltraLite [page 486]
ST_X Function [Spatial] - UltraLite [page 487]
ST_Y Function [Spatial] - UltraLite [page 488]

1.13.4 User-defined Data Types and Their Equivalents

Unlike SQL Anywhere databases, UltraLite does not support user-defined data types.

The following table lists UltraLite data type equivalents to built-in SQL Anywhere aliases:

SQL Anywhere data type UltraLite equivalent

MONEY DECIMAL(19,4)

SMALLMONEY DECIMAL(10,4)

TEXT LONG VARCHAR

XML LONG VARCHAR

322 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

LONG VARCHAR Data Type [page 291]
DECIMAL Data Type [page 297]

1.13.5 SQL Functions

Functions are used to return information from the database. They can be called anywhere an expression is
allowed.

Unless otherwise specified in the documentation, NULL is returned for a function if any argument is NULL.

Functions use the same syntax conventions used by SQL statements.

In SQL Anywhere, if an argument is optional, then DEFAULT can be provided as an argument.

In this section:

Function Types [page 323]
Functions can be grouped according to the type of data they operate on, or the context in which they
are used.

Functions [page 338]
Each function is listed, and the function type (numeric, character, and so on) is indicated next to it.

Related Information

Syntax Conventions

1.13.5.1 Function Types

Functions can be grouped according to the type of data they operate on, or the context in which they are used.

 Note
Unless otherwise stated, any SQL Anywhere function that receives NULL as a parameter returns NULL.

UltraLite: UltraLite supports a subset of the same functions documented for SQL Anywhere, and sometimes
with a few differences.

In this section:

Aggregate Functions [page 324]
Aggregate functions summarize data over a group of rows from the database. The groups are formed
using the GROUP BY clause of the SELECT statement. Aggregate functions are allowed only in the
SELECT list and in the HAVING and ORDER BY clauses of a SELECT statement.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 323

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817b68476ce210149f95d48c949a32e9.html

Data Type Conversion Functions [page 326]
Data type conversion functions are used to convert arguments from one data type to another, or to test
whether they can be converted.

Date and Time Functions [page 326]
Date and time functions perform operations on DATE, TIME, TIMESTAMP, and TIMESTAMP WITH TIME
ZONE data types.

Miscellaneous Functions [page 330]
Miscellaneous functions perform operations on arithmetic, string, or date/time expressions, including
the return values of other functions.

Numeric Functions [page 332]
Numeric functions perform mathematical operations on numerical data types or return numeric
information.

Spatial Functions - UltraLite [page 333]
Spatial data is data that describes the position, shape, and orientation of objects in a defined space.
UltraLite provides storage and data management features for spatial data, in the form of points,
allowing you to store information such as geographic locations and routing information.

String Functions [page 334]
String functions perform conversion, extraction, or manipulation operations on strings, or return
information about strings.

System Functions [page 336]
System functions return system information.

Related Information

ST_GEOMETRY Data Type - UltraLite [page 321]

1.13.5.1.1 Aggregate Functions

Aggregate functions summarize data over a group of rows from the database. The groups are formed using the
GROUP BY clause of the SELECT statement. Aggregate functions are allowed only in the SELECT list and in the
HAVING and ORDER BY clauses of a SELECT statement.

List of SQL Anywhere Functions

The following aggregate functions are available:

ARRAY_AGG function [Aggregate]
AVG function [Aggregate]
BIT_AND function [Aggregate]
BIT_OR function [Aggregate]

324 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

BIT_XOR function [Aggregate]
COVAR_POP function [Aggregate]
COVAR_SAMP function [Aggregate]
COUNT function [Aggregate]
COUNT_BIG function [Aggregate]
CORR function [Aggregate]
FIRST_VALUE function [Aggregate]
GROUPING function [Aggregate]
LAST_VALUE function [Aggregate]
LIST function [Aggregate]
MAX function [Aggregate]
MEDIAN function [Aggregate]
MIN function [Aggregate]
REGR_AVGX function [Aggregate]
REGR_AVGY function [Aggregate]
REGR_COUNT function [Aggregate]
REGR_INTERCEPT function [Aggregate]
REGR_R2 function [Aggregate]
REGR_SLOPE function [Aggregate]
REGR_SXX function [Aggregate]
REGR_SXY function [Aggregate]
REGR_SYY function [Aggregate]
SET_BITS function [Aggregate]
STDDEV function [Aggregate]
STDDEV_POP function [Aggregate]
STDDEV_SAMP function [Aggregate]
SUM function [Aggregate]
VAR_POP function [Aggregate]
VAR_SAMP function [Aggregate]
VARIANCE function [Aggregate]
XMLAGG function [Aggregate]

List of UltraLite Functions

The following aggregate functions are available:

AVG function [Aggregate]
COUNT function [Aggregate]
COUNT_UPLOAD_ROWS function [Aggregate]
LIST function [Aggregate]
MAX function [Aggregate]
MIN function [Aggregate]
SUM function [Aggregate]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 325

1.13.5.1.2 Data Type Conversion Functions

Data type conversion functions are used to convert arguments from one data type to another, or to test
whether they can be converted.

List of SQL Anywhere Functions

The following data type conversion functions are available:

BINTOHEX Function [Data Type Conversion]
CAST Function [Data Type Conversion]
CONVERT Function [Data Type Conversion]
HEXTOBIN Function [Data Type Conversion]
HEXTOINT Function [Data Type Conversion]
INTTOHEX Function [Data Type Conversion]
ISDATE Function [Data Type Conversion]
ISNUMERIC Function [Miscellaneous]
TREAT Function [Data Type Conversion]

List of UltraLite Functions

The following data type conversion functions are available:

CAST Function [Data Type Conversion]
CONVERT Function [Data Type Conversion]
HEXTOINT Function [Data Type Conversion]
INTTOHEX Function [Data Type Conversion]
ISDATE Function [Data Type Conversion]

1.13.5.1.3 Date and Time Functions

Date and time functions perform operations on DATE, TIME, TIMESTAMP, and TIMESTAMP WITH TIME ZONE
data types.

SQL Anywhere includes compatibility support for Transact-SQL date and time types, including DATETIME and
SMALLDATETIME. These Transact-SQL data types are implemented as domains over the native TIMESTAMP
data type.

The following date and time functions are available for SQL Anywhere:

DATE function [Date and time]
DATEADD function [Date and time]
DATEDIFF function [Date and time]

326 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

DATEFORMAT function [Date and time]
DATENAME function [Date and time]
DATEPART function [Date and time]
DATETIME function [Date and time]
DAY function [Date and time]
DAYNAME function [Date and time]
DAYS function [Date and time]
DOW function [Date and time]
GETDATE function [Date and time]
HOUR function [Date and time]
HOURS function [Date and time]
MINUTE function [Date and time]
MINUTES function [Date and time]
MONTH function [Date and time]
MONTHNAME function [Date and time]
MONTHS function [Date and time]
NOW function [Date and time]
QUARTER function [Date and time]
SECOND function [Date and time]
SECONDS function [Date and time]
SWITCHOFFSET function [Date and time]
SYSDATETIMEOFFSET function [Date and time]
TODAY function [Date and time]
TODATETIMEOFFSET function [Date and time]
WEEKS function [Date and time]
YEAR function [Date and time]
YEARS function [Date and time]
YMD function [Date and time]

The following date and time functions are available for UltraLite:

DATE function [Date and time]
DATEADD function [Date and time]
DATEDIFF function [Date and time]
DATEFORMAT function [Date and time]
DATENAME function [Date and time]
DATEPART function [Date and time]
DATETIME function [Date and time]
DAY function [Date and time]
DAYNAME function [Date and time]
DAYS function [Date and time]
DOW function [Date and time]
GETDATE function [Date and time]
HOUR function [Date and time]
HOURS function [Date and time]
MINUTE function [Date and time]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 327

MINUTES function [Date and time]
MONTH function [Date and time]
MONTHNAME function [Date and time]
MONTHS function [Date and time]
NOW function [Date and time]
QUARTER function [Date and time]
SECOND function [Date and time]
SECONDS function [Date and time]
SWITCHOFFSET function [Date and time]
TODAY function [Date and time]
TODATETIMEOFFSET function [Date and time]
WEEKS function [Date and time]
YEAR function [Date and time]
YEARS function [Date and time]
YMD function [Date and time]

In this section:

Specifying Date Parts [page 328]
Many of the date functions use dates built from date parts. The following table displays the allowed
date part specifiers, their short forms, and the range of values returned by the DATEPART function.

1.13.5.1.3.1 Specifying Date Parts

Many of the date functions use dates built from date parts. The following table displays the allowed date part
specifiers, their short forms, and the range of values returned by the DATEPART function.

Date part Abbreviation Values

Year YY 1-9999

Quarter QQ 1-4

Month MM 1-12

Week WK 1-54. Weeks begin on Sunday. A 54-
week year occurs in leap years that
start on a Saturday. Week is not subject
to the first_day_of_week setting.

Day DD 1-31

Dayofyear DY 1-366

Weekday DW 1-7. Weekday is subject to the
first_day_of_week setting. For example,
If the first day of week is Monday, then
Monday is 1 and Sunday is 7.

Hour HH 0-23

Minute MI 0-59

328 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Date part Abbreviation Values

Second SS 0-59

Millisecond MS 0-999

Microsecond MCS or US 0-999999

Calyearofweek CYR 1-9999. The year in which the week be
gins. The ISO standard first full week of
any year always begins on a Monday.
The first week of the year can start be
fore, on, or after the first day of the
year.

If at least the first 4 days of the year oc
cur in a week, that week is considered
to be the first week of the year. Any
days of the previous calendar year, that
also fall in the first week of the year, are
included. Otherwise, the next week is
the first full week of the year. In this
case, any days of the previous week are
part of the last full week of the previous
year.

Calweekofyear CWK 1-53. The week number within the year
that contains the specified date.

For more information about the ISO
week system and the ISO 8601 date
and time standard, see ISO week date

.

Caldayofweek CDW 1-7. (Monday = 1, ..., Sunday = 7)

TZOffset TZ -840 to 840

Note that Sunday is the last day of the week in the ISO 8601 calendar, whereas Sunday is considered the first
day of the week in some locales (for example, the United States, Canada, and Japan).

Calyearofweek, Calweekofyear, and Caldayofweek conform to ISO 8601 in which weeks start with Monday. The
first week of a year is the week that contains the first Thursday of the year (and, hence, always contains 4
January). These values are not affected by the first_day_of_week option setting.

The ISO standard numbers each weekday as follows: Monday=1, Tuesday=2, ..., Sunday=7. To calculate the first
Monday of the year, the week is split into two groups. The first, major group contains the 4 days Monday to
Thursday. The second, minor group contains the 3 days Friday to Sunday.

If the first day of the year falls in the first group (Monday to Thursday), then the majority of the days in the week
fall in this year and all days of that week including days that are part of the previous year are considered to
belong to the first full week of this year. For example, Monday 2014-12-29 occurs in the first full week of 2015
because 2015-01-01 is a Thursday (the majority of the days in that week are part of 2015). Here Calyearofweek
(CYR) for those days is 2015.

 January 2015

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 329

http://help.sap.com/disclaimer?site=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FISO_week_date
http://help.sap.com/disclaimer?site=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FISO_week_date

 M T W T F S S CYR 2015
29 30 31 1 2 3 4 CYR 2015
 5 6 7 8 9 10 11 CYR 2015
12 13 14 15 16 17 18 CYR 2015
19 20 21 22 23 24 25 CYR 2015 26 27 28 29 30 31 CYR 2015

If the first day of the year falls in the second group (Friday to Sunday), then the first Monday of the year falls in
the next week. In this case, the first few days of the year before that Monday are considered to fall in the last full
week of the previous year. For example, Friday 2016-01-01 to Sunday 2016-01-03 fall in the last full week of
2015 (the majority of the days in that week are part of 2015). Here Calyearofweek (CYR) for those days is 2015,
not 2016.

 January 2016 M T W T F S S
28 29 30 31 1 2 3 CYR 2015
 4 5 6 7 8 9 10 CYR 2016
11 12 13 14 15 16 17 CYR 2016
18 19 20 21 22 23 24 CYR 2016 25 26 27 28 29 30 31 CYR 2016

Related Information

SQL Data Types [page 288]

1.13.5.1.4 Miscellaneous Functions

Miscellaneous functions perform operations on arithmetic, string, or date/time expressions, including the
return values of other functions.

List of SQL Anywhere Functions

The following miscellaneous functions are available:

ARGN Function [Miscellaneous]
COALESCE Function [Miscellaneous]
CONFLICT Function [Miscellaneous]
ERRORMSG Function [Miscellaneous]
ESTIMATE Function [Miscellaneous]
ESTIMATE_SOURCE Function [Miscellaneous]
EXPERIENCE_ESTIMATE Function [Miscellaneous]
EXPLANATION Function [Miscellaneous]
EXPRTYPE Function [Miscellaneous]
GET_IDENTITY Function [Miscellaneous]
GRAPHICAL_PLAN Function [Miscellaneous]

330 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

GREATER Function [Miscellaneous]
IDENTITY Function [Miscellaneous]
IFNULL Function [Miscellaneous]
INDEX_ESTIMATE Function [Miscellaneous]
ISNULL Function [Miscellaneous]
LESSER Function [Miscellaneous]
NEWID Function [Miscellaneous]
NULLIF Function [Miscellaneous]
NUMBER Function [Miscellaneous]
PLAN Function [Miscellaneous]
REWRITE Function [Miscellaneous]
ROW_NUMBER Function [Miscellaneous]
SQLDIALECT Function [Miscellaneous]
SQLFLAGGER Function [Miscellaneous]
ERROR_LINE Function [Miscellaneous]
TRACEBACK Function [Miscellaneous]
TRANSACTSQL Function [Miscellaneous]
VAREXISTS Function [Miscellaneous]
WATCOMSQL Function [Miscellaneous]

List of UltraLite Functions

The following miscellaneous functions are available:

ARGN Function [Miscellaneous]
COALESCE Function [Miscellaneous]
EXPLANATION Function [Miscellaneous]
GREATER Function [Miscellaneous]
IFNULL Function [Miscellaneous]
ISNULL Function [Miscellaneous]
LESSER Function [Miscellaneous]
NEWID Function [Miscellaneous]
NULLIF Function [Miscellaneous]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 331

1.13.5.1.5 Numeric Functions

Numeric functions perform mathematical operations on numerical data types or return numeric information.

List of SQL Anywhere Functions

The following numeric functions are available:

ABS function [Numeric]
ACOS function [Numeric]
ASIN function [Numeric]
ATAN function [Numeric]
ATAN2 function [Numeric]
CEILING function [Numeric]
COS function [Numeric]
COT function [Numeric]
DEGREES function [Numeric]
EXP function [Numeric]
FLOOR function [Numeric]
LOG function [Numeric]
LOG10 function [Numeric]
MOD function [Numeric]
PI function [Numeric]
POWER function [Numeric]
RADIANS function [Numeric]
RAND function [Numeric]
REMAINDER function [Numeric]
ROUND function [Numeric]
SIGN function [Numeric]
SIN function [Numeric]
SQRT function [Numeric]
TAN function [Numeric]
TRUNCNUM function [Numeric]

List of UltraLite Functions

The following numeric functions are available:

ABS function [Numeric]
ACOS function [Numeric]
ASIN function [Numeric]
ATAN function [Numeric]

332 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

ATAN2 function [Numeric]
CEILING function [Numeric]
COS function [Numeric]
COT function [Numeric]
DEGREES function [Numeric]
EXP function [Numeric]
FLOOR function [Numeric]
LOG function [Numeric]
LOG10 function [Numeric]
MOD function [Numeric]
PI function [Numeric]
POWER function [Numeric]
RADIANS function [Numeric]
REMAINDER function [Numeric]
ROUND function [Numeric]
SIGN function [Numeric]
SIN function [Numeric]
SQRT function [Numeric]
TAN function [Numeric]
TRUNCNUM function [Numeric]

1.13.5.1.6 Spatial Functions - UltraLite

Spatial data is data that describes the position, shape, and orientation of objects in a defined space. UltraLite
provides storage and data management features for spatial data, in the form of points, allowing you to store
information such as geographic locations and routing information.

UltraLite provides a set of SQL spatial functions designed for compatibility with other products. You use these
functions and constructors to access and manipulate the spatial data.

List of Functions

The following spatial functions are available:

• ST_AsBinary function [Spatial] - UltraLite
• ST_AsExtText function [Spatial] - UltraLite
• ST_AsText function [Spatial] - UltraLite
• ST_Distance function [Spatial] - UltraLite
• ST_Equals function [Spatial] - UltraLite
• ST_IntersectsRect function [Spatial] - UltraLite
• ST_Point function [Spatial] - UltraLite
• ST_PointFromExtText function [Spatial] - UltraLite

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 333

• ST_PointFromText function [Spatial] - UltraLite
• ST_PointFromWKB function [Spatial] - UltraLite
• ST_SRID function [Spatial] - UltraLite
• ST_X function [Spatial] - UltraLite
• ST_Y function [Spatial] - UltraLite

1.13.5.1.7 String Functions

String functions perform conversion, extraction, or manipulation operations on strings, or return information
about strings.

When working in a multibyte character set, check carefully whether the function being used returns
information concerning characters or bytes.

List of SQL Anywhere Functions

The following string functions are available:

ASCII function [String]
BASE64_DECODE function [String]
BASE64_ENCODE function [String]
BYTE_LENGTH function [String]
BYTE_SUBSTR function [String]
CHAR function [String]
CHARINDEX function [String]
CHAR_LENGTH function [String]
COMPARE function [String]
COMPRESS function [String]
CSCONVERT function [String]
DECOMPRESS function [String]
DECRYPT function [String]
DIFFERENCE function [String]
ENCRYPT function [String]
HASH function [String]
INSERTSTR function [String]
LCASE function [String]
LEFT function [String]
LENGTH function [String]
LOCATE function [String]
LOWER function [String]
LTRIM function [String]
NCHAR function [String]

334 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

PATINDEX function [String]
READ_CLIENT_FILE function [String]
READ_SERVER_FILE function [String]
REGEXP_SUBSTR function [String]
REPEAT function [String]
REPLACE function [String]
REPLICATE function [String]
REVERSE function [String]
RIGHT function [String]
RTRIM function [String]
SIMILAR function [String]
SORTKEY function [String]
SOUNDEX function [String]
SPACE function [String]
STR function [String]
STRING function [String]
STRTOUUID function [String]
STUFF function [String]
SUBSTRING function [String]
TO_CHAR function [String]
TO_NCHAR function [String]
TRIM function [String]
UCASE function [String]
UNICODE function [String]
UNISTR function [String]
UPPER function [String]
UUIDTOSTR function [String]
XMLCONCAT function [String]
XMLELEMENT function [String]
XMLFOREST function [String]
XMLGEN function [String]

List of UltraLite Functions

The following string functions are available:

ASCII function [String]
BYTE_LENGTH function [String]
BYTE_SUBSTR function [String]
CHAR function [String]
CHARINDEX function [String]
CHAR_LENGTH function [String]
DIFFERENCE function [String]
INSERTSTR function [String]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 335

LCASE function [String]
LEFT function [String]
LENGTH function [String]
LOCATE function [String]
LOWER function [String]
LTRIM function [String]
PATINDEX function [String]
REPEAT function [String]
REPLACE function [String]
REPLICATE function [String]
RIGHT function [String]
RTRIM function [String]
SIMILAR function [String]
SOUNDEX function [String]
SPACE function [String]
STR function [String]
STRING function [String]
STRTOUUID function [String]
STUFF function [String]
SUBSTRING function [String]
TRIM function [String]
UCASE function [String]
UPPER function [String]
UUIDTOSTR function [String]

1.13.5.1.8 System Functions

System functions return system information.

List of Functions

The following system functions are available:

CONNECTION_EXTENDED_PROPERTY function [String]
CONNECTION_PROPERTY function [System]
DATALENGTH function [System]
DB_ID function [System]
DB_NAME function [System]
DB_EXTENDED_PROPERTY function [System]
DB_PROPERTY function [System]
EVENT_CONDITION function [System]
EVENT_CONDITION_NAME function [System]

336 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

EVENT_PARAMETER function [System]
NEXT_CONNECTION function [System]
NEXT_DATABASE function [System]
PROPERTY function [System]
PROPERTY_DESCRIPTION function [System]
PROPERTY_NAME function [System]
PROPERTY_NUMBER function [System]
SUSER_ID function [System]
SUSER_NAME function [System]
TSEQUAL function [System] (deprecated)
USER_ID function [System]
USER_NAME function [System]
DB_PROPERTY function [System]

UltraLite Functions

DB_PROPERTY function [System]
ML_GET_SERVER_NOTIFICATION function [System]
SYNC_PROFILE_OPTION_VALUE function [System]

SQL Anywhere notes

• The db_id, db_name, and datalength functions are implemented as built-in functions.
• Some system functions are implemented as stored procedures.

System functions that are not described elsewhere are noted in the following table. These functions are
implemented as stored procedures.

Syntax: COL_LENGTH

COL_LENGTH(@object_name, @column_name)

Returns the INTEGER defined length of the specified column. @object_name can contain the owner, for
example, 'GROUPO.Customers'.
Syntax: COL_TERM

COL_NAME(@object_id, @column_id [, @database_id])

Returns the CHAR(128) column name.
Syntax: INDEX_COL

INDEX_COL (@table_name, @index_id, @key_# [, @user_id])

Returns the CHAR(128) name of the indexed column. @table_name can contain the owner, for example,
'GROUPO.Customers'.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 337

Syntax: OBJECT_ID

OBJECT_ID(@object_name)

Returns the INTEGER object ID. @object_name can contain the owner, for example, 'GROUPO.Customers'.
Syntax: OBJECT_NAME

OBJECT_NAME (@object_id [, @database_id])

Returns the CHAR(128) object name.

1.13.5.2 Functions

Each function is listed, and the function type (numeric, character, and so on) is indicated next to it.

In this section:

ABS Function [Numeric] [page 345]
Returns the absolute value of a numeric expression.

ACOS Function [Numeric] [page 346]
Returns the arc-cosine, in radians, of a numeric expression.

ARGN Function [Miscellaneous] [page 347]
Returns a selected argument from a list of arguments.

ASCII Function [String] [page 348]
Returns the integer ASCII value of the first byte in a string-expression.

ASIN Function [Numeric] [page 349]
Returns the arc-sine, in radians, of a number.

ATAN Function [Numeric] [page 350]
Returns the arc-tangent, in radians, of a number.

ATAN2 Function [Numeric] [page 352]
Returns the arc-tangent, in radians, of the ratio of two numbers.

AVG Function [Aggregate] [page 353]
Computes the average, for a set of rows, of a numeric expression or of a set of unique values.

BYTE_LENGTH Function [String] [page 355]
Returns the number of bytes in a string.

BYTE_SUBSTR Function [String] [page 356]
Returns a substring of a string. The substring is determined using bytes, not characters.

CAST Function [Data Type Conversion] [page 358]
Returns the value of an expression converted to a supplied data type.

CEILING Function [Numeric] [page 361]
Returns the first integer that is greater or equal to a given value. For positive numbers, this is known as
rounding up.

CHAR Function [String] [page 362]
Returns the character with the ASCII value of a number.

338 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

CHAR_LENGTH Function [String] [page 363]
Returns the number of characters in a string.

CHARINDEX Function [String] [page 364]
Returns the position of one string in another.

COALESCE Function [Miscellaneous] [page 366]
Returns the first non-NULL expression from a list. This function is identical to the ISNULL function.

CONVERT Function [Data Type Conversion] [page 367]
Returns an expression converted to a supplied data type.

COS Function [Numeric] [page 370]
Returns the cosine of the angle in radians given by its argument.

COT Function [Numeric] [page 371]
Returns the cotangent of the angle in radians given by its argument.

COUNT Function [Aggregate] [page 372]
Counts the number of rows in a group depending on the specified parameters.

COUNT_UPLOAD_ROWS function [Aggregate] [page 374]
Returns a count of the number of rows that will be uploaded in the next synchronization.

DATALENGTH Function [System] [page 375]
Returns the length, in bytes, of the underlying storage for the result of an expression.

DATE Function [Date and Time] [page 376]
Converts the expression into a date, and removes any hours, minutes, or seconds.

DATEADD Function [Date and Time] [page 377]
Returns a TIMESTAMP or TIMESTAMP WITH TIME ZONE value produced by adding a date part to its
argument.

DATEDIFF Function [Date and Time] [page 379]
Returns the interval between two dates.

DATEFORMAT Function [Date and Time] [page 381]
Returns a string representing a date expression in the specified format.

DATENAME Function [Date and Time] [page 382]
Returns the name of the specified part (such as the month June) of a TIMESTAMP or TIMESTAMP
WITH TIME ZONE value, as a character string.

DATEPART Function [Date and Time] [page 384]
Returns a portion of a TIMESTAMP or TIMESTAMP WITH TIME ZONE value.

DATETIME Function [Date and Time] [page 385]
Converts an expression into a TIMESTAMP value.

DAY Function [Date and Time] [page 386]
Returns the day of the month of its argument as an integer between 1 and 31.

DAYNAME Function [Date and Time] [page 387]
Returns the name of the day of the week from a date.

DAYS Function [Date and Time] [page 388]
Manipulates a TIMESTAMP or returns the number of days between two TIMESTAMP values.

DB_PROPERTY Function [System] [page 390]
Returns the value of the specified database property.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 339

DEGREES Function [Numeric] [page 392]
Converts a number from radians to degrees.

DIFFERENCE Function [String] [page 393]
Returns the difference in the SOUNDEX values between the two string expressions.

DOW Function [Date and Time] [page 394]
Returns a number from 1 to 7 representing the day of the week of a date, where Sunday=1, Monday=2,
and so on.

EXP Function [Numeric] [page 395]
Returns the result of the base of natural logarithms e raised to the power of the given argument.

EXPLANATION Function [Miscellaneous] [page 396]
Returns the optimization strategy of a SQL statement as a plain text string.

EXTRACT Function [Date and Time] [page 398]
Returns a date part from a DATE, TIME, TIMESTAMP, or TIMESTAMP WITH TIME ZONE expression.

FLOOR Function [Numeric] [page 400]
Returns the largest integer not greater than the given number.

GETDATE Function [Date and Time] [page 401]
Returns the current year, month, day, hour, minute, second, and fraction of a second.

GREATER Function [Miscellaneous] [page 402]
Returns the greater of two parameter values.

HEXTOINT Function [Data Type Conversion] [page 403]
Returns the decimal integer equivalent of a hexadecimal string.

HOUR Function [Date and Time] [page 405]
Returns the hour component of a TIMESTAMP value.

HOURS Function [Date and Time] [page 406]
Manipulates a TIMESTAMP or returns the number of hours between two TIMESTAMP values.

IFNULL Function [Miscellaneous] [page 408]
Evaluates whether one expression is NULL and returns a value.

INSERTSTR Function [String] [page 409]
Inserts a string into another string at a specified position.

INTTOHEX Function [Data Type Conversion] [page 410]
Returns a string containing the hexadecimal equivalent of an integer.

ISDATE Function [Data Type Conversion] [page 412]
Tests if a string argument can be converted to a date.

ISNULL Function [Miscellaneous] [page 413]
Returns the first non-NULL expression from a list. This function is identical to the COALESCE function.

LCASE Function [String] [page 414]
Converts all characters in a string to lowercase.

LEFT Function [String] [page 415]
Returns multiple characters from the beginning of a string.

LENGTH Function [String] [page 417]
Returns the number of characters in the specified string.

LESSER Function [Miscellaneous] [page 418]

340 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns the lesser of two parameter values.

LIST Function [Aggregate] [page 419]
Returns a delimited list of values for every row in a group.

LOCATE Function [String] [page 422]
Returns the position of one string within another.

LOG Function [Numeric] [page 424]
Returns the natural logarithm of a number.

LOG10 Function [Numeric] [page 425]
Returns the base 10 logarithm of a number.

LOWER Function [String] [page 427]
Converts all characters in a string to lowercase.

LTRIM Function [String] [page 428]
Removes leading blanks or specified characters from the string.

MAX Function [Aggregate] [page 429]
Returns the maximum expression value found in each group of rows.

MICROSECOND Function [Date and Time] [page 431]
Returns the microsecond component of a TIMESTAMP expression.

MILLISECOND Function [Date and Time] [page 432]
Returns the millisecond component of a TIMESTAMP expression.

MIN Function [Aggregate] [page 433]
Returns the minimum expression value found in each group of rows.

MINUTE Function [Date and Time] [page 435]
Returns the minute component of a TIMESTAMP value.

MINUTES Function [Date and Time] [page 436]
Manipulates a TIMESTAMP or returns the number of minute boundaries between two TIMESTAMP
values.

ML_GET_SERVER_NOTIFICATION function [System] [page 438]
This function allows UltraLite users to use lightweight polling to query a notifier on a MobiLink server
for server-initiated sync requests.

MOD Function [Numeric] [page 439]
Returns the remainder when one whole number is divided by another.

MONTH Function [Date and Time] [page 441]
Returns the month of the given date.

MONTHNAME Function [Date and Time] [page 442]
Returns the name of the month from a date.

MONTHS Function [Date and Time] [page 443]
Manipulates a TIMESTAMP or returns the number of month boundaries between two TIMESTAMP
values.

NEWID Function [Miscellaneous] [page 445]
Generates a UUID (Universally Unique Identifier) value.

NOW Function [Date and Time] [page 446]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 341

Returns the current date and time as a TIMESTAMP value. The accuracy is limited by the accuracy of
the system clock.

NULLIF Function [Miscellaneous] [page 448]
Provides an abbreviated CASE expression by comparing expressions.

PATINDEX Function [String] [page 449]
Returns an integer representing the starting position of the first occurrence of a pattern in a string.

PI Function [Numeric] [page 452]
Returns the numeric value PI.

POWER Function [Numeric] [page 452]
Calculates one number raised to the power of another.

QUARTER Function [Date and Time] [page 453]
Returns a number indicating the quarter of the year from the supplied TIMESTAMP expression.

RADIANS Function [Numeric] [page 455]
Converts a number from degrees to radians.

REMAINDER Function [Numeric] [page 456]
Returns the remainder when one whole number is divided by another.

REPEAT Function [String] [page 457]
Concatenates a string a specified number of times.

REPLACE Function [String] [page 458]
Replaces a string with another string, and returns the new results.

REPLICATE Function [String] [page 460]
Concatenates a string a specified number of times.

RIGHT Function [String] [page 461]
Returns the rightmost characters of a string.

ROUND Function [Numeric] [page 463]
Rounds the numeric-expression to the specified integer-expression amount of places after the
decimal point.

RTRIM Function [String] [page 464]
Removes trailing blanks or specified characters from the string.

SECOND Function [Date and Time] [page 466]
Returns the seconds value of the TIMESTAMP argument.

SECONDS Function [Date and Time] [page 467]
Manipulates a TIMESTAMP or returns the number of second boundaries between two TIMESTAMP
values.

SHORT_PLAN function [Miscellaneous] [page 469]
Returns a short description of the UltraLite plan optimization strategy of a SQL statement, as a string.
The description is the same as that returned by the EXPLANATION function.

SIGN Function [Numeric] [page 470]
Returns the sign (positive or negative) of the given number.

SIMILAR Function [String] [page 471]
Returns a number indicating the similarity between two strings.

SIN Function [Numeric] [page 472]

342 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns the sine of a number.

SOUNDEX Function [String] [page 473]
Returns a number representing the sound of a string.

SPACE Function [String] [page 475]
Returns a specified number of spaces.

SQRT Function [Numeric] [page 476]
Returns the square root of a number.

ST_AsBinary Function [Spatial] - UltraLite [page 477]
Returns a binary string representing the specified geometry.

ST_AsExtText Function [Spatial] - UltraLite [page 478]
Returns a binary string representing the specified geometry.

ST_AsText Function [Spatial] - UltraLite [page 478]
Returns a binary string representing the specified geometry.

ST_Distance Function [Spatial] - UltraLite [page 479]
Returns the smallest distance between two specified geometry values.

ST_Equals Function [Spatial] - UltraLite [page 480]
Tests whether an ST_Geometry value is spatially equal to another ST_Geometry value. Two geometry
values can be considered equal if they have the same x and y coordinates and are in the same reference
system.

ST_IntersectsRect Function [Spatial] - UltraLite [page 481]
Tests if a point is located within the box defined by the two points specified as min and max.

ST_Point Function [Spatial] - UltraLite [page 482]
Constructs a point based on x and y coordinates.

ST_PointFromExtText Function [Spatial] - UltraLite [page 483]
Returns an ST_Geometry value, which is transformed from a VARCHAR value containing the EWKT
representation of an ST_Geometry.

ST_PointFromText Function [Spatial] - UltraLite [page 484]
Returns an ST_Geometry value, which is transformed from a VARCHAR value containing the WKT
representation of an ST_Geometry.

ST_PointFromWKB Function [Spatial] - UltraLite [page 485]
Returns an ST_Geometry value, which is transformed from a BINARY value containing the WKB
representation of an ST_Geometry.

ST_SRID Function [Spatial] - UltraLite [page 486]
Retrieves the spatial reference system (SRID) associated with the geometry value.

ST_X Function [Spatial] - UltraLite [page 487]
Returns the x coordinate of the ST_Geometry value.

ST_Y Function [Spatial] - UltraLite [page 488]
Returns the y coordinate of the ST_Geometry value.

STR Function [String] [page 489]
Returns the string equivalent of a number.

STRING Function [String] [page 490]
Concatenates one or more strings into one large string.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 343

STRTOUUID Function [String] [page 491]
Converts a string value to a unique identifier (UUID or GUID) value.

STUFF Function [String] [page 493]
Deletes multiple characters from one string and replaces them with another string.

SUBSTRING Function [String] [page 494]
Returns a substring of a string.

SUM Function [Aggregate] [page 497]
Returns the total of the specified expression for each group of rows.

SWITCHOFFSET Function [Date and Time] [page 498]
Returns a TIMESTAMP WITH TIME ZONE value that is converted from its original time zone offset to
the specified time zone offset.

SYNC_PROFILE_OPTION_VALUE Function [System] - UltraLite [page 499]
Returns the value of the option corresponding to the given option name.

TAN Function [Numeric] [page 500]
Returns the tangent of a number.

TODATETIMEOFFSET Function [Date and Time] [page 502]
Converts a TIMESTAMP value to a TIME STAMP WITH TIME ZONE value using the specified time zone
offset.

TODAY Function [Date and Time] [page 503]
Returns the current date as a DATE value.

TRIM Function [String] [page 504]
Removes leading and trailing blanks or specified characters from a string.

TRUNCNUM Function [Numeric] [page 505]
Truncates a number at a specified number of places after the decimal point.

UCASE Function [String] [page 506]
Converts all characters in a string to uppercase.

UPPER Function [String] [page 508]
Converts all characters in a string to uppercase.

UUIDTOSTR Function [String] [page 509]
Converts a unique identifier value (UUID, also known as GUID) to a string value.

WEEKS Function [Date and Time] [page 511]
Manipulates a TIMESTAMP or returns the number of weeks between two TIMESTAMP values.

YEAR Function [Date and Time] [page 512]
Returns the year component of the TIMESTAMP argument.

YEARS Function [Date and Time] [page 513]
Manipulates a TIMESTAMP or returns the number of years between two TIMESTAMP values.

YMD Function [Date and Time] [page 515]
Returns a date value corresponding to the given year, month, and day of the month. Arguments are
INTEGER values from -32768 to 32767.

344 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.1 ABS Function [Numeric]

Returns the absolute value of a numeric expression.

 Syntax

ABS(numeric-expression)

Parameters

numeric-expression

The number whose absolute value is to be returned.

Returns

An absolute value of the numeric expression.

Numeric-expression data type Returns

INT INT

FLOAT FLOAT

DOUBLE DOUBLE

NUMERIC NUMERIC

Standards

ANSI/ISO SQL Standard

Part of optional Language Feature T441.

Example

The following statement returns the value 66:

SELECT ABS(-66);

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 345

1.13.5.2.2 ACOS Function [Numeric]

Returns the arc-cosine, in radians, of a numeric expression.

 Syntax

ACOS(numeric-expression)

Parameters

numeric-expression

The cosine of the angle.

Returns

DOUBLE

Remarks

This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the arc-cosine value for 0.52:

SELECT ACOS(0.52);

346 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

ASIN Function [Numeric] [page 349]
ATAN Function [Numeric] [page 350]
ATAN2 Function [Numeric] [page 352]
COS Function [Numeric] [page 370]

1.13.5.2.3 ARGN Function [Miscellaneous]

Returns a selected argument from a list of arguments.

 Syntax

ARGN(integer-expression , expression [, ...])

Parameters

integer-expression

The position of an argument within the list of expressions.
expression

An expression of any data type passed into the function. All supplied expressions must be of the same data
type.

Returns

Using the value of the integer-expression as n, returns the nth argument (starting at 1) from the remaining
list of arguments.

Remarks

While the expressions can be of any data type, they must all be of the same data type. The integer expression
must be from one to the number of expressions in the list or NULL is returned. Multiple expressions are
separated by a comma.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 347

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 6:

SELECT ARGN(6, 1,2,3,4,5,6);

1.13.5.2.4 ASCII Function [String]

Returns the integer ASCII value of the first byte in a string-expression.

 Syntax

ASCII(string-expression)

Parameters

string-expression

The string.

Returns

SMALLINT

Remarks

If the string is empty, then ASCII returns zero. Literal strings must be enclosed in quotes. If the database
character set is multibyte and the first character of the parameter string consists of more than one byte, the
result is NULL.

348 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 90:

SELECT ASCII('Z');

Related Information

CHAR Function [String] [page 362]
STRING Function [String] [page 490]

1.13.5.2.5 ASIN Function [Numeric]

Returns the arc-sine, in radians, of a number.

 Syntax

ASIN(numeric-expression)

Parameters

numeric-expression

The sine of the angle.

Returns

DOUBLE

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 349

Remarks

The SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the arc-sine value for 0.52:

SELECT ASIN(0.52);

Related Information

ACOS Function [Numeric] [page 346]
ATAN Function [Numeric] [page 350]
ATAN2 Function [Numeric] [page 352]
SIN Function [Numeric] [page 472]

1.13.5.2.6 ATAN Function [Numeric]

Returns the arc-tangent, in radians, of a number.

 Syntax

ATAN(numeric-expression)

Parameters

numeric-expression

350 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The tangent of the angle.

Returns

DOUBLE

Remarks

This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

The ATAN and TAN functions are inverse operations.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the arc-tangent value for 0.52:

SELECT ATAN(0.52);

Related Information

ACOS Function [Numeric] [page 346]
ASIN Function [Numeric] [page 349]
ATAN2 Function [Numeric] [page 352]
TAN Function [Numeric] [page 500]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 351

1.13.5.2.7 ATAN2 Function [Numeric]

Returns the arc-tangent, in radians, of the ratio of two numbers.

 Syntax

{ ATAN2 | ATN2 } (numeric-expression-1 , numeric-expression-2)

Parameters

numeric-expression-1

The numerator in the ratio whose arc-tangent is calculated.
numeric-expression-2

The denominator in the ratio whose arc-tangent is calculated.

Returns

DOUBLE

Remarks

This function converts its arguments to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

UltraLite does not support the function name short form ATN2.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the arc-tangent value for the ratio 0.52 to 0.60:

SELECT ATAN2(0.52, 0.60);

352 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

ACOS Function [Numeric] [page 346]
ASIN Function [Numeric] [page 349]
ATAN Function [Numeric] [page 350]
TAN Function [Numeric] [page 500]

1.13.5.2.8 AVG Function [Aggregate]

Computes the average, for a set of rows, of a numeric expression or of a set of unique values.

 Syntax
Numeric expressions

AVG([ALL | DISTINCT] numeric-expression)

Window function

AVG([ALL] numeric-expression) OVER (window-spec)

window-spec : see the Remarks section below

UltraLite - numeric expressions

AVG([DISTINCT] numeric-expression)

Parameters

[ALL] numeric-expression

The expression whose average is calculated over the rows in each group.
DISTINCT clause

Computes the average of the unique numeric values in each group.

Returns

Returns the NULL value for a group containing no rows.

Returns DOUBLE if the argument is DOUBLE, otherwise NUMERIC.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 353

Remarks

This average does not include rows where the numeric-expression is the NULL value.

This function can generate an overflow error, resulting in an error being returned. You can use the CAST
function on numeric-expression to avoid the overflow error.

Specifying this function with window-spec represents usage as a window function in a SELECT statement. As
such, elements of window-spec can be specified either in the function syntax (inline), or with a WINDOW
clause in the SELECT statement.

Standards

ANSI/ISO SQL Standard

Core Feature. The numeric-expression syntax is a Core Feature of the Standard, while window-spec
syntax comprises part of optional Language Feature T611, "Basic OLAP operations". The ability to specify
DISTINCT over an expression that is not a column reference comprises part of optional Language feature
F561, "Full value expressions". The software also supports Language Feature F441, "Extended set function
support", which permits operands of aggregate functions to be arbitrary expressions possibly including
outer references to expressions in other query blocks that are not column references. The software does
not support optional Language Feature F442, "Mixed column references in set functions", and it also does
not permit the arguments of an aggregate function to include both a column reference from the query
block containing the AVG function, combined with an outer reference.

Example

The following statement returns the value 49988.623200 when connected to the SQL Anywhere 17 Demo:

SELECT AVG(Salary) FROM Employees;

The following statement returns the average product price from the Products table when connected to the SQL
Anywhere 17 Demo database:

SELECT AVG(DISTINCT UnitPrice) FROM Products;

The following statement returns an error with SQLSTATE 42W68 because the arguments of AVG contain both a
quantified expression from the subquery, and an outer reference (p.Quantity) from the outer SELECT block
when connected to the SQL Anywhere 17 Demo:

SELECT * from GROUPO.Products as p WHERE p.Quantity > (SELECT AVG(0.5 * p.Quantity + 0.5 * s.Quantity)
 from GROUPO.SalesOrderItems as s WHERE s.ProductID = p.ProductID)

354 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

SUM Function [Aggregate] [page 497]
COUNT Function [Aggregate] [page 372]
Troubleshooting Database Upgrades: Aggregate Functions and Outer References

1.13.5.2.9 BYTE_LENGTH Function [String]

Returns the number of bytes in a string.

 Syntax

BYTE_LENGTH(string-expression)

Parameters

string-expression

The string whose length is to be calculated.

Returns

INT

Remarks

Trailing white space characters in the string-expression are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the BYTE_LENGTH value may differ from the number of characters
returned by CHAR_LENGTH.

This function supports NCHAR inputs and/or outputs.

UltraLite: UltraLite does not support NCHAR inputs and/or outputs.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 355

https://help.sap.com/viewer/a3e900ad39b94d689987e838835f39fe/17.0.01/en-US/815805646ce210149f99cb85deffce48.html

Standards

ANSI/ISO SQL Standard

Not in the standard. The equivalent function is the OCTET_LENGTH function.

Example

The following statement returns the value 12:

SELECT BYTE_LENGTH('Test Message');

Related Information

CHAR_LENGTH Function [String] [page 363]
DATALENGTH Function [System] [page 375]
LENGTH Function [String] [page 417]
STRING Function [String] [page 490]

1.13.5.2.10 BYTE_SUBSTR Function [String]

Returns a substring of a string. The substring is determined using bytes, not characters.

 Syntax

BYTE_SUBSTR(source-string , start-position [, length])

Parameters

source-string

The data from which the binary substring is taken.
start-position

An integer expression indicating the start of the substring. A positive integer starts from the beginning of
the data, with the first byte being position 1. A negative integer specifies a substring starting from the end
of the data, the final byte being at position -1.
length

356 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

An integer expression indicating the length of the substring. A positive length specifies the number of
bytes to be taken starting at the start position. A negative length returns at most length bytes up to, and
including, the starting position, from the left of the starting position.

Returns

BINARY or LONG BINARY, depending on the length of the result.

Remarks

Both start-position and length can be either positive or negative. Use appropriate combinations of
negative and positive numbers, to get a substring from either the beginning or end of the string. If length is
specified, the maximum length of the substring is ABS(length).

If start-position is zero and length is non-negative, then a start-position value of 1 is used. If start-
position is zero and length is negative, then a start value of -1 is used.

The argument source-string can be any data type that can be converted to a binary data type, and is
treated as a binary string.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the binary value 0x54657374, which is the hexadecimal representation of
Test:

SELECT BYTE_SUBSTR('Test Message', 1, 4);

Related Information

SUBSTRING Function [String] [page 494]
STRING Function [String] [page 490]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 357

1.13.5.2.11 CAST Function [Data Type Conversion]

Returns the value of an expression converted to a supplied data type.

 Syntax

CAST(expression AS datatype)

Parameters

expression

The expression to be converted.
datatype

The data type to cast the expression into. Set the data type explicitly, or specify the %TYPE attribute to set
the data type to the data type of a column in a table or view, or to the data type of a variable.

Returns

Depends on the data type requested.

Remarks

If you use the CAST function to truncate strings, then the string_rtruncation database option must be set to
OFF; otherwise, there will be an error. Use the LEFT function to truncate strings.

If you do not indicate a length for character string types, then an appropriate length is chosen. If neither
precision nor scale is specified for a DECIMAL conversion, then the database server selects appropriate values.

UltraLite: It is recommended that you explicitly indicate the precision and scale in your CAST function. The
ability to convert depends on the value used in the conversion. The values in the original data type must be
compatible with the new data type to avoid generating a conversion error. Use the following chart to determine
whether a conversion is supported:

358 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Symbol Compatibility

Always converts

Never converts

Value-dependent

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 359

 Note
In UltraLite:

• To convert between a VARBINARY and a UNIQUEIDENTIFIER, the VARBINARY value must have a 16
byte length.

• To convert between a NUMERIC and a VARBINARY, the NUMERIC source must have a value that can
also be cast as a BIGINT.

• To convert from a VARCHAR to an ST_GEOMETRY, the VARCHAR source must represent a valid
geometry in either WKT or EWKT format.

• To convert from a VARBINARY to an ST_GEOMETRY, the VARBINARY source must represent a valid
geometry in WKB format.

• When casting from a WKB or WKT formatted source to an ST_GEOMETRY, an SRID of 0 is assigned to
the ST_GEOMETRY value. When casting from an ST_GEOMETRY, VARCHAR values are formatted in
EWKT and VARBINARY values are formatted in WKB.

The HEXTOINT and INTTOHEX functions can be used to convert to and from hexadecimal values.

Standards

ANSI/ISO SQL Standard

Core Feature. However, in the software, CAST supports a number of data type conversions that are not
permitted by the ANSI/ISO SQL Standard. For example, you can CAST an integer value to a DATE type,
whereas in the ANSI/ISO SQL Standard this type of conversion is not permitted.

Example

The following function ensures a string is used as a date:

SELECT CAST('2000-10-31' AS DATE);

The value of the expression 1 + 2 is calculated, and the result is then cast into a single-character string.

SELECT CAST(1 + 2 AS CHAR);

Casting between VARCHAR and ST_GEOMETRY is usually implicit. For example, the following statement adds
values to ST_GEOMETRY columns using the ST_POINT function and a VARCHAR. Each value is implicitly cast
to an ST_GEOMETRY data type consistent with the table columns, but results still appear as VARCHAR.

INSERT INTO T1 VALUES (2, ST_POINT(1,2,0), 'SRID=2163;Point(1 2)');

The following statement casts a value to the data type defined for the BirthDate column (DATE data type) of
the Employees table:

SELECT CAST ('1966-10-30' AS Employees.BirthDate%TYPE);

360 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite: You can use the CAST function to shorten strings:

SELECT CAST ('Surname' AS CHAR(5));

Related Information

CONVERT Function [Data Type Conversion] [page 367]

1.13.5.2.12 CEILING Function [Numeric]

Returns the first integer that is greater or equal to a given value. For positive numbers, this is known as
rounding up.

 Syntax

{ CEILING | CEIL } (numeric-expression)

Parameters

numeric-expression

The number whose ceiling is to be calculated.

Returns

DOUBLE

Remarks

This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

Standards

ANSI/ISO SQL Standard

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 361

The CEILING function comprises part of optional ANSI/ISO SQL Language Feature T621, "Enhanced
numeric functions".

Example

The following statement returns the value 60:

SELECT CEILING(59.84567);

Related Information

FLOOR Function [Numeric] [page 400]

1.13.5.2.13 CHAR Function [String]

Returns the character with the ASCII value of a number.

 Syntax

CHAR(integer-expression)

Parameters

integer-expression

The number to be converted to an ASCII character. The number must be in the range 0 to 255, inclusive.

Returns

VARCHAR

Remarks

The character returned corresponds to the supplied numeric expression in the current database character set,
according to a binary sort order.

362 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

CHAR returns NULL for integer expressions with values greater than 255 or less than zero.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value Y:

SELECT CHAR(89);

Related Information

STRING Function [String] [page 490]

1.13.5.2.14 CHAR_LENGTH Function [String]

Returns the number of characters in a string.

 Syntax

CHAR_LENGTH (string-expression)

Parameters

string-expression

The string whose length is to be calculated.

Returns

INT

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 363

Remarks

Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the value returned by the CHAR_LENGTH function may differ from
the number of bytes returned by the BYTE_LENGTH function.

You can use the CHAR_LENGTH function and the LENGTH function interchangeably for CHAR, VARCHAR,
LONG VARCHAR, and NCHAR data types. However, you must use the LENGTH function for BINARY and bit
array data types. This function supports NCHAR inputs and/or outputs.

UltraLite: You can use the CHAR_LENGTH function and the LENGTH function interchangeably for CHAR,
VARCHAR and LONG VARCHAR data types. However, you must use the LENGTH function for BINARY and bit
array data types.

Standards

ANSI/ISO SQL Standard

CHAR_LENGTH is a Core Feature. Using CHAR_LENGTH over an expression of type NCHAR comprises
part of optional ANSI/ISO SQL Language Feature F421.

Example

The following statement returns the value 8:

SELECT CHAR_LENGTH('Chemical');

Related Information

BYTE_LENGTH Function [String] [page 355]
STRING Function [String] [page 490]

1.13.5.2.15 CHARINDEX Function [String]

Returns the position of one string in another.

 Syntax

CHARINDEX(string-expression-1 , string-expression-2)

364 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

string-expression-1

The string for which you are searching. The value must be less than 256 bytes.
string-expression-2

The string to be searched.

Returns

INT

Remarks

The first character of string-expression-1 is identified as 1. If the string being searched contains more
than one instance of the other string, then the CHARINDEX function returns the position of the first instance.

If the string being searched does not contain the other string, then the CHARINDEX function returns 0.

If any of the arguments are NULL, the result is NULL.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs or outputs.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns last and first names from the Surname and GivenName columns of the
Employees table, but only when the last name begins with the letter K:

SELECT Surname, GivenName FROM GROUPO.Employees WHERE CHARINDEX('K', Surname) = 1;

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 365

The following results are returned:

Surname GivenName

Klobucher James

Kuo Felicia

Kelly Moira

Related Information

SUBSTRING Function [String] [page 494]
REPLACE Function [String] [page 458]
LOCATE Function [String] [page 422]
STRING Function [String] [page 490]

1.13.5.2.16 COALESCE Function [Miscellaneous]

Returns the first non-NULL expression from a list. This function is identical to the ISNULL function.

 Syntax

COALESCE(expression , expression [, ...])

Parameters

expression

Any expression.

At least two expressions must be passed into the function, and all expressions must be comparable.

Returns

The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the first non-NULL expression from the
list. If the database server cannot find a common comparison type, then an error is returned.

366 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The result is NULL only if all the arguments are NULL.

The parameters can be of any scalar type, but not necessarily same type.

Standards

ANSI/ISO SQL Standard

Core Feature.

Example

The following statement returns the value 34:

SELECT COALESCE(NULL, 34, 13, 0);

Related Information

ISNULL Function [Miscellaneous] [page 413]

1.13.5.2.17 CONVERT Function [Data Type Conversion]

Returns an expression converted to a supplied data type.

 Syntax

CONVERT(datatype , expression [, format-style])

Parameters

datatype

The data type to convert the expression into. Set the data type explicitly, or specify the %TYPE attribute to
set the data type to the data type of a column in a table or view, or to the data type of a variable.
expression

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 367

The expression to be converted.
format-style

The style code to apply to the output value. Use this parameter when converting strings to date or time
data types, and vice versa. The table below shows the supported style codes, followed by a representation
of the output format produced by that style code. The style codes are separated into two columns,
depending on whether the century is included in the output format (for example, 06 versus 2006).

Style code 0 is used if an argument is not provided.

Without century (yy) style codes With century (yyyy) style codes Output format

- 0 or 100 Mmm dd yyyy hh:nnAA

1 101 mm/dd/yy[yy]

2 102 [yy]yy.mm.dd

3 103 dd/mm/yy[yy]

4 104 dd.mm.yy[yy]

5 105 dd-mm-yy[yy]

6 106 dd Mmm yy[yy]

7 107 Mmm dd, yy[yy]

8 108 hh:nn:ss

- 9 or 109 Mmm dd yyyy hh:nn:ss:sssAA

10 110 mm-dd-yy[yy]

11 111 [yy]yy/mm/dd

12 112 [yy]yymmdd

- 13 or 113 dd Mmm yyyy hh:nn:ss:sss (24 hour
clock, Europe default + milliseconds,
4-digit year)

- 14 or 114 hh:nn:ss:sss (24 hour clock)

- 20 or 120 yyyy-mm-dd hh:nn:ss (24-hour clock,
ODBC canonical, 4-digit year)

- 21 or 121 yyyy-mm-dd hh:nn:ss.sss (24 hour
clock, ODBC canonical with millisec
onds, 4-digit year)

Returns

Depends on the data type specified.

Remarks

The CONVERT function can be used to convert a string to a DATE, TIME, or TIMESTAMP data type, provided
that there is no ambiguity when parsing the string. If format-style is specified, then the database server

368 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

may use it as a hint on how to parse the string. The database server returns an error if it cannot parse the string
unambiguously.

UltraLite: This function is similar to the CAST function but allows you to specify a format style to assist with
date and time data type conversions.

Standards

ANSI/ISO SQL Standard

The CONVERT function is defined in the ANSI/ISO SQL Standard. However, in the Standard the purpose of
CONVERT is to perform a transcoding of the input string expression to a different character set, which is
implemented in the software as the CSCONVERT function.

Example

The following statements illustrate the use of format style:

SELECT CONVERT(CHAR(20), OrderDate, 104) FROM GROUPO.SalesOrders;

OrderDate

16.03.2000

20.03.2000

23.03.2000

25.03.2000

...

SELECT CONVERT(CHAR(20), OrderDate, 7) FROM GROUPO.SalesOrders;

OrderDate

Mar 16, 00

Mar 20, 00

Mar 23, 00

Mar 25, 00

...

The following statement illustrates conversion to an integer and returns the value 5:

SELECT CONVERT(integer, 5.2);

The following statement converts a value to the data type defined for the BirthDate column (DATE data type) of
the Employees table:

SELECT CONVERT (Employees.BirthDate%TYPE, '1966-10-30');

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 369

Related Information

UltraLite date_format Creation Option [page 151]
CAST Function [Data Type Conversion] [page 358]

1.13.5.2.18 COS Function [Numeric]

Returns the cosine of the angle in radians given by its argument.

 Syntax

COS(numeric-expression)

Parameters

numeric-expression

The angle, in radians.

Returns

This function converts its argument to DOUBLE, performs the computation in double-precision floating-point
arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value of the cosine of an angle 0.52 radians:

SELECT COS(0.52);

370 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

ACOS Function [Numeric] [page 346]
COT Function [Numeric] [page 371]
SIN Function [Numeric] [page 472]
TAN Function [Numeric] [page 500]

1.13.5.2.19 COT Function [Numeric]

Returns the cotangent of the angle in radians given by its argument.

 Syntax

COT(numeric-expression)

Parameters

numeric-expression

The angle, in radians.

Returns

This function converts its argument to DOUBLE, performs the computation in double-precision floating-point
arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the cotangent value of 0.52:

SELECT COT(0.52);

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 371

Related Information

COS Function [Numeric] [page 370]
SIN Function [Numeric] [page 472]
TAN Function [Numeric] [page 500]

1.13.5.2.20 COUNT Function [Aggregate]

Counts the number of rows in a group depending on the specified parameters.

 Syntax
Expressions

COUNT([* | [ALL | DISTINCT] expression])

Window function

COUNT([* | [ALL] expression]) OVER (window-spec)

window-spec : see the Remarks section below

UltraLite expressions

COUNT([* | [DISTINCT] expression])

Parameters

*

Return the number of rows in each group. COUNT(*) and COUNT() are semantically equivalent.
[ALL] expression

Return the number of rows in each group where the value of expression is not NULL.
DISTINCT expression

Return the number of distinct values of expression for all of the rows in each group where expression is
not NULL.
UltraLite expression

Return the number of rows in each group where the value of expression is not null.

p

372 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

The COUNT function returns a value of type INT.

COUNT never returns the value NULL. If a group contains no rows, or if there are no non-NULL values of
expression in a group, then COUNT returns 0.

Remarks

In SQL Anywhere, the COUNT function returns a maximum value of 2147483647. Use the COUNT_BIG function
when counting large result sets, the result might have more rows, or there is a possibility of overflow.

Specifying this function with window-spec represents usage as a window function in a SELECT statement. As
such, elements of window-spec can be specified either in the function syntax (inline), or with a WINDOW
clause in the SELECT statement.

Standards

ANSI/ISO SQL Standard

Core Feature. When used as a window function, COUNT comprises part of optional ANSI/ISO SQL
Language Feature T611, "Basic OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional ANSI/ISO SQL Language Feature F561, "Full value expressions". The software also supports
ANSI/ISO SQL Language Feature F441, "Extended set function support", which permits operands of
aggregate functions to be arbitrary expressions possibly including outer references to expressions in other
query blocks that are not column references.

The software does not support optional ANSI/ISO SQL Feature F442, "Mixed column references in set
functions". The software does not permit the arguments of an aggregate function to include both a column
reference from the query block containing the COUNT function, combined with an outer reference.

Example

The following statement returns each unique city, and the number of employees working in that city:

SELECT City, COUNT(*) FROM GROUPO.Employees GROUP BY City;

The following statement returns each unique city, and the number of managers working in that city:

SELECT City, COUNT(DISTINCT ManagerID) FROM GROUPO.Employees GROUP BY City;

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 373

Related Information

AVG Function [Aggregate] [page 353]
SUM Function [Aggregate] [page 497]
Troubleshooting Database Upgrades: Aggregate Functions and Outer References

1.13.5.2.21 COUNT_UPLOAD_ROWS function [Aggregate]

Returns a count of the number of rows that will be uploaded in the next synchronization.

 Syntax

COUNT_UPLOAD_ROWS(pubs,threshold)

Parameters

pubs

A comma-separated list of publications to check for rows.
threshold

The maximum number of rows to count (a value of 0 corresponds to the maximum limit).

Returns

INT

Example

The following returns the total number of rows to upload in mypub1 and mypub2:

SELECT COUNT_UPLOAD_ROWS('mypub1,mypub2', 0);

374 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/a3e900ad39b94d689987e838835f39fe/17.0.01/en-US/815805646ce210149f99cb85deffce48.html

1.13.5.2.22 DATALENGTH Function [System]

Returns the length, in bytes, of the underlying storage for the result of an expression.

 Syntax

DATALENGTH(expression)

Parameters

expression

Usually a column name. If expression is a string constant, you must enclose it in quotes.

Returns

UNSIGNED INT

Remarks

The return values of the DATALENGTH function are as follows:

Data type DATALENGTH

BIT 1

TINYINT 1

SMALLINT 2

INTEGER 4

BIGINT 8

REAL 4

DOUBLE 8

TIME 8

DATE 4

TIMESTAMP 8

DATETIME 8

TIMESTAMP WITH TIME ZONE 29

UNIQUEIDENTIFIER 16

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 375

Data type DATALENGTH

CHAR Length of the data

VARCHAR Length of the data

BINARY Length of the data

VARBINARY Length of the data

NCHAR Length of the data

NVARCHAR Length of the data

TEXT Length of the data

NTEXT Length of the data

IMAGE Length of the data

XML Length of the data

In SQL Anywhere, this function supports NCHAR inputs and outputs.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the length of the longest string in the CompanyName column:

SELECT MAX(DATALENGTH(CompanyName)) FROM GROUPO.Customers;

The following statement returns the length of the string '8sdofinsv8s7a7s7gehe4h':

SELECT DATALENGTH('8sdofinsv8s7a7s7gehe4h');

1.13.5.2.23 DATE Function [Date and Time]

Converts the expression into a date, and removes any hours, minutes, or seconds.

 Syntax

DATE(expression)

376 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

expression

The value to be converted to date format, typically a string.

Returns

DATE

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 1999-01-02 as a date:

SELECT DATE('1999-01-02 21:20:53');

The following statement returns the create dates of all the objects listed in the SYSOBJECT system view:

SELECT DATE(creation_time) FROM SYS.SYSOBJECT;

Related Information

UltraLite date_order Creation Option [page 153]

1.13.5.2.24 DATEADD Function [Date and Time]

Returns a TIMESTAMP or TIMESTAMP WITH TIME ZONE value produced by adding a date part to its argument.

 Syntax

DATEADD(date-part , integer-expression , timestamp-expression)

date-part :

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 377

 year | quarter | month | week | day | dayofyear | hour | minute | second | millisecond
| microsecond

Parameters

date-part

The date part that integer-expression represents.
integer-expression

The number of date-part values to be added to timestamp-expression. integer-expression can
be any numeric type, but its value is truncated to an INTEGER. This value can be positive, zero, or negative.
timestamp-expression

The TIMESTAMP or TIMESTAMP WITH TIME ZONE value to be modified.

Returns

TIMESTAMP WITH TIME ZONE if timestamp-expression is a TIMESTAMP WITH TIME ZONE; otherwise
TIMESTAMP.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the TIMESTAMP value 2016-05-02 00:00:00.000:

SELECT DATEADD(month, 12, '2015/05/02');

The following statement returns the TIMESTAMP value 2015-05-02 04:00:00.000:

SELECT DATEADD(hour, 4, '2015/05/02');

You can specify a minus sign to subtract from a date or time. For example, to get a timestamp from 31 days ago,
you can execute the following:

SELECT DATEADD(day, -31, NOW());

378 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The following statement returns the TIMESTAMP WITH TIME ZONE value 2015-05-06 11:33:00.000+04:00:

SELECT DATEADD(day, 4, CAST('2015/05/02 11:33:00.000000+04:00' as TIMESTAMP
WITH TIME ZONE));

Related Information

Specifying Date Parts [page 328]

1.13.5.2.25 DATEDIFF Function [Date and Time]

Returns the interval between two dates.

 Syntax

DATEDIFF(date-part , date-expression-1 , date-expression-2)

date-part : year | quarter | month | week | day | dayofyear | hour | minute | second | millisecond
| microsecond

Parameters

date-part

Specifies the date part in which the interval is to be measured.
date-expression-1

The starting date for the interval. This value is subtracted from date-expression-2 to return the
number of date-parts between the two arguments.
date-expression-2

The ending date for the interval. Date-expression-1 is subtracted from this value to return the number
of date-parts between the two arguments.

Returns

INT with year, quarter, month, week, day, and dayofyear. BIGINT with hour, minute, second, millisecond, and
microsecond.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 379

Remarks

This function calculates the number of date parts between two specified dates. The result is a signed integer
value equal to (date-expression-2 - date-expression-1), in date parts.

The DATEDIFF function results are truncated, not rounded, when the result is not an even multiple of the date
part.

When you use day as the date part, the DATEDIFF function returns the number of midnights between the two
times specified, including the second date but not the first.

When you use month as the date part, the DATEDIFF function returns the number of first-of-the-months
between two dates, including the second date but not the first.

When you use week as the date part, the DATEDIFF function returns the number of Sundays between the two
dates, including the second date but not the first.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns 1:

SELECT DATEDIFF(hour, '4:00AM', '5:50AM');

The following statement returns 102:

SELECT DATEDIFF(month, '1987/05/02', '1995/11/15');

The following statement returns 0:

SELECT DATEDIFF(day, '00:00', '23:59');

The following statement returns 4:

SELECT DATEDIFF(day, '1999/07/19 00:00', '1999/07/23 23:59');

The following statement returns 0:

SELECT DATEDIFF(month, '1999/07/19', '1999/07/23');

The following statement returns 1:

SELECT DATEDIFF(month, '1999/07/19', '1999/08/23');

380 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The following example shows how to use the DATEDIFF function to return the number of milliseconds to do a 3-
way join with the GROUPO.Customers table. The output is sent to the database server window:

BEGIN DECLARE startTime, endTime TIMESTAMP;
 DECLARE rowCount INT;

 SET startTime = CURRENT TIMESTAMP;
 SELECT count(*) INTO rowCount FROM GROUPO.Customers AS T1, GROUPO.Customers
AS T2, GROUPO.Customers AS T3;
 SET endTime = CURRENT TIMESTAMP;

 MESSAGE 'Time to count rows: ' || DATEDIFF(MILLISECOND, startTime,
endTime) || ' ms';
END

Related Information

Specifying Date Parts [page 328]

1.13.5.2.26 DATEFORMAT Function [Date and Time]

Returns a string representing a date expression in the specified format.

 Syntax

DATEFORMAT(datetime-expression , string-expression)

Parameters

datetime-expression

The datetime to be converted.
string-expression

The format of the converted date.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs.

Returns

VARCHAR

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 381

Remarks

Any allowable date format can be used for the string-expression.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value Jan 01, 1989:

SELECT DATEFORMAT('1989-01-01', 'Mmm dd, yyyy');

Related Information

UltraLite date_format Creation Option [page 151]

1.13.5.2.27 DATENAME Function [Date and Time]

Returns the name of the specified part (such as the month June) of a TIMESTAMP or TIMESTAMP WITH TIME
ZONE value, as a character string.

 Syntax

DATENAME(date-part , timestamp-expression)

Parameters

date-part

The date part to be named.
timestamp-expression

The TIMESTAMP or TIMESTAMP WITH TIME ZONE value for which the date part name is to be returned.
For meaningful results, timestamp-expression should contain the requested date-part.

382 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

VARCHAR

Remarks

The DATENAME function returns a string, even if the result is numeric, such as 23 for the day.

In SQL Anywhere, English names are returned for an English locale, other names are returned when the locale
is not English. For example, use the Language (LANG) connection parameter to specify a different language.

When the date part TZOffset (TZ) is specified, DATENAME returns the offset as a string of the form: { + |
- }hh:nn.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

In an English locale, the following statement returns the value May:

SELECT DATENAME(month, '1987/05/02');

On SQL Anywhere in a German locale, the value returned is Mai. In a Spanish locale, the value returned is Mayo.
Several locales are supported.

The following statement returns the value -05:00:

SELECT DATENAME(TZ, CAST('2016/02/03 12:02:00-5:00' AS TIMESTAMP WITH TIME
ZONE)) AS TZOffset;

Related Information

Specifying Date Parts [page 328]
DATEPART Function [Date and Time] [page 384]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 383

1.13.5.2.28 DATEPART Function [Date and Time]

Returns a portion of a TIMESTAMP or TIMESTAMP WITH TIME ZONE value.

 Syntax

DATEPART(date-part , timestamp-expression)

Parameters

date-part

The date part to be returned.
timestamp-expression

The TIMESTAMP or TIMESTAMP WITH TIME ZONE value for which the part is to be returned.

Returns

INT

Remarks

For meaningful results timestamp-expression should contain the required date-part portion.

The numbers that correspond to week days depend on the setting of the first_day_of_week database option.
By default, first_day_of_week is 7 which means Sunday.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 5:

SELECT DATEPART(month , '1987/05/02');

384 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

For TIMESTAMP WITH TIME ZONE strings, the string value must be cast as follows to ensure conversion to the
correct type.

SELECT DATEPART(TZOffset, CAST('2015-07-01 12:34:56.789000 +05:30' AS TIMESTAMP
WITH TIME ZONE));

The following example creates a table, TableStatistics, and inserts into it the total number of sales orders per
year as stored in the SalesOrders table:

CREATE TABLE TableStatistics (ID INTEGER NOT NULL DEFAULT AUTOINCREMENT,
 Year INT,
 NumberOrders INT);
INSERT INTO TableStatistics (Year, NumberOrders)
 SELECT DATEPART(Year, OrderDate), COUNT(*)
 FROM GROUPO.SalesOrders GROUP BY DATEPART(Year, OrderDate);

Related Information

Specifying Date Parts [page 328]

1.13.5.2.29 DATETIME Function [Date and Time]

Converts an expression into a TIMESTAMP value.

 Syntax

DATETIME(expression)

Parameters

expression

The expression to be converted. It is generally a string.

Returns

TIMESTAMP

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 385

Remarks

Attempts to convert numerical values return an error.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns a timestamp with value 1998-09-09 12:12:12.000:

SELECT DATETIME('1998-09-09 12:12:12.000');

Related Information

CAST Function [Data Type Conversion] [page 358]

1.13.5.2.30 DAY Function [Date and Time]

Returns the day of the month of its argument as an integer between 1 and 31.

 Syntax

DAY(date-expression)

Parameters

date-expression

The date as a DATE data type.

386 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

SMALLINT

Remarks

The DAY function returns an integer between 1 and 31, corresponding to the day of the month in the argument.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 12:

SELECT DAY('2001-09-12');

1.13.5.2.31 DAYNAME Function [Date and Time]

Returns the name of the day of the week from a date.

 Syntax

DAYNAME(date-expression)

Parameters

date-expression

The date.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 387

Returns

VARCHAR

Remarks

The names are returned as: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

SQL Anywhere returns English names for an English locale, and returns other names when the locale is not
English. For example, the Language (LANG) connection parameter can be used to specify a different language.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

In an English locale, the following statement returns the value Saturday:

SELECT DAYNAME('1987/05/02');

In a German locale, the value returned is Samstag. In an Italian locale, the value returned is sabato. Several
locales are supported.

1.13.5.2.32 DAYS Function [Date and Time]

Manipulates a TIMESTAMP or returns the number of days between two TIMESTAMP values.

 Syntax
Return number of days between 0000-02-29 and a TIMESTAMP value

DAYS(timestamp-expression)

Return number of days between two TIMESTAMP values

DAYS(timestamp-expression , timestamp-expression)

Add time to a TIMESTAMP

DAYS(timestamp-expression , integer-expression)

388 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

timestamp-expression

A TIMESTAMP value.
integer-expression

The number of days to be added to the timestamp-expression. If the integer-expression is
negative, the appropriate number of days is subtracted from timestamp-expression. If you supply an
integer expression, the timestamp-expression must be explicitly cast as a TIME, DATE or TIMESTAMP.
If timestamp-expression is a TIME value, the current date is assumed.

Returns

TIMESTAMP when adding time to a timestamp; otherwise, INTEGER.

Remarks

The result of the DAYS function depends on its arguments. The DAYS function ignores hours, minutes, and
seconds in its arguments.

Return number of days since 0000-02-29

If you pass a single timestamp-expression to the DAYS function, it will return the number of days
between 0000-02-29 and timestamp-expression as an INTEGER.

 Note
0000-02-29 is not meant to imply an actual date; it is the default date used by the DAYS function.

Return number of days between two TIMESTAMP values

If you pass two TIMESTAMP values to the DAYS function, the function returns the integer number of days
between them.

You can also use the DATEDIFF function to get the interval between two dates.
Add time to a TIMESTAMP

If you pass a TIMESTAMP value and an integer to the DAYS function, the function returns the TIMESTAMP
result of adding the integer number of days to the timestamp-expression argument.

You can also use the DATEADD function to add a date part to a TIMESTAMP.

Standards

ANSI/ISO SQL Standard

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 389

Not in the standard.

Example

The following statement returns the integer 729889:

SELECT DAYS('1998-07-13 06:07:12');

The following statements return the integer value -366, indicating that the second DATE value is 366 days
before the first. It is recommended that you use the second example (DATEDIFF):

SELECT DAYS('1998-07-13 06:07:12', '1997-07-12 10:07:12');

SELECT DATEDIFF(day, '1998-07-13 06:07:12', '1997-07-12 10:07:12');

The following statements return the TIMESTAMP value 1999-07-14 00:00:00.000. It is recommended that you
use the second example (DATEADD):

SELECT DAYS(CAST('1998-07-13' AS DATE), 366);

SELECT DATEADD(day, 366, '1998-07-13');

Related Information

DATEDIFF Function [Date and Time] [page 379]
DATEADD Function [Date and Time] [page 377]
CAST Function [Data Type Conversion] [page 358]

1.13.5.2.33 DB_PROPERTY Function [System]

Returns the value of the specified database property.

 Syntax

DB_PROPERTY({ property-id | property-name } [, database-id | database-
name])

UltraLite:

DB_PROPERTY(property-name)

390 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

property-id

The database property ID.
property-name

The database property name.
database-id

The database ID number, as returned by the DB_ID function. Typically, the database name is used.
database-name

The name of the database, as returned by the DB_NAME function.

Returns

VARCHAR, LONG VARCHAR

Remarks

Returns a string.

The current database is used if the second argument is omitted.

UltraLite: To set an option in UltraLite, use the SET OPTION statement or your component's API-specific Set
Database Option method.

Privileges

No privileges are required to execute this function for the current database. To execute this function for other
databases, you must have either the SERVER OPERATOR or MONITOR system privilege.

NULL is returned if you specify an invalid parameter value or don't have one of the required system privileges.

UltraLite: These privileges do not apply to UltraLite.

Standards

ANSI/ISO SQL Standard

Not in the standard.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 391

Example

The following statement returns the page size of the current database, in bytes:

SELECT DB_PROPERTY('PageSize');

Related Information

UltraLite Database Properties [page 203]
SET OPTION Statement [UltraLite] [page 560]

1.13.5.2.34 DEGREES Function [Numeric]

Converts a number from radians to degrees.

 Syntax

DEGREES(numeric-expression)

Parameters

numeric-expression

An angle in radians.

Returns

DOUBLE

Remarks

This function converts its argument to DOUBLE, performs the computation in double-precision floating-point
arithmetic, and returns the degrees of the angle given by numeric-expression. If the parameter is NULL, the
result is NULL.

392 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 29.79380534680281:

SELECT DEGREES(0.52);

1.13.5.2.35 DIFFERENCE Function [String]

Returns the difference in the SOUNDEX values between the two string expressions.

 Syntax

DIFFERENCE (string-expression-1 , string-expression-2)

Parameters

string-expression-1

The first SOUNDEX argument.
string-expression-2

The second SOUNDEX argument.

Returns

SMALLINT

Remarks

The DIFFERENCE function compares the SOUNDEX values of two strings and evaluates the similarity between
them, returning a value from 0 through 4, where 4 is the best match.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 393

This function always returns some value. The result is NULL only if one of the arguments are NULL.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns similarity between the words test and chest:

SELECT DIFFERENCE('test', 'chest');

Related Information

SOUNDEX Function [String] [page 473]
STRING Function [String] [page 490]

1.13.5.2.36 DOW Function [Date and Time]

Returns a number from 1 to 7 representing the day of the week of a date, where Sunday=1, Monday=2, and so
on.

 Syntax

DOW(date-expression)

Parameters

date-expression

The value (of type DATE) to be evaluated.

394 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

SMALLINT

Remarks

The DOW function is not affected by the value specified for the first_day_of_week database option. For
example, even if first_day_of_week is set to Monday, the DOW function returns a 2 for Monday.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 5:

SELECT DOW('1998-07-09');

The following statement returns the value 1:

SELECT DOW(CAST('2010/05/30 11:33:00.000000+04:00' as TIMESTAMP WITH TIME
ZONE));

The following statement queries the Employees table and returns the employee StartDate, expressed as the
number of the day of the week:

SELECT DOW(StartDate) FROM GROUPO.Employees;

1.13.5.2.37 EXP Function [Numeric]

Returns the result of the base of natural logarithms e raised to the power of the given argument.

 Syntax

EXP(numeric-expression)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 395

Parameters

numeric-expression

The exponent.

Returns

DOUBLE

Remarks

The EXP function returns the result of raising the base of natural logarithms e by the value specified by
numeric-expression.

This function converts its argument to DOUBLE, performs the computation in double-precision floating-point
arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards

ANSI/ISO SQL Standard

The EXP function comprises part of optional ANSI/ISO SQL Language Feature T621, "Enhanced numeric
functions".

Example

The statement returns the value 3269017.3724721107:

SELECT EXP(15);

1.13.5.2.38 EXPLANATION Function [Miscellaneous]

Returns the optimization strategy of a SQL statement as a plain text string.

 Syntax

EXPLANATION(string-expression [, cursor-type [, update-status]])

396 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite:

EXPLANATION(string-expression)

Parameters

string-expression

The SQL statement, which is commonly a SELECT statement, but can also be an UPDATE, MERGE, or
DELETE statement.
cursor-type

A cursor type, expressed as a string. Possible values are asensitive, insensitive, sensitive, or keyset-driven.
If cursor-type is not specified, asensitive is used by default.
update-status

A string parameter accepting one of the following values indicating how the optimizer should treat the
given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE (default) The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is the same as
READ-WRITE.

Returns

LONG VARCHAR

Remarks

The execution plan for the query, returned as a string.

The GRAPHICAL_PLAN function offers significantly greater information about access plans, including system
properties that may have affected how the statement was optimized.

This information can help you decide which indexes to add or how to structure your database for better
performance.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 397

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement passes a SELECT statement as a string parameter and returns the plan for executing
the query:

SELECT EXPLANATION('SELECT * FROM Departments WHERE DepartmentID > 100');

The following statement returns a string containing the short form of the text plan for an INSENSITIVE cursor
over the query SELECT * FROM Departments WHERE ...':

SELECT EXPLANATION('SELECT * FROM GROUPO.Departments WHERE DepartmentID > 100', 'insensitive', 'read-only');

Related Information

Execution Plans in UltraLite [page 575]

1.13.5.2.39 EXTRACT Function [Date and Time]

Returns a date part from a DATE, TIME, TIMESTAMP, or TIMESTAMP WITH TIME ZONE expression.

 Syntax

EXTRACT(date-part FROM timestamp-expression)

Parameters

date-part

The date part to be returned. The valid values are YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, and TIMEZONE_MINUTE.
timestamp-expression

The DATE, TIME, or TIMESTAMP or TIMESTAMP WITH TIME ZONE value.

398 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

If date-part is SECOND, then the function returns a string that includes the fractional second (up to
microsecond precision). For all other date-part values, the function returns an INTEGER.

Remarks

The EXTRACT function is similar to the DATEPART function but not completely. The EXTRACT function accepts
only a subset of date parts. Also, the two functions return different values when date-part is SECOND.

Date parts YY, MM, DD, HH, MI, SS, TZH, and TZM may also be used but do not conform to the SQL Standard.

Standards

ANSI/ISO SQL Standard

Core feature.

Example

The following statement returns 56.789000:

SELECT EXTRACT(SECOND FROM '2015-07-01 12:34:56.789000');

The following statement returns 5:

SELECT EXTRACT(TIMEZONE_HOUR FROM CAST('2015-07-01 12:34:56.789000 +05:30' AS
TIMESTAMP WITH TIME ZONE));

The following statement returns 30:

SELECT EXTRACT(TIMEZONE_MINUTE FROM CAST('2015-07-01 12:34:56.789000 +05:30' AS
TIMESTAMP WITH TIME ZONE));

The following statement returns 2021:

SELECT EXTRACT(YEAR FROM '21-07-01 12:34:56.345678');

It does so since 21-07-01 represents July 1, 2021.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 399

1.13.5.2.40 FLOOR Function [Numeric]

Returns the largest integer not greater than the given number.

 Syntax

FLOOR(numeric-expression)

Parameters

numeric-expression

The value to be truncated, typically a fixed numeric type with non-zero scale or an approximate numeric
type (DOUBLE, REAL, or FLOAT).

Returns

DOUBLE

Remarks

This function converts its arguments to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

Standards

ANSI/ISO SQL Standard

The FLOOR function comprises part of optional ANSI/ISO SQL Language Feature T621, "Enhanced
numeric functions".

Example

The following statement returns a Floor value of 123:

SELECT FLOOR (123);

400 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The following statement returns a Floor value of 123:

SELECT FLOOR (123.45);

The following statement returns a Floor value of -124:

SELECT FLOOR (-123.45);

Related Information

CEILING Function [Numeric] [page 361]

1.13.5.2.41 GETDATE Function [Date and Time]

Returns the current year, month, day, hour, minute, second, and fraction of a second.

 Syntax

GETDATE()

Returns

TIMESTAMP

Remarks

The accuracy is limited by the accuracy of the system clock.

The information the GETDATE function returns is equivalent to the information returned by the NOW function
and the CURRENT TIMESTAMP special value.

 Note
If the database is using a simulated time zone, the simulated time zone is used to calculate the results of
this function.

Standards

ANSI/ISO SQL Standard

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 401

Not in the standard.

Example

The following statement returns the system date and time:

SELECT GETDATE();

Related Information

NOW Function [Date and Time] [page 446]

1.13.5.2.42 GREATER Function [Miscellaneous]

Returns the greater of two parameter values.

 Syntax

GREATER(expression-1 , expression-2)

Parameters

expression-1

The first parameter value to be compared.
expression-2

The second parameter value to be compared.

Returns

The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the result in the type used for the
comparison. If the database server cannot find a common comparison type, an error is returned.

402 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

If the parameters are equal, the first is returned.

Variables defined as type TABLE REF are not supported for this function.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 10:

SELECT GREATER(10, 5) FROM SYS.DUMMY;

Related Information

LESSER Function [Miscellaneous] [page 418]

1.13.5.2.43 HEXTOINT Function [Data Type Conversion]

Returns the decimal integer equivalent of a hexadecimal string.

 Syntax

HEXTOINT(hexadecimal-string)

Parameters

hexadecimal-string

The string to be converted to an integer.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 403

Returns

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from hexadecimal
values.

The HEXTOINT function returns as INT the platform-independent SQL INTEGER equivalent of the hexadecimal
string. The hexadecimal value represents a negative integer if the 8th digit from the right is one of the digits 8-9
and the uppercase or lowercase letters A-F and the previous leading digits are all uppercase or lowercase letter
F. The following is not a valid use of HEXTOINT since the argument represents a positive integer value that
cannot be represented as a signed 32-bit integer:

SELECT HEXTOINT('0x0080000001');

Remarks

The HEXTOINT function accepts string keycodes or variables consisting only of digits and the uppercase or
lowercase letters A-F, with or without a 0x prefix. The following are all valid uses of HEXTOINT:

SELECT HEXTOINT('0xFFFFFFFF'); SELECT HEXTOINT('0x00000100');
SELECT HEXTOINT('100'); SELECT HEXTOINT('0xffffffff80000001');

The HEXTOINT function removes the 0x prefix, if present. If the data exceeds 8 digits, it must represent a value
that can be represented as a signed 32-bit integer value.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 420:

SELECT HEXTOINT('1A4');

404 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

INTTOHEX Function [Data Type Conversion] [page 410]

1.13.5.2.44 HOUR Function [Date and Time]

Returns the hour component of a TIMESTAMP value.

 Syntax

HOUR(timestamp-expression)

Parameters

timestamp-expression

A TIMESTAMP value.

Returns

SMALLINT

Remarks

The value returned is the hour portion of the TIMESTAMP expression, a SMALLINT value between 0 and 23.

Standards

ANSI/ISO SQL Standard

Not in the standard.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 405

Example

The following statement returns the value 21:

SELECT HOUR('1998-07-09 21:12:13');

1.13.5.2.45 HOURS Function [Date and Time]

Manipulates a TIMESTAMP or returns the number of hours between two TIMESTAMP values.

 Syntax
Return number of hours between midnight 0000-02-29 and a TIMESTAMP value

HOURS (timestamp-expression)

Return number of hours between two TIMESTAMP values

HOURS (timestamp-expression , timestamp-expression)

Add hours to a TIMESTAMP

HOURS (time-or-timestamp-expression , integer-expression)

Parameters

time-or-timestamp-expression

A value of type TIME or TIMESTAMP.
timestamp-expression

A value of type TIMESTAMP.
integer-expression

The number of hours to be added to time-or-timestamp-expression. If integer-expression is
negative, the appropriate number of hours is subtracted from time-or-timestamp-expression.

Returns

INTEGER when returning the number of hours between two time-or-timestamp-expression values.

TIME or TIMESTAMP when adding time to a time-or-timestamp-expression

406 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The result of the HOURS function depends on its arguments.

Return number of hours since midnight 0000-02-29

If you pass a single timestamp-expression to the HOURS function, it will return the number of hours
between midnight 0000-02-29 and timestamp-expression as an INTEGER.

 Note
0000-02-29 is not meant to imply an actual date; it is the default TIMESTAMP value used by the
HOURS function.

Return number of hours between two TIMESTAMP values

If you pass two TIMESTAMP values to the HOURS function, the function returns the integer number of
hours between them.
Add hours to a TIMESTAMP

If you pass a TIMESTAMP value and an INTEGER value to the HOURS function, the function returns the
TIMESTAMP result of adding the integer number of hours to time-or-timestamp-expression
argument. Similarly, if you pass a TIME value as the first argument, a TIME value is returned as the result.
This syntax does not support implicit conversion of the first argument. It may be necessary to explicitly
cast the first argument to a DATE, TIME or TIMESTAMP value. If the first argument is a DATE, midnight is
assumed for the time portion.

You can also use the DATEDIFF and DATEADD functions for these calculations.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statements return the value 4, signifying that the second TIMESTAMP value is four hours after
the first. It is recommended that you use the second example (DATEDIFF).

SELECT HOURS('1999-07-13 06:07:12', '1999-07-13 10:07:12'); SELECT DATEDIFF(hour, '1999-07-13 06:07:12', '1999-07-13 10:07:12');

The following statement returns the value 17517342:

SELECT HOURS('1998-07-13 06:07:12');

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 407

The following statements return the datetime 1999-05-13 02:05:07.000. It is recommended that you use the
second example (DATEADD).

SELECT HOURS(CAST('1999-05-12 21:05:07' AS DATETIME), 5); SELECT DATEADD(hour, 5, '1999-05-12 21:05:07');

Related Information

DATEDIFF Function [Date and Time] [page 379]
DATEADD Function [Date and Time] [page 377]
CAST Function [Data Type Conversion] [page 358]

1.13.5.2.46 IFNULL Function [Miscellaneous]

Evaluates whether one expression is NULL and returns a value.

 Syntax

IFNULL(expression-1 , expression-2 [, expression-3])

Parameters

expression-1

The expression to be evaluated. Its value determines whether expression-2 or expression-3 is
returned.
expression-2

The return value if expression-1 is NULL.
expression-3

The return value if expression-1 is not NULL.

Returns

The data type returned depends on the data type of expression-2 and expression-3.

408 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

If the first expression is the NULL value, then the value of the second expression is returned. If the first
expression is not NULL, the value of the third expression is returned. If the first expression is not NULL and
there is no third expression, NULL is returned.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value -66:

SELECT IFNULL(NULL, -66);

The following statement returns NULL, because the first expression is not NULL and there is no third
expression:

SELECT IFNULL(-66, -66);

1.13.5.2.47 INSERTSTR Function [String]

Inserts a string into another string at a specified position.

 Syntax

INSERTSTR(integer-expression , string-expression-1 , string-expression-2)

Parameters

integer-expression

The position after which the string is to be inserted. Use zero to insert a string at the beginning.
string-expression-1

The string into which the other string is to be inserted.
string-expression-2

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 409

The string to be inserted.

Returns

LONG BINARY, LONG VARCHAR, or LONG NVARCHAR, depending on the data type of the input expressions.

Remarks

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs or outputs.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value backoffice:

SELECT INSERTSTR(0, 'office ', 'back');

Related Information

STUFF Function [String] [page 493]
STRING Function [String] [page 490]

1.13.5.2.48 INTTOHEX Function [Data Type Conversion]

Returns a string containing the hexadecimal equivalent of an integer.

 Syntax

INTTOHEX(integer-expression)

410 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

integer-expression

The integer to be converted to hexadecimal.

Returns

VARCHAR

Remarks

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from hexadecimal
values.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 0000009c:

SELECT INTTOHEX(156);

Related Information

Converting to and from Hexadecimal Values
HEXTOINT Function [Data Type Conversion] [page 403]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 411

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81733f956ce21014970ff897ff8fbebf.html

1.13.5.2.49 ISDATE Function [Data Type Conversion]

Tests if a string argument can be converted to a date.

 Syntax

ISDATE(string)

Parameters

string

The string to be analyzed to determine if the string represents a valid date.

Returns

INT

Remarks

If a conversion is possible, the function returns 1; otherwise, 0 is returned. If the argument is NULL, 0 is
returned.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs or outputs.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following example imports data from an external file into the sample database, exports rows which contain
invalid values, and copies the remaining rows to a permanent table:

CREATE GLOBAL TEMPORARY TABLE MyData(

412 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

 person VARCHAR(100),
 birth_date VARCHAR(30),
 height_in_cms VARCHAR(10)
) ON COMMIT PRESERVE ROWS;
 LOAD TABLE MyData FROM 'exported.dat';
 UNLOAD
 SELECT * FROM MyData
 WHERE ISDATE(birth_date) = 0
 OR ISNUMERIC(height_in_cms) = 0
 TO 'badrows.dat';
 INSERT INTO PermData
 SELECT person, birth_date, height_in_cms
 FROM MyData
 WHERE ISDATE(birth_date) = 1
 AND ISNUMERIC(height_in_cms) = 1;
 COMMIT; DROP TABLE MyData;

1.13.5.2.50 ISNULL Function [Miscellaneous]

Returns the first non-NULL expression from a list. This function is identical to the COALESCE function.

 Syntax

ISNULL(expression , expression [, ...])

Parameters

expression

An expression to be tested against NULL.

At least two expressions must be passed into the function, and all expressions must be comparable.

Returns

The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the first non-NULL expression from the
list. If the database server cannot find a common comparison type, then an error is returned.

Standards

ANSI/ISO SQL Standard

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 413

Not in the standard.

Example

The following statement returns the value -66:

SELECT ISNULL(NULL ,-66, 55, 45, NULL, 16);

Related Information

COALESCE Function [Miscellaneous] [page 366]

1.13.5.2.51 LCASE Function [String]

Converts all characters in a string to lowercase.

 Syntax

LCASE(string-expression)

Parameters

string-expression

The string to be converted to lowercase.

Returns

LONG NVARCHAR when used on NCHAR data and LONG VARCHAR when used on CHAR data if the database
collation is UCA.Otherwise, the data type is the same as the input data type.

UltraLite: The returned data type is the same as the input data type.

Remarks

The LCASE function is identical to the LOWER function.

414 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Standards

ANSI/ISO SQL Standard

Not in the standard. The equivalent function LOWER is a Core Feature.

Example

The following statement returns the value chocolate:

SELECT LCASE('ChoCOlatE');

Related Information

LOWER Function [String] [page 427]
UCASE Function [String] [page 506]
UPPER Function [String] [page 508]
STRING Function [String] [page 490]

1.13.5.2.52 LEFT Function [String]

Returns multiple characters from the beginning of a string.

 Syntax

LEFT(string-expression , integer-expression)

Parameters

string-expression

The string.
integer-expression

The number of characters to return.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 415

Returns

LONG VARCHAR or LONG NVARCHAR

UltraLite: LONG VARCHAR

Remarks

If the string contains multibyte characters, and the proper collation is being used, the number of bytes
returned may be greater than the specified number of characters.

You can specify an integer-expression that is larger than the value in the argument string expression. In
this case, the entire value is returned.

Whenever possible, if the input string uses character-length semantics, the return value is described in
character-length semantics.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the first 5 characters of each Surname value in the Customers table:

SELECT LEFT(Surname, 5) FROM GROUPO.Customers;

Related Information

RIGHT Function [String] [page 461]
STRING Function [String] [page 490]

416 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.53 LENGTH Function [String]

Returns the number of characters in the specified string.

 Syntax

{ LENGTH | LEN } (string-expression)

Parameters

string-expression

The string.

Returns

INT

Remarks

Use this function to determine the length of a string. For example, specify a column name for string-
expression to determine the length of values in the column.

If the string contains multibyte characters, and the proper collation is being used, LENGTH returns the number
of characters, not the number of bytes. If the string is of data type BINARY, the LENGTH function behaves as
the BYTE_LENGTH function.

You can use the LENGTH function and the CHAR_LENGTH function interchangeably for CHAR, VARCHAR,
LONG VARCHAR, and NCHAR data types. However, you must use the LENGTH function for BINARY and bit
array data types. This function supports NCHAR inputs and/or outputs.

UltraLite does not support the function name short form LEN.

UltraLite does not support NCHAR inputs and/or outputs.

Standards

ANSI/ISO SQL Standard

The LENGTH function is not in the standard; however, its semantics are identical to those of the
CHAR_LENGTH function in the ANSI/ISO SQL Standard. Using LENGTH over a string expression of type
NCHAR comprises part of optional ANSI/ISO SQL Language Feature F421.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 417

Example

The following statement returns the value 9:

SELECT LENGTH('chocolate');

Related Information

International Languages and Character Sets
BYTE_LENGTH Function [String] [page 355]
STRING Function [String] [page 490]

1.13.5.2.54 LESSER Function [Miscellaneous]

Returns the lesser of two parameter values.

 Syntax

LESSER(expression-1 , expression-2)

Parameters

expression-1

The first parameter value to be compared.
expression-2

The second parameter value to be compared.

Returns

The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the result in the type used for the
comparison. If the database server cannot find a common comparison type, an error is returned.

418 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813826126ce210149074e3a77d2e1dce.html

Remarks

If the parameters are equal, the first value is returned.

Variables defined as type TABLE REF are not supported for this function.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 5:

SELECT LESSER(10, 5) FROM SYS.DUMMY;

Related Information

GREATER Function [Miscellaneous] [page 402]

1.13.5.2.55 LIST Function [Aggregate]

Returns a delimited list of values for every row in a group.

 Syntax

LIST([ALL | DISTINCT] string-expression [, delimiter-string] [ORDER BY
order-by-expression [ASC | DESC] , ...])

UltraLite:

LIST([DISTINCT] string-expression [, delimiter-string])

Parameters

string-expression

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 419

A string expression, usually a column name. When ALL is specified (the default), for each row in the group,
the value of string-expression is added to the result string, with values separated by delimiter-
string. When DISTINCT is specified, only unique string-expression values are added.

UltraLite: For each row in the group, the value of string-expression is added to the result string, with
values separated by delimiter-string.
delimiter-string

A delimiter string for the list items. The default setting is a comma. There is no delimiter if a value of NULL
or an empty string is supplied. The delimiter-string must be a constant.
order-by-expression

Order the items returned by the function. There is no comma preceding this argument, which makes it
easy to use in the case where no delimiter-string is supplied.

order-by-expression cannot be an integer literal. However, it can be a variable that contains an integer
literal.

When an ORDER BY clause contains constants, they are interpreted by the optimizer and then replaced by
an equivalent ORDER BY clause. For example, the optimizer interprets ORDER BY 'a' as ORDER BY
expression.

A query block containing more than one aggregate function with valid ORDER BY clauses can be executed
if the ORDER BY clauses can be logically combined into a single ORDER BY clause. For example, the
following clauses:

ORDER BY expression1, 'a', expression2

ORDER BY expression1, 'b', expression2, 'c', expression3

are subsumed by the clause:

ORDER BY expression1, expression2, expression3

Returns

LONG VARCHAR
LONG NVARCHAR

 Note
UltraLite does not return LONG NVARCHAR.

Remarks

The LIST function returns the concatenation (with delimiters) of all the non-NULL values of X for each row in
the group. If there does not exist at least one row in the group with a definite X-value, then LIST(X) returns the
empty string.

420 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

NULL values and empty strings are ignored by the LIST function.

A LIST function cannot be used as a window function, but it can be used as input to a window function.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs.

Standards

ANSI/ISO SQL Standard

The software supports ANSI/ISO SQL Language Feature F441, "Extended set function support", which
permits operands of aggregate functions to be arbitrary expressions that are not column references.

The software does not support optional ANSI/ISO SQL Feature F442, "Mixed column references in set
functions". The software does not permit the arguments of an aggregate function to include both a column
reference from the query block containing the LIST function, combined with an outer reference.

Example

The following statement returns a list of all the street addresses for employees whose given name is Thomas:

SELECT LIST(Street) FROM GROUPO.Employees WHERE GivenName = 'Thomas';

The following statement returns lists of the names of cities delimited by semicolons and their state, organized
by state :

SELECT LIST(DISTINCT City, ';'), State FROM GROUPO.Employees GROUP BY State;

The following statement lists employee IDs. Each row in the result set contains a comma-delimited list of
employee IDs for a single department.

SELECT LIST(EmployeeID) FROM GROUPO.Employees GROUP BY DepartmentID;

LIST(EmployeeID)

102,105,160,243,247,249,266,278,...

129,195,299,467,641,667,690,856,...

148,390,586,757,879,1293,1336,...

184,207,318,409,591,888,992,1062,...

191,703,750,868,921,1013,1570,...

The following statement sorts the employee IDs by the last name of the employee:

SELECT LIST(EmployeeID ORDER BY Surname) AS "Sorted IDs"

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 421

 FROM GROUPO.Employees GROUP BY DepartmentID;

Sorted IDs

1013,191,750,921,868,1658,...

1751,591,1062,1191,992,888,318,...

1336,879,586,390,757,148,1483,...

1039,129,1142,195,667,1162,902,...

The following statement returns semicolon-separated lists. Note the position of the ORDER BY clause and the
list separator:

SELECT LIST(EmployeeID, ';' ORDER BY Surname) AS "Sorted IDs" FROM GROUPO.Employees GROUP BY DepartmentID;

Sorted IDs

1013;191;750;921;868;1658;703;...

1751;591;1062;1191;992;888;318;...

1336;879;586;390;757;148;1483;...

1039;129;1142;195;667;1162;902; ...

160;105;1250;247;266;249;445;...

Be sure to distinguish the previous statement from the following statement, which returns comma-separated
lists of employee IDs sorted by a compound sort-key of (Surname, ';'):

SELECT LIST(EmployeeID ORDER BY Surname, ';') AS "Sorted IDs" FROM GROUPO.Employees GROUP BY DepartmentID;

UltraLite: The following statement returns all street addresses from the Employees table:

SELECT LIST(Street) FROM GROUPO.Employees;

1.13.5.2.56 LOCATE Function [String]

Returns the position of one string within another.

 Syntax

LOCATE(string-expression-1, string-expression-2 [, integer-expression])

422 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

string-expression-1

The string to be searched.
string-expression-2

The string to be searched for.

This string is limited to 254 bytes.
integer-expression

The character position in the string to begin the search. The first character is position 1. If the starting
offset is negative, the locate function returns the last matching string offset rather than the first. A negative
offset indicates how much of the end of the string is to be excluded from the search. The number of bytes
excluded is calculated as (-1 * offset) -1.

Returns

INT

Remarks

If integer-expression is specified, the search starts at that offset into the string.

The first string can be a long string (longer than 255 bytes), but the second is limited to 254 bytes. If a long
string is given as the second argument, the function returns a NULL value. If the string is not found, 0 is
returned. Searching for a zero-length string will return 1. If any of the arguments are NULL, the result is NULL.

If multibyte characters are used, with the appropriate collation, then the starting position and the return value
may be different from the byte positions.

If arguments string-expression-1 and string-expression-2 are of binary data type, the LOCATE
function behaves the same as the BYTE_LOCATE function.

Standards

ANSI/ISO SQL Standard

Not in the standard.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 423

Example

The following statement returns the value 8:

SELECT LOCATE('office party this week - rsvp as soon as possible',
 'party', 2);

The following statement:

BEGIN DECLARE STR LONG VARCHAR;
 DECLARE POS INT;
 SET str = 'c:\test\functions\locate.sql';
 SET pos = LOCATE(str, '\', -1);
 select str, pos,
 SUBSTR(str, 1, pos -1) AS path,
 SUBSTR(str, pos +1) AS filename; END;

returns the following output:

str pos path filename

c:\test\functions\locate.sql 18 c:\test\functions locate.sql

Related Information

CHARINDEX Function [String] [page 364]
STRING Function [String] [page 490]

1.13.5.2.57 LOG Function [Numeric]

Returns the natural logarithm of a number.

 Syntax

LOG(numeric-expression)

Parameters

numeric-expression

The number.

424 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

This function converts its argument to DOUBLE, performs the computation in double-precision floating-point
arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Remarks

The argument is an expression that returns the value of any built-in numeric data type.

Standards

ANSI/ISO SQL Standard

The ANSI/ISO SQL Standard defines the natural logarithm function using the keyword LN. The natural
logarithm function comprises part of optional ANSI/ISO SQL Language Feature T621, "Enhanced numeric
functions".

Example

The following statement returns the natural logarithm of 50:

SELECT LOG(50);

Related Information

LOG10 Function [Numeric] [page 425]

1.13.5.2.58 LOG10 Function [Numeric]

Returns the base 10 logarithm of a number.

 Syntax

LOG10(numeric-expression)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 425

Parameters

numeric-expression

The number.

Returns

This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic. If the parameter is NULL, the result is NULL.

Remarks

The argument is an expression that returns the value of any built-in numeric data type.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the base 10 logarithm for 50:

SELECT LOG10(50);

Related Information

LOG Function [Numeric] [page 424]

426 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.59 LOWER Function [String]

Converts all characters in a string to lowercase.

 Syntax

LOWER(string-expression)

Parameters

string-expression

The string to be converted to lowercase.

Returns

LONG NVARCHAR when used on NCHAR data
LONG VARCHAR when used on CHAR data if the database collation is UCA
Otherwise, the data type is the same as the input data type
UltraLite returns the same data type as the input data type

Remarks

The LCASE function is identical to the LOWER function.

Standards

ANSI/ISO SQL Standard

Core Feature. Using LOWER over an expression of type NCHAR comprises part of the optional Language
Feature F421.

Example

The following statement returns the value chocolate:

SELECT LOWER('chOCOLate');

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 427

Related Information

LCASE Function [String] [page 414]
UCASE Function [String] [page 506]
UPPER Function [String] [page 508]
STRING Function [String] [page 490]

1.13.5.2.60 LTRIM Function [String]

Removes leading blanks or specified characters from the string.

 Syntax

LTRIM(string-expression [, trim-char-set])

Parameters

string-expression

The string to be trimmed.
trim-char-set

The set of characters to trim.

Returns

VARCHAR
NVARCHAR
LONG VARCHAR
LONG NVARCHAR
UltraLite returns only VARCHAR or LONG VARCHAR

Remarks

By default, trim-char-set is the space character. You can specify the set of characters to be trimmed.

The actual length of the result is the length of the expression minus the number of characters removed. If all
the characters are removed, the result is an empty string.

If the parameter can be null, the result can be null.

428 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

If the parameter is null, the result is the null value.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs and trim-char-set.

Standards

ANSI/ISO SQL Standard

Not in the standard.

The TRIM specifications defined by the ANSI/ISO SQL Standard (LEADING and TRAILING) are supplied by
the SQL Anywhere LTRIM and RTRIM functions respectively.

Example

The following statement returns the value Test Message with all leading blanks removed:

SELECT LTRIM(' Test Message');

The following statement returns the value def after the specified leading characters are removed:

SELECT LTRIM('abcabccbadef', 'abc');

Related Information

RTRIM Function [String] [page 464]
TRIM Function [String] [page 504]
STRING Function [String] [page 490]

1.13.5.2.61 MAX Function [Aggregate]

Returns the maximum expression value found in each group of rows.

 Syntax
Expression:

MAX([ALL | DISTINCT] expression)

Window function:

MAX([ALL] expression) OVER (window-spec)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 429

window-spec : see the Remarks section below

UltraLite expression

MAX([DISTINCT] expression)

Parameters

expression

The expression for which the maximum value is to be calculated. This is commonly a column name.
DISTINCT expression

Returns the same as MAX(expression), and is included for completeness.

Returns

The same data type as the argument.

Remarks

Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

Variables defined as type TABLE REF are not supported for this function.

For simple comparisons of two expressions, you can use the GREATER function.

Specifying this function with window-spec represents usage as a window function in a SELECT statement. As
such, elements of window-spec can be specified either in the function syntax (inline), or with a WINDOW
clause in the SELECT statement. This function supports NCHAR inputs and/or outputs.

Standards

ANSI/ISO SQL Standard

Core feature. When used as a window function, MAX comprises part of optional ANSI/ISO SQL Language
Feature T611, "Basic OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional ANSI/ISO SQL Language Feature F561, "Full value expressions". The software also supports
ANSI/ISO SQL Language Feature F441, "Extended set function support", which permits operands of
aggregate functions to be arbitrary expressions possibly including outer references to expressions in other
query blocks that are not column references.

430 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The software does not support optional ANSI/ISO SQL Feature F442, "Mixed column references in set
functions", nor does it permit the arguments of an aggregate function to include both a column reference
from the query block containing the MAX function, combined with an outer reference.

Example

The following statement returns the value 138948.000, representing the maximum salary in the Employees
table:

SELECT MAX(Salary) FROM GROUPO.Employees;

Related Information

MIN Function [Aggregate] [page 433]
Troubleshooting Database Upgrades: Aggregate Functions and Outer References

1.13.5.2.62 MICROSECOND Function [Date and Time]

Returns the microsecond component of a TIMESTAMP expression.

 Syntax

MICROSECOND(timestamp-expression)

Parameters

timestamp-expression

A TIMESTAMP value.

Returns

INTEGER

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 431

https://help.sap.com/viewer/a3e900ad39b94d689987e838835f39fe/17.0.01/en-US/815805646ce210149f99cb85deffce48.html

Remarks

This function returns a value between 0 and 999999 that represents the fraction of a second (also referred to
as a microsecond). This function is equivalent to DATEPART(MICROSECOND, timestamp-expression).

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the microsecond value 789012:

SELECT MICROSECOND('12:34:56.789012');

1.13.5.2.63 MILLISECOND Function [Date and Time]

Returns the millisecond component of a TIMESTAMP expression.

 Syntax

MILLISECOND(timestamp-expression)

Parameters

timestamp-expression

A TIMESTAMP value.

Returns

INTEGER

432 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

This function returns a value between 0 and 999999 that represents the fraction of a second in milliseconds. If
the timestamp contains fractions of a millisecond, then they are rounded down to the millisecond.

This function is equivalent to DATEPART(MILLISECOND, timestamp-expression).

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the millisecond value 789:

SELECT MILLISECOND('12:34:56.78901');

1.13.5.2.64 MIN Function [Aggregate]

Returns the minimum expression value found in each group of rows.

 Syntax
Expression

MIN([DISTINCT] expression)

Window function

MIN([ALL] expression) OVER (window-spec)

window-spec : see the Remarks section below

UltraLite expression

MIN([ALL | DISTINCT] expression)

Parameters

expression

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 433

The expression for which the minimum value is to be calculated. This is commonly a column name.
DISTINCT expression

Returns the same as MIN(expression), and is included for completeness.

Returns

The same data type as the argument.

Remarks

Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

Variables defined as type TABLE REF are not supported for this function.

This function supports NCHAR inputs and/or outputs.

UltraLite: UltraLite does not support NCHAR inputs and/or outputs.

Specifying this function with window-spec represents usage as a window function in a SELECT statement. As
such, elements of window-spec can be specified either in the function syntax (inline), or with a WINDOW
clause in the SELECT statement.

Standards

ANSI/ISO SQL Standard

Core feature. When used as a window function, MIN comprises part of optional ANSI/ISO SQL Language
Feature T611, "Basic OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional ANSI/ISO SQL Language Feature F561, "Full value expressions". The software also supports
ANSI/ISO SQL Language Feature F441, "Extended set function support", which permits operands of
aggregate functions to be arbitrary expressions possibly including outer references to expressions in other
query blocks that are not column references.

The software does not support optional ANSI/ISO SQL Feature F442, "Mixed column references in set
functions", nor does it not permit the arguments of an aggregate function to include both a column
reference from the query block containing the MIN function, combined with an outer reference.

434 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following statement returns the value 24903.000, representing the minimum salary in the Employees
table:

SELECT MIN(Salary) FROM GROUPO.Employees;

Related Information

MAX Function [Aggregate] [page 429]

1.13.5.2.65 MINUTE Function [Date and Time]

Returns the minute component of a TIMESTAMP value.

 Syntax

MINUTE(timestamp-expression)

Parameters

timestamp-expression

The TIMESTAMP value.

Returns

SMALLINT

Remarks

The value returned is the minute portion of the TIMESTAMP expression, a SMALLINT value between 0 and 59.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 435

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 22:

SELECT MINUTE('1998-07-13 12:22:34');

1.13.5.2.66 MINUTES Function [Date and Time]

Manipulates a TIMESTAMP or returns the number of minute boundaries between two TIMESTAMP values.

 Syntax
Return the number of minutes between midnight 0000-02-29 and a TIMESTAMP value

MINUTES(timestamp-expression)

Return the number of minutes between two TIMESTAMP values

MINUTES(timestamp-expression, timestamp-expression)

Add minutes to a TIMESTAMP value

MINUTES(timestamp-or-time-expression, integer-expression)

Parameters

timestamp-expression

An expression of type TIMESTAMP.
timestamp-or-time-expression

An expression of type TIME or TIMESTAMP.
integer-expression

The number of minutes to be added to timestamp-or-time-expression. If integer-expression is
negative, the appropriate number of minutes is subtracted from timestamp-or-time-expression.

436 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

INTEGER, TIME, or TIMESTAMP, depending on the usage.

Remarks

The result of the MINUTES function depends on its arguments.

Return the number of minutes since midnight 0000-02-29

If you pass a single timestamp-expression to the MINUTES function, it will return the number of minute
boundaries between midnight 0000-02-29 and timestamp-expression as an INTEGER.

 Note
0000-02-29 is not meant to imply an actual date; it is the default date used by the MINUTES function.

Return the number of minutes between two TIMESTAMP values

If you pass two TIMESTAMP values to the MINUTES function, the function returns the integer number of
minute boundaries between them.
Add minutes to a TIMESTAMP value

If you pass a TIMESTAMP value and an INTEGER value to the MINUTES function, the function returns the
TIMESTAMP result of adding the integer number of minutes to timestamp-expression argument.
Similarly, if the first argument to MINUTES is a TIME value, then the result is also a TIME value. This syntax
does not support implicit conversion of the first argument. It may be necessary to explicitly cast the first
argument to a DATE, TIME or TIMESTAMP value. If the first argument is of type DATE, midnight is assumed
for the time portion.

Since MINUTES returns an integer, overflow can occur when used with TIMESTAMP values greater than or
equal to 4083-03-23 02:08:00.

You can also use the DATEDIFF and DATEADD function for some of the calculations

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns identical values 240, signifying that the second TIMESTAMP value is 240
minutes after the first. It is recommended that you use DATEDIFF.

SELECT

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 437

 MINUTES('1999-07-13 06:07:12',
 '1999-07-13 10:07:12'),
 DATEDIFF(minute,
 '1999-07-13 06:07:12', '1999-07-13 10:07:12');

The following statement returns the value 1051040527:

SELECT MINUTES('1998-07-13 06:07:12');

The following statements return the TIMESTAMP value 1999-05-12 21:10:07.000. The first statement requires
an explicit cast of the literal string parameter. It is recommended that you use the second example (DATEADD).

SELECT MINUTES(CAST('1999-05-12 21:05:07' AS TIMESTAMP), 5); SELECT DATEADD(minute, 5, '1999-05-12 21:05:07');

Related Information

CAST Function [Data Type Conversion] [page 358]

1.13.5.2.67 ML_GET_SERVER_NOTIFICATION function
[System]

This function allows UltraLite users to use lightweight polling to query a notifier on a MobiLink server for server-
initiated sync requests.

 Syntax

ML_GET_SERVER_NOTIFICATION(notifier , address , key)

Parameters

notifier

The name of the notifier on the MobiLink server to poll.
address

The stream parameters, specified as:

tcpip{host=pc1;port=1234}

key

Optional. The notification request key.

438 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

Returns the subject and content of a notification request for the given request key.

Remarks

If there are no requests for the given request key, or if the notifier name does not exist on the MobiLink server,
the result is NULL. If NULL is provided for the request key, then the remote ID of the user is used as the request
key. If a request does exist, the resulting message is returned in the form: [subject]content (for example,
[sync]profile1).

This function communicates over the network as it retrieves responses from the MobiLink server. As a result,
this function may require a long execution time resulting from network latency. During execution, there may be
periods when the function can execute in the background, allowing work to be performed in the runtime on
other connections. These periods are not guaranteed however, and depend on the complexity of the SQL. The
recommended method for users to retrieve a MobiLink address to use in this function is to use the
sync_profile_option_value function with an existing synchronization profile to get the value for the Stream
profile option. The value returned by this function call can be used directly as the MobiLink address parameter.

Example

The following statement returns the subject and content of a notification request for the request key MyKey:

SELECT ML_GET_SERVER_NOTIFICATION('Notifier1', 'tcpip{host=sap;port=1234}',
'MyKey');

Related Information

SYNC_PROFILE_OPTION_VALUE Function [System] - UltraLite [page 499]

1.13.5.2.68 MOD Function [Numeric]

Returns the remainder when one whole number is divided by another.

 Syntax

MOD(dividend , divisor)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 439

Parameters

dividend

The dividend, or numerator of the division.
divisor

The divisor, or denominator of the division.

Returns

• SMALLINT
• INT
• NUMERIC

Remarks

Division involving a negative dividend gives a negative or zero result. The sign of the divisor has no effect.

Standards

ANSI/ISO SQL Standard

The MOD function is part of optional ANSI/ISO SQL Language Feature T441.

Example

The following statement returns the value 2:

SELECT MOD(5, 3);

Related Information

REMAINDER Function [Numeric] [page 456]

440 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.69 MONTH Function [Date and Time]

Returns the month of the given date.

 Syntax

MONTH(date-expression)

Parameters

date-expression

A value of type DATE.

Returns

SMALLINT

Remarks

The value returned is a number between 1 and 12, corresponding to the month of the given date.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 7:

SELECT MONTH('1998-07-13');

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 441

1.13.5.2.70 MONTHNAME Function [Date and Time]

Returns the name of the month from a date.

 Syntax

MONTHNAME(date-expression)

Parameters

timestamp-expression

A TIMESTAMP value.

Returns

VARCHAR

Remarks

The MONTHNAME function returns a string, even if the result is numeric, such as 2 for the month of February.

In SQL Anywhere, English names are returned for an English locale, other names are returned when the locale
is not English. For example, the Language (LANG) connection parameter can be used to specify a different
language.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

In an English locate, the following statement returns the value September:

SELECT MONTHNAME('1998-09-05');

442 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

In SQL Anywhere in a French locale, the value returned is septembre. In a Spanish locale, the value returned is
Septiembre. Several locales are supported.

Related Information

DATEPART Function [Date and Time] [page 384]

1.13.5.2.71 MONTHS Function [Date and Time]

Manipulates a TIMESTAMP or returns the number of month boundaries between two TIMESTAMP values.

 Syntax
Return the number of months between 0000-02 and a TIMESTAMP value

MONTHS(timestamp-expression)

Return the number of months between two TIMESTAMP values

MONTHS(timestamp-expression, timestamp-expression)

Add months to a TIMESTAMP value

MONTHS(timestamp-expression, integer-expression)

Parameters

timestamp-expression

A date and time of type TIMESTAMP.
integer-expression

The integer number of months (of type SMALLINT) to be added to the timestamp-expression. If
integer-expression is negative, the appropriate number of months is subtracted from timestamp-
expression. If you supply an integer-expression, the timestamp-expression must be explicitly
cast as a TIME, DATE or TIMESTAMP data type. If timestamp-expression is a TIME value, the current
month is assumed.

Returns

INTEGER or TIMESTAMP, depending on the usage.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 443

Remarks

The result of the MONTHS function depends on its arguments. The MONTHS function ignores hours, minutes,
and seconds in its arguments.

Return the number of months since 0000-02

If you pass a single timestamp-expression to the MONTHS function, it will return the number of month
boundaries between 0000-02 and timestamp-expression as an INTEGER.

 Note
0000-02 is not meant to imply an actual date; it is the default date used by the MONTHS function.

Return the number of months between two TIMESTAMP values

If you pass two TIMESTAMP values to the MONTHS function, the function returns the integer number of
month boundaries between them.
Add months to a TIMESTAMP value

If you pass a TIMESTAMP value and a SMALLINT value to the MONTHS function, the function returns the
TIMESTAMP result of adding the integer number of months to timestamp-expression.

You can also use the DATEDIFF and DATEADD functions to perform some of these calculations.

The value of MONTHS is calculated from the number of first days of the month between the two dates.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statements return the value 2, signifying that the second date is two months after the first. It is
recommended that you use the second example (DATEDIFF).

SELECT MONTHS('1999-07-13 06:07:12', '1999-09-13 10:07:12');

SELECT DATEDIFF(month, '1999-07-13 06:07:12', '1999-09-13 10:07:12');

The following statement returns the value 23981:

SELECT MONTHS('1998-07-13 06:07:12');

444 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The following statements return the TIMESTAMP value 1999-10-12 21:05:07.000. It is recommended that you
use the second example (DATEADD).

SELECT MONTHS(CAST('1999-05-12 21:05:07' AS DATETIME), 5);

SELECT DATEADD(month, 5, '1999-05-12 21:05:07');

Related Information

DATEDIFF Function [Date and Time] [page 379]
DATEADD Function [Date and Time] [page 377]
CAST Function [Data Type Conversion] [page 358]

1.13.5.2.72 NEWID Function [Miscellaneous]

Generates a UUID (Universally Unique Identifier) value.

 Syntax

NEWID()

Parameters

There are no parameters associated with the NEWID function.

Returns

UNIQUEIDENTIFIER

Remarks

The NEWID function can be used in a DEFAULT clause for a column.

The NEWID function is non-deterministic; successive calls will return different values. The query optimizer does
not cache the results of the NEWID function.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 445

UUIDs can be used to uniquely identify rows in a table. A value produced on one computer does not match a
value produced on another computer, so they can be used as keys in synchronization and replication
environments.

UUID values are also referred to as GUID (Globally Unique Identifier) values.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement creates a table named mytab with two columns. Column pk has a unique identifier
data type, and assigns the NEWID function as the default value. Column c1 has an integer data type.

CREATE TABLE mytab(pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(), c1 INT);

The following statement returns a unique identifier as a string:

SELECT UUIDTOSTR(NEWID());

For example, the value returned might be 96603324-6FF6-49DE-BF7D-F44C1C7E6856.

Related Information

The NEWID Default
STRTOUUID Function [String] [page 491]
UUIDTOSTR Function [String] [page 509]

1.13.5.2.73 NOW Function [Date and Time]

Returns the current date and time as a TIMESTAMP value. The accuracy is limited by the accuracy of the
system clock.

 Syntax

NOW([*])

446 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/818bf2ff6ce21014bbead52d80641185.html

Returns

TIMESTAMP

Remarks

NOW is equivalent to the GETDATE function and the CURRENT TIMESTAMP special value. NOW(*) and NOW()
are equivalent constructions.

Each instance of the NOW function in a request is evaluated at most once. Multiple instances of NOW in the
same request may or may not share the identical TIMESTAMP value.

 Note
If the database is using a simulated time zone, the simulated time zone is used to calculate the results of
this function.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the current date and time:

SELECT NOW(*);

Related Information

CURRENT TIMESTAMP Special Value - UltraLite [page 261]
GETDATE Function [Date and Time] [page 401]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 447

1.13.5.2.74 NULLIF Function [Miscellaneous]

Provides an abbreviated CASE expression by comparing expressions.

 Syntax

NULLIF(expression-1, expression-2)

Parameters

expression-1

An expression to be compared.
expression-2

An expression to be compared.

Returns

Data type of the first argument.

Remarks

NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second expression is NULL, NULLIF
returns the first expression.

The NULLIF function provides a short way to write some CASE expressions.

Standards

ANSI/ISO SQL Standard

Core Feature.

448 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following statement returns the value a:

SELECT NULLIF('a', 'b');

The following statement returns NULL:

SELECT NULLIF('a', 'a');

Related Information

CASE Expressions - UltraLite [page 268]

1.13.5.2.75 PATINDEX Function [String]

Returns an integer representing the starting position of the first occurrence of a pattern in a string.

 Syntax

PATINDEX('%pattern%', string-expression)

Parameters

pattern

The pattern to be searched for. If the leading percent wildcard is omitted, the PATINDEX function returns
one (1) if the pattern occurs at the beginning of the string, and zero if it does not.

The pattern uses the same wildcards as the LIKE comparison. These wildcards are listed in the following
table.

The pattern for UltraLite uses the wildcards in the following table:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

string-expression

The string to be searched for the pattern.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 449

Returns

INT

Remarks

The PATINDEX function returns the starting position of the first occurrence of the pattern. If the pattern is not
found, it returns zero (0).

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 2:

SELECT PATINDEX('%hoco%', 'chocolate');

The following statement returns the value 11:

SELECT PATINDEX('%4_5_', '0a1A 2a3A 4a5A');

The following statement returns 14 which is the first non-alphanumeric character in the string expression. The
pattern '%[^a-z0-9]%' can be used instead of '%[^a-zA-Z0-9]%' if the database is case insensitive.

SELECT PATINDEX('%[^a-zA-Z0-9]%', 'SQLAnywhere17 has many new features');

The following statement can be used to retrieve everything up to and including the first non-alphanumeric
character in a string:

SELECT LEFT(@string, PATINDEX('%[^a-zA-Z0-9]%', @string));

The following statements create a table, myTable, and populate it with various strings containing alphanumeric
characters, spaces (blanks), and non-alphanumeric characters. Then, the SELECT statement and subsequent
results show how you can use PATINDEX to find the starting position of spaces and non-alphanumeric
characters in the strings:

CREATE TABLE myTable(col1 LONG VARCHAR); INSERT INTO myTable (col1) VALUES('the quick brown fox jumped over the lazy
dog'),
('the quick brown fox $$$$ jumped over the lazy dog'),
('the quick brown fox 0999 jumped over the lazy dog'),
('the quick brown fox ** jumped over the lazy dog'),

450 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

('thequickbrownfoxjumpedoverthelazydog'),
('thequickbrownfoxjum999pedoverthelazydog'),
('thequick$$$$brownfox'),
('the quick brown fox$$ jumped over the lazy dog');
SELECT col1,
 //position of first non-alphanumeric character or space:
 PATINDEX('%[^a-z0-9]%', col1) AS blank_posn,
 //position of first non-alphanumeric char that isn't a space:
 PATINDEX('%[^ a-z0-9]%', col1) AS non_alpha_char,
 //everything up to and including first non-alphanumeric char that isn't a
space:
 LEFT (col1, PATINDEX('%[^ a-zA-Z0-9]%', col1)) AS left_str,
 //first non-alphanumeric char that isn't a space, and everything to the right:
 SUBSTRING (col1, PATINDEX('%[^ a-zA-Z0-9]%', col1)) AS sub_str
FROM myTable;

col1 blank_posn non_alpha_char left_str sub_str

the quick brown fox
jumped over the lazy
dog

4 0 the quick brown fox
jumped over the lazy
dog

the quick brown fox $$
$$ jumped over the
lazy dog

4 21 the quick brown fox $ $$$$ jumped over the
lazy dog

the quick brown fox
0999 jumped over the
lazy dog

4 0 the quick brown fox
0999 jumped over the
lazy dog

the quick brown fox **
jumped over the lazy
dog

4 21 the quick brown fox * ** jumped over the
lazy dog

thequickbrownfoxjum
pedoverthelazydog

0 0 thequickbrownfoxjum
pedoverthelazydog

thequickbrownfox
jum999pedoverthela
zydog

0 0 thequickbrownfox
jum999pedoverthela
zydog

thequick$$$$brown
fox

9 9 thequick$ $$$$brownfox

the quick brown fox$$
jumped over the lazy
dog

4 20 the quick brown fox$ $$ jumped over the
lazy dog

Related Information

LOCATE Function [String] [page 422]
STRING Function [String] [page 490]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 451

1.13.5.2.76 PI Function [Numeric]

Returns the numeric value PI.

 Syntax

PI([*])

Returns

DOUBLE

Remarks

This function returns a DOUBLE value.

PI(*) and PI() are semantically equivalent.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 3.141592653(...):

SELECT PI(*);

1.13.5.2.77 POWER Function [Numeric]

Calculates one number raised to the power of another.

 Syntax

POWER(numeric-expression-1, numeric-expression-2)

452 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

numeric-expression-1

The base.
numeric-expression-2

The exponent.

Returns

DOUBLE

Remarks

This function converts its arguments to DOUBLE, and performs the computation in double-precision floating-
point arithmetic. If any argument is NULL, the result is a NULL value.

Standards

ANSI/ISO SQL Standard

The POWER function comprises part of optional ANSI/ISO SQL Language Feature T621, "Enhanced
numeric functions".

Example

The following statement returns the value 64:

SELECT POWER(2, 6);

1.13.5.2.78 QUARTER Function [Date and Time]

Returns a number indicating the quarter of the year from the supplied TIMESTAMP expression.

 Syntax

QUARTER(timestamp-expression)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 453

Parameters

timestamp-expression

The date you want the quarter for.

Returns

INTEGER

Remarks

The quarters are as follows:

Quarter Period (inclusive)

1 January 1 to March 31

2 April 1 to June 30

3 July 1 to September 30

4 October 1 to December 31

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 2:

SELECT QUARTER('1987/05/02');

454 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.79 RADIANS Function [Numeric]

Converts a number from degrees to radians.

 Syntax

RADIANS(numeric-expression)

Parameters

numeric-expression

A number, in degrees. This angle is converted to radians.

Returns

DOUBLE

Remarks

This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns a value of approximately 0.5236:

SELECT RADIANS(30);

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 455

1.13.5.2.80 REMAINDER Function [Numeric]

Returns the remainder when one whole number is divided by another.

 Syntax

REMAINDER(dividend, divisor)

Parameters

dividend

The dividend, or numerator of the division.
divisor

The divisor, or denominator of the division.

Returns

• INTEGER
• NUMERIC

Remarks

You can also use the MOD function to return the remainder.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 2:

SELECT REMAINDER(5, 3);

456 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

MOD Function [Numeric] [page 439]

1.13.5.2.81 REPEAT Function [String]

Concatenates a string a specified number of times.

 Syntax

REPEAT(string-expression, integer-expression)

Parameters

string-expression

The string to be repeated.
integer-expression

The number of times the string is to be repeated. If integer-expression is negative, an empty string is
returned.

Returns

LONG VARCHAR
LONG NVARCHAR
UltraLite returns LONG VARCHAR

Remarks

If the actual length of the result string exceeds the maximum for the return type, an error occurs. The result is
truncated to the maximum string size allowed.

The behavior of this function is identical to that of the REPLICATE function.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 457

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value repeatrepeatrepeat:

SELECT REPEAT('repeat', 3);

Related Information

REPLICATE Function [String] [page 460]
STRING Function [String] [page 490]

1.13.5.2.82 REPLACE Function [String]

Replaces a string with another string, and returns the new results.

 Syntax

REPLACE(original-string, search-string, replace-string)

Parameters

If any argument is NULL, the function returns NULL.

original-string

The string to be searched. This can be any length.
search-string

The string to be searched for and replaced with replace-string. This string is limited to 255 bytes. If
search-string is an empty string, the original string is returned unchanged.
replace-string

The replacement string, which replaces search-string. This can be any length. If replace-string is
an empty string, all occurrences of search-string are deleted.

458 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

LONG BINARY
LONG VARCHAR
LONG NVARCHAR
UltraLite does not return NVARCHAR

Remarks

This function replaces all occurrences of search-string with replace-string.

If all arguments are of binary data type, the REPLACE function behaves the same as the BYTE_REPLACE
function.

Comparisons are case-sensitive on case-sensitive databases.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value xx.def.xx.ghi:

SELECT REPLACE('abc.def.abc.ghi', 'abc', 'xx');

The following statement generates a result set containing ALTER PROCEDURE statements which, when
executed, would repair stored procedures that reference a table that has been renamed. (To be useful, the table
name must be unique.)

SELECT REPLACE(REPLACE(proc_defn, 'OldTableName', 'NewTableName'),
 'CREATE PROCEDURE',
 'ALTER PROCEDURE')
FROM SYS.SYSPROCEDURE WHERE proc_defn LIKE '%OldTableName%';

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 459

Related Information

SUBSTRING Function [String] [page 494]
CHARINDEX Function [String] [page 364]
STRING Function [String] [page 490]

1.13.5.2.83 REPLICATE Function [String]

Concatenates a string a specified number of times.

 Syntax

REPLICATE(string-expression, integer-expression)

Parameters

string-expression

The string to be repeated.
integer-expression

The number of times the string is to be repeated.

Returns

LONG VARCHAR
LONG NVARCHAR
UltraLite does not return NVARCHAR

Remarks

If the actual length of the result string exceeds the maximum for the return type, an error occurs. The result is
truncated to the maximum string size allowed.

The behavior of this function is identical to that of the REPEAT function.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs.

460 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value repeatrepeatrepeat:

SELECT REPLICATE('repeat', 3);

Related Information

REPEAT Function [String] [page 457]
STRING Function [String] [page 490]

1.13.5.2.84 RIGHT Function [String]

Returns the rightmost characters of a string.

 Syntax

RIGHT(string-expression, integer-expression)

Parameters

string-expression

The string to return the rightmost characters for.
integer-expression

The number of characters at the end of the string to return.

Returns

LONG VARCHAR

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 461

LONG NVARCHAR
UltraLite does not return NVARCHAR

Remarks

If the string contains multibyte characters, the number of bytes returned may be greater than the specified
number of characters.

You can specify an integer-expression that is larger than the value in the column. In this case, the entire
value is returned.

This function supports NCHAR inputs and/or outputs. Whenever possible, if the input string uses character-
length semantics, the return value is described in character-length semantics.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the last 5 characters of each Surname value in the Customers table:

SELECT RIGHT(Surname, 5) FROM GROUPO.Customers;

Related Information

International Languages and Character Sets
LEFT Function [String] [page 415]
STRING Function [String] [page 490]

462 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813826126ce210149074e3a77d2e1dce.html

1.13.5.2.85 ROUND Function [Numeric]

Rounds the numeric-expression to the specified integer-expression amount of places after the
decimal point.

 Syntax

ROUND(numeric-expression, integer-expression)

Parameters

numeric-expression

The number, passed into the function, to be rounded.
integer-expression

A positive integer specifies the number of significant digits to the right of the decimal point at which to
round. A negative expression specifies the number of significant digits to the left of the decimal point at
which to round.

Returns

NUMERIC

Remarks

The result of this function is either numeric or double. When there is a numeric result and the integer
integer-expression is a negative value, the precision is increased by one.

Standards

ANSI/ISO SQL Standard

Not in the standard.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 463

Example

The following statement returns the value 123.200:

SELECT ROUND(123.234, 1);

Related Information

TRUNCNUM Function [Numeric] [page 505]

1.13.5.2.86 RTRIM Function [String]

Removes trailing blanks or specified characters from the string.

 Syntax

RTRIM(string-expression [, trim-char-set])

Parameters

string-expression

The string to be trimmed.
trim-char-set

The set of characters to trim.

Returns

VARCHAR
NVARCHAR
LONG VARCHAR
LONG NVARCHAR
UltraLite VARCHAR and LONG VARCHAR

464 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

By default, trim-char-set is the space character. You can specify the set of characters to be trimmed.

The actual length of the result is the length of the expression minus the number of characters removed. If all
the characters are removed, the result is an empty string.

If the argument is null, the result is the NULL value.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs and trim-char-set.

Standards

ANSI/ISO SQL Standard

Not in the standard.

The TRIM specifications defined by the ANSI/ISO SQL Standard (LEADING and TRAILING) are supplied by
the LTRIM and RTRIM functions, respectively, that are provided in the software.

Example

The following statement returns the string Test Message, with all trailing blanks removed:

SELECT RTRIM('Test Message ');

The following statement returns the value def after the specified trailing characters are removed:

SELECT RTRIM('defabcabccba', 'abc');

Related Information

TRIM Function [String] [page 504]
LTRIM Function [String] [page 428]
STRING Function [String] [page 490]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 465

1.13.5.2.87 SECOND Function [Date and Time]

Returns the seconds value of the TIMESTAMP argument.

 Syntax

SECOND(timestamp-expression)

Parameters

timestamp-expression

The TIMESTAMP value.

Returns

SMALLINT

Remarks

Returns a number from 0 to 59 corresponding to the seconds component of the given TIMESTAMP argument
value.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 25:

SELECT SECOND('1998-07-13 21:21:25');

466 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.88 SECONDS Function [Date and Time]

Manipulates a TIMESTAMP or returns the number of second boundaries between two TIMESTAMP values.

 Syntax
Return the number of seconds between midnight 0000-02-29 and a TIMESTAMP value

SECONDS(timestamp-expression)

Return the number of seconds between two TIMESTAMP values

SECONDS(timestamp-expression, timestamp-expression)

Add seconds to a TIMESTAMP value

SECONDS(time-or-timestamp-expression, integer-expression)

Parameters

timestamp-expression

A TIMESTAMP value.
time-or-timestamp-expression

A value of type TIME or TIMESTAMP.
integer-expression

The number of seconds to be added to the time-or-timestamp-expression. If integer-expression
is negative, the appropriate number of seconds is subtracted from time-or-timestamp-expression. If
you supply an integer expression, the time-or-timestamp-expression must be explicitly cast as a
TIME, DATE, or TIMESTAMP data type. If time-or-timestamp-expression is a DATE type, its time
portion is assumed to be midnight.

Returns

UNSIGNED BIGINT when returning the number of seconds between midnight 0000-02-29 and a TIMESTAMP
value

SIGNED BIGINT when returning the number of seconds between two TIMESTAMP values.

TIME or TIMESTAMP when adding seconds to a TIMESTAMP value.

Remarks

The result of the SECONDS function depends on its arguments.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 467

Return the number of seconds between midnight 0000-02-29 and a TIMESTAMP value

If you pass a single timestamp-expression to the SECONDS function, it will return the number of
second boundaries between midnight 0000-02-29 and timestamp-expression as an UNSIGNED
BIGINT.

 Note
0000-02 is not meant to imply an actual date; it is the default date used by the SECONDS function.

Return the number of seconds between two TIMESTAMP values

If you pass two TIMESTAMP values to the SECONDS function, the function returns the integer number of
second boundaries between them as a SIGNED BIGINT value.
Add seconds to a TIMESTAMP value

If you pass a TIMESTAMP value and a INTEGER value to the SECONDS function, the function returns the
TIMESTAMP result of adding the integer number of seconds to time-or-timestamp-expression.
Similarly, if you pass a TIME value to the SECONDS function, the function returns a value of type TIME.

You can also use the DATEDIFF and DATEADD functions to perform some of these calculations.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns identical values 14400, signifying that the second TIMESTAMP value is 14400
seconds after the first:

SELECT SECONDS('1999-07-13 06:07:12',
 '1999-07-13 10:07:12'),
 DATEDIFF(second,
 '1999-07-13 06:07:12', '1999-07-13 10:07:12');

The following statement returns the value 63062431632:

SELECT SECONDS('1998-07-13 06:07:12');

The following statements return the TIMESTAMP value 1999-05-12 21:05:12.000:

SELECT SECONDS(CAST('1999-05-12 21:05:07' AS TIMESTAMP), 5); SELECT DATEADD(second, 5, '1999-05-12 21:05:07');

468 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

CAST Function [Data Type Conversion] [page 358]
DATEADD Function [Date and Time] [page 377]
DATEDIFF Function [Date and Time] [page 379]

1.13.5.2.89 SHORT_PLAN function [Miscellaneous]

Returns a short description of the UltraLite plan optimization strategy of a SQL statement, as a string. The
description is the same as that returned by the EXPLANATION function.

 Syntax

SHORT_PLAN(string-expression)

Parameters

string-expression

The SQL statement, which is commonly a SELECT statement, but can also be an UPDATE or DELETE
statement.

Returns

LONG VARCHAR

Remarks

For some queries, the execution plan for UltraLite may differ from the plan selected for SQL Anywhere.

Example

The following statement passes a SELECT statement as a string parameter and returns the plan for executing
the query:

SELECT SHORT_PLAN('SELECT * FROM WHERE DepartmentID > 100');

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 469

Related Information

EXPLANATION Function [Miscellaneous] [page 396]

1.13.5.2.90 SIGN Function [Numeric]

Returns the sign (positive or negative) of the given number.

 Syntax

SIGN(numeric-expression)

Parameters

numeric-expression

The number for which the sign is to be returned. numeric-expression may be of type INTEGER,
DOUBLE, or NUMERIC.

Returns

SMALLINT

Remarks

For negative numbers, the SIGN function returns -1.

For zero, the SIGN function returns 0.

For positive numbers, the SIGN function returns 1.

Standards

ANSI/ISO SQL Standard

Not in the standard.

470 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following statement returns the value -1:

SELECT SIGN(-550);

1.13.5.2.91 SIMILAR Function [String]

Returns a number indicating the similarity between two strings.

 Syntax

SIMILAR(string-expression-1, string-expression-2)

Parameters

string-expression-1

The first string to be compared.
string-expression-2

The second string to be compared.

Returns

SMALLINT

Remarks

The function returns an integer between 0 and 100 representing the similarity between the two strings. The
result can be interpreted as the percentage of characters matched between the two strings. A value of 100
indicates that the two strings are identical.

This function can be used to correct a list of names (such as customers). Some customers may have been
added to the list more than once with slightly different names. You can use the SIMILAR function to find similar
customer names by joining the customer table to itself, producing a report of all similarities greater than 90
percent, but less than 100 percent.

The calculation performed for the SIMILAR function is more complex than just the number of characters that
match.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 471

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 75, indicating that the two values are 75% similar:

SELECT SIMILAR('toast', 'coast');

Related Information

STRING Function [String] [page 490]

1.13.5.2.92 SIN Function [Numeric]

Returns the sine of a number.

 Syntax

SIN(numeric-expression)

Parameters

numeric-expression

The angle, in radians.

Returns

DOUBLE

472 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The SIN function returns the sine of the argument, where the argument is an angle expressed in radians. The
SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating-point
arithmetic, and returns a DOUBLE as the result.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the SIN value of 0.52:

SELECT SIN(0.52);

Related Information

ASIN Function [Numeric] [page 349]
COS Function [Numeric] [page 370]
COT Function [Numeric] [page 371]
TAN Function [Numeric] [page 500]

1.13.5.2.93 SOUNDEX Function [String]

Returns a number representing the sound of a string.

 Syntax

SOUNDEX(string-expression)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 473

Parameters

string-expression

The string to be evaluated.

Returns

SMALLINT

Remarks

The SOUNDEX function value for a string is based on the first letter and the next three consonants other than
H, Y, and W. Vowels in string-expression are ignored unless they are the first letter of the string. Doubled
letters are counted as one letter. For example, the word "apples" is based on the letters A, P, L, and S.

Multibyte characters are ignored by the SOUNDEX function.

Although it is not perfect, the SOUNDEX function normally returns the same number for words that sound
similar and that start with the same letter.

The SOUNDEX function works best with English words. It is less useful for other languages.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns two identical numbers, 3827, representing the sound of each name:

SELECT SOUNDEX('Smith'), SOUNDEX('Smythe');

Related Information

STRING Function [String] [page 490]

474 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.94 SPACE Function [String]

Returns a specified number of spaces.

 Syntax

SPACE(integer-expression)

Parameters

integer-expression

The number of spaces to return.

Returns

LONG VARCHAR

Remarks

If integer-expression is negative, a null string is returned.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns a string containing 10 spaces:

SELECT SPACE(10);

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 475

Related Information

STRING Function [String] [page 490]

1.13.5.2.95 SQRT Function [Numeric]

Returns the square root of a number.

 Syntax

SQRT(numeric-expression)

Parameters

numeric-expression

The number for which the square root is to be calculated.

Returns

DOUBLE

Remarks

This function converts its argument to DOUBLE, performs the computation in double-precision floating-point
arithmetic, and returns a DOUBLE as the result.

Standards

ANSI/ISO SQL Standard

The SQRT function comprises part of optional ANSI/ISO SQL Language Feature T621, "Enhanced numeric
functions".

476 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following statement returns the value 3:

SELECT SQRT(9);

1.13.5.2.96 ST_AsBinary Function [Spatial] - UltraLite

Returns a binary string representing the specified geometry.

 Syntax

ST_AsBinary(geometry-expression)

Returns

BINARY

Returns the WKB representation of the geometry-expression.

Remarks

The output format is WKB as defined by OGC SFS 1.1.

This format does not contain Z and M values.

Example

The following statement returns the result 0x0101000000000000000000f03f0000000000000040:

SELECT ST_AsBinary(ST_Point(1.0, 2.0, 4326))

The server implicitly invokes the ST_AsBinary function when converting geometries to BINARY. For example,
the following statement returns the result 0x0101000000000000000000f03f0000000000000040:

SELECT CAST(ST_Point(1.0, 2.0, 4326) AS BINARY(50))

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 477

1.13.5.2.97 ST_AsExtText Function [Spatial] - UltraLite

Returns a binary string representing the specified geometry.

 Syntax

ST_AsExtText(geometry-expression)

Returns

VARCHAR

Returns the EWKT representation of the geometry-expression.

Remarks

The output format is EWKT.

Example

The following statement returns the result SRID=4326;Point (1 2), with the SRID included as a prefix:

SELECT ST_AsExtText(ST_Point(1.0, 2.0, 4326))

The ST_AsExtText() function is implicitly invoked when converting geometries to VARCHAR types. For example,
the following statement returns the result SRID=4326;Point(1 2):

SELECT CAST(ST_Point(1.0, 2.0, 4326) AS VARCHAR(25))

1.13.5.2.98 ST_AsText Function [Spatial] - UltraLite

Returns a binary string representing the specified geometry.

 Syntax

ST_AsText(geometry-expression)

478 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

VARCHAR

Returns the WKT representation of the geometry-expression.

Remarks

The output format is WKT as defined by OGC SFS 1.1.

Example

The following statement returns the result Point (1 2):

SELECT ST_AsText(ST_Point(1.0, 2.0, 4326))

1.13.5.2.99 ST_Distance Function [Spatial] - UltraLite

Returns the smallest distance between two specified geometry values.

 Syntax

ST_Distance(geo1,geo2)

Parameters

Name Type Description

geo1 ST_Geometry The first geometry value to be used to
calculate the distance between two ge
ometry values.

geo2 ST_Geometry The second geometry value to be used
to calculate the distance between two
geometry values.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 479

Returns

DOUBLE

Returns the smallest distance between the specified geometry values.

Remarks

If the points are in SRID 4326, the units are in meters.

Example

The following statement returns the result 3367142.4632130372:

SELECT ST_Distance(ST_Point(-79.38,43.65,4326),ST_Point(-123.1,49.28,4326))

1.13.5.2.100 ST_Equals Function [Spatial] - UltraLite

Tests whether an ST_Geometry value is spatially equal to another ST_Geometry value. Two geometry values
can be considered equal if they have the same x and y coordinates and are in the same reference system.

 Syntax

ST_Equals(geo1,geo2)

Parameters

Name Type Description

geo1 ST_Geometry The first geometry value to be com
pared.

geo2 ST_Geometry The second geometry value to be com
pared.

480 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

BIT

Returns 1 if the two geometry values are spatially equal, otherwise 0.

Remarks

The test may be limited by the resolution of the spatial reference system or the accuracy of the data.

The ST_Equals function defines the semantics used for comparison predicates (= and <>), IN list predicates,
DISTINCT, and GROUP BY.

Example

The following statement returns the result 1:

SELECT ST_Equals(ST_Point(1,1,4326),ST_Point(1,1,4326))

1.13.5.2.101 ST_IntersectsRect Function [Spatial] - UltraLite

Tests if a point is located within the box defined by the two points specified as min and max.

 Syntax

ST_IntersectsRect(location,min,max)

Parameters

Name Type Description

location ST_Geometry The point to be tested.

min ST_Geometry The minimum point value used to de
fine the box.

max ST_Geometry The maximum point value used to de
fine the box.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 481

Returns

BIT

Returns 1 if location intersects with the specified box, otherwise 0.

Remarks

None.

Example

The following statement returns the result 1:

SELECT ST_IntersectsRect(ST_Point(1,1,4326),ST_Point(0,0,4326),
ST_Point(3,3,4326))

1.13.5.2.102 ST_Point Function [Spatial] - UltraLite

Constructs a point based on x and y coordinates.

 Syntax

ST_Point(x,y,SRID)

Parameters

Name Type Description

x DOUBLE The x coordinate to use to construct the
point.

y DOUBLE The y coordinate to use to construct
the point.

SRID INTEGER The SRID value associated with the
point.

482 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

ST_Point

Returns an ST_Geometry value created from the input string.

Remarks

None.

Example

The following statement creates a point at (10.0,20.0) in the 2163 reference system:

SELECT ST_Point(10.0,20.0,2163)

1.13.5.2.103 ST_PointFromExtText Function [Spatial] -
UltraLite

Returns an ST_Geometry value, which is transformed from a VARCHAR value containing the EWKT
representation of an ST_Geometry.

 Syntax

ST_PointFromExtText(ewkt)

Parameters

Name Type Description

ewkt VARCHAR The EWKT representation.

Returns

ST_Geometry

Returns an ST_Geometry value created from the input string.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 483

Remarks

None.

Example

The following statement returns the result SRID=4326;Point(10 20) to show that a point has been created at
(10,20) in the 4326 reference system:

SELECT ST_PointFromExtText('SRID=4326;Point(10 20)')

1.13.5.2.104 ST_PointFromText Function [Spatial] - UltraLite

Returns an ST_Geometry value, which is transformed from a VARCHAR value containing the WKT
representation of an ST_Geometry.

 Syntax

ST_PointFromText(wkt, srid)

Parameters

Name Type Description

wkt VARCHAR The WKT representation.

srid INT The spatial reference system identifier
of the result is indicated by the SRID pa
rameter.

Returns

ST_Geometry

Returns an ST_Geometry value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

484 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

None.

Example

The following statement returns the result SRID=4326;Point(10 20) to show that a point has been created at
(10, 20) in the 4326 reference system:

SELECT ST_PointFromText('Point(10 20)',4326)

1.13.5.2.105 ST_PointFromWKB Function [Spatial] - UltraLite

Returns an ST_Geometry value, which is transformed from a BINARY value containing the WKB representation
of an ST_Geometry.

 Syntax

ST_PointFromWKB(wkb, srid)

Parameters

Name Type Description

wkb BINARY The WKB representation.

srid INTEGER The SRID value associated with the
point.

Returns

ST_Geometry

Returns an ST_Geometry value created from the input string.

Remarks

None.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 485

Example

The following statement returns the result (1.0, 2.0, 4326):

SELECT ST_PointFromWKB(0x0101000000000000000000f03f0000000000000040,4326)

1.13.5.2.106 ST_SRID Function [Spatial] - UltraLite

Retrieves the spatial reference system (SRID) associated with the geometry value.

 Syntax

ST_SRID(geo1, srid)

Parameters

Name Type Description

geo1 ST_Geometry The point value.

srid INTEGER The SRID value associated with the
point.

Returns

INT

Returns the SRID of the geometry.

Remarks

None.

Example

The following statement returns the result 4326:

SELECT ST_SRID(ST_Point (10, 20, 4326));

486 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.107 ST_X Function [Spatial] - UltraLite

Returns the x coordinate of the ST_Geometry value.

 Syntax

ST_X(geo1)

Parameters

Name Type Description

geo1 ST_Geometry The ST_Geometry value from which to
determine the x coordinate.

Returns

DOUBLE

Returns the x coordinate of the ST_Geometry value.

Remarks

None.

Example

The following statement returns the result 10.0:

SELECT ST_X(ST_Point(10.0,20.0,4326))

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 487

1.13.5.2.108 ST_Y Function [Spatial] - UltraLite

Returns the y coordinate of the ST_Geometry value.

 Syntax

ST_Y(geo1)

Parameters

Name Type Description

geo1 ST_Geometry The ST_Geometry value from which to
determine the y coordinate.

Returns

DOUBLE

Returns the y coordinate of the ST_Geometry value.

Remarks

None.

Example

The following example returns the result 20.0:

SELECT ST_Y(ST_Point(10.0,20.0,4326))

488 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.109 STR Function [String]

Returns the string equivalent of a number.

 Syntax

STR(numeric-expression [, length [, decimal]])

Parameters

numeric-expression

Any approximate numeric (float, real, or double precision) expression between -1E126 and 1E127.
length

The number of characters to be returned (including the decimal point, all digits to the right and left of the
decimal point, and blanks). The default is 10.
decimal

The number of decimal digits to be returned. The default is 0.

Returns

VARCHAR

Remarks

If the integer portion of the number cannot fit in the length specified, then the result is a string of the specified
length containing all asterisks. For example, the following statement returns ***.

SELECT STR(1234.56, 3);

 Note
The maximum length that is supported is 128. Any length that is not between 1 and 128 yields a result of
NULL.

Standards

ANSI/ISO SQL Standard

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 489

A feature of the standard.

Example

The following statement returns a string of six spaces followed by 1235, for a total of ten characters:

SELECT STR(1234.56);

The following statement returns the result 1234.6:

SELECT STR(1234.56, 6, 1);

Related Information

STRING Function [String] [page 490]

1.13.5.2.110 STRING Function [String]

Concatenates one or more strings into one large string.

 Syntax

STRING(string-expression [, ...])

Parameters

string-expression

The string to be evaluated.

If only one argument is supplied, it is converted into a single expression. If multiple arguments are supplied,
they are concatenated into a single string.

Returns

LONG VARCHAR, LONG NVARCHAR, or LONG BINARY, depending on the data type of the input expression.

490 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

Numeric or date parameters are converted to strings before concatenation. The STRING function can also be
used to convert any single expression to a string by supplying that expression as the only parameter.

If all parameters are NULL, STRING returns NULL. If any parameters are non-NULL, then any NULL parameters
are treated as empty strings.

UltraLite does not support NCHAR inputs and/or outputs.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value testing123:

SELECT STRING('testing', NULL, 123);

Related Information

STR Function [String] [page 489]

1.13.5.2.111 STRTOUUID Function [String]

Converts a string value to a unique identifier (UUID or GUID) value.

 Syntax

STRTOUUID(string-expression)

Parameters

string-expression

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 491

A string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

Returns

UNIQUEIDENTIFIER

Remarks

Converts a string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where x is a hexadecimal digit,
to a unique identifier value.

This function is useful for inserting UUID values into a database.

If the string is not a valid UUID string, a conversion error is returned unless the conversion_error option is set to
OFF, in which case it returns NULL. This function supports NCHAR inputs and/or outputs. Curly braces can be
used as the first and last characters in the string-expression. In databases created before version 9.0.2,
the UNIQUEIDENTIFIER data type was defined as a user-defined data type and the STRTOUUID and
UUIDTOSTR functions were needed to convert between binary and string representations of UUID values. In
databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a native data
type and the database server carries out conversions as needed. You do not need to use STRTOUUID and
UUIDTOSTR functions with these versions.

UltraLite: In databases created before version 9.0.2, the STRTOUUID and UUIDTOSTR functions were needed
to convert between binary and string representations of UUID values. In databases created using version 9.0.2
or later, the UNIQUEIDENTIFIER data type was changed to a native data type. You do not need to use
STRTOUUID and UUIDTOSTR functions with these versions.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statements are equivalent and return the result 0x6c2b64a93c6f47dc901536b9ed49fec2:

SELECT STRTOUUID('6c2b64a9-3c6f-47dc-9015-36b9ed49fec2'); SELECT STRTOUUID('{6c2b64a9-3c6f-47dc-9015-36b9ed49fec2}');

492 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

SQL Data Types [page 288]
UUIDTOSTR Function [String] [page 509]
NEWID Function [Miscellaneous] [page 445]
STRING Function [String] [page 490]

1.13.5.2.112 STUFF Function [String]

Deletes multiple characters from one string and replaces them with another string.

 Syntax

STUFF(string-expression-1, start, length, string-expression-2)

Parameters

string-expression-1

The string to be modified by the STUFF function.
start

The character position at which to begin deleting characters. The first character in the string is position 1.
length

The number of characters to delete.
string-expression-2

The string to be inserted. To delete a portion of a string using the STUFF function, use a replacement string
of NULL.

Returns

LONG BINARY, LONG VARCHAR, or LONG NVARCHAR, depending on the data type of the input expressions.

Remarks

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 493

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value chocolate pie:

SELECT STUFF('chocolate cake', 11, 4, 'pie');

Related Information

INSERTSTR Function [String] [page 409]
STRING Function [String] [page 490]

1.13.5.2.113 SUBSTRING Function [String]

Returns a substring of a string.

 Syntax

{ SUBSTRING | SUBSTR }(string-expression , start [, length])

Parameters

string-expression

The string from which a substring is to be returned.
start

The start position of the substring to return, in characters.
length

The length of the substring to return, in characters. If length is specified, the substring is restricted to
that length.

494 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Returns

LONG BINARY
LONG VARCHAR
LONG NVARCHAR
UltraLite returns LONG BINARY and LONG VARCHAR

Remarks

To obtain characters at the end of a string, use the RIGHT function.

If string-expression is of binary data type, then the SUBSTRING function behaves as BYTE_SUBSTR.

This function supports NCHAR inputs and/or outputs. Whenever possible, if the input string uses character-
length semantics, the return value is described in character-length semantics. The behavior of this function
depends on the setting of the ansi_substring database option. When the ansi_substring option is set to On (the
default), the behavior of the SUBSTRING function corresponds to ANSI/ISO SQL Standard behavior. The
behavior is as follows:

ansi_substring option setting start value length value

On The first character in the string is at po
sition 1. A negative or zero start offset is
treated as if the string were padded on
the left with non-characters.

A positive length specifies that the
substring ends length characters to
the right of the starting position.

A negative length returns an error.

Off The first character in the string is at po
sition 1. A negative starting position
specifies a number of characters from
the end of the string instead of the be
ginning.

If start is zero and length is non-nega
tive, a start value of 1 is used. If start is
zero and length is negative, a start
value of -1 is used.

A positive length specifies that the
substring ends length characters to
the right of the starting position.

A negative length returns at most
length characters up to, and including,
the starting position, from the left of the
starting position.

UltraLite: Whenever possible, if the input string uses character-length semantics, the return value is described
in character-length semantics. In UltraLite, the database does not have an ansi_substring option, but the
SUBSTR function behaves as if ansi_substring is set to on by default. The function's behavior corresponds to
ANSI/ISO SQL Standard behavior:

Start value

The first character in the string is at position 1. A negative or zero start offset is treated as if the string were
padded on the left with non-characters.
Length value

A positive length specifies that the substring ends length characters to the right of the starting position.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 495

A negative length returns an error.

A length of zero returns an empty string.

Standards

ANSI/ISO SQL Standard

Core Feature. However, the ANSI/ISO SQL Standard implementation differs slightly from the software: in
the Standard, SUBSTRING is defined with three parameters using the keywords FROM and FOR, neither of
which are required by the software.

Example

The following table shows the values returned by the SUBSTRING function:

Example Result

SUBSTRING('front yard', 1, 4) fron

SUBSTRING('back yard', 6, 4) yard

SUBSTR('abcdefgh', 0, -2) Returns an error if the SQL Anywhere ansi_substring option
is On

SUBSTR('abcdefgh', -2, 2) Returns an empty string if the SQL Anywhere ansi_substring
option is On

UltraLite: The following table shows the values returned by the SUBSTRING function:

Example Result

SUBSTRING('front yard', 1, 4) fron

SUBSTRING('back yard', 6, 4) yard

SUBSTR('abcdefgh', 0, -2) Returns an error

SUBSTR('abcdefgh', -2, 2) Returns an empty string

Related Information

BYTE_SUBSTR Function [String] [page 356]
LEFT Function [String] [page 415]
RIGHT Function [String] [page 461]
CHARINDEX Function [String] [page 364]
STRING Function [String] [page 490]

496 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.114 SUM Function [Aggregate]

Returns the total of the specified expression for each group of rows.

 Syntax
Expression

SUM([ALL | DISTINCT] expression)

Window function

SUM([ALL] expression) OVER (window-spec)

window-spec : see the Remarks section below

UltraLite syntax: Expression

SUM([DISTINCT] expression)

Parameters

expression

The name of the expression to be summed. This is commonly a column name.
[ALL] expression

The name of the expression to be summed. This is commonly a column name.
DISTINCT expression

Computes the sum of the unique values of expression within each group.

Returns

• INTEGER
• DOUBLE
• NUMERIC

Remarks

Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

This function can generate an overflow error, resulting in an error being returned. You can use the CAST
function on numeric-expression to avoid the overflow error.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 497

Specifying this function with window-spec represents usage as a window function in a SELECT statement. As
such, elements of window-spec can be specified either in the function syntax (inline), or with a WINDOW
clause in the SELECT statement.

Standards

ANSI/ISO SQL Standard

Core Feature. When used as a window function, SUM comprises part of optional ANSI/ISO SQL Language
Feature T611, "Basic OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional ANSI/ISO SQL Language Feature F561, "Full value expressions". The software also supports
Language Feature F441, "Extended set function support", which permits operands of aggregate functions
to be arbitrary expressions possibly including outer references to expressions in other query blocks that
are not column references.

The software does not support optional Feature F442, "Mixed column references in set functions". The
software does not permit the arguments of an aggregate function to include both a column reference from
the query block containing the SUM function, combined with an outer reference.

Example

The following statement returns the value 3749146.740:

SELECT SUM(Salary) FROM GROUPO.Employees;

Related Information

COUNT Function [Aggregate] [page 372]
AVG Function [Aggregate] [page 353]

1.13.5.2.115 SWITCHOFFSET Function [Date and Time]

Returns a TIMESTAMP WITH TIME ZONE value that is converted from its original time zone offset to the
specified time zone offset.

 Syntax

SWITCHOFFSET(tmz-expression, time-zone-offset)

498 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

tmz-expression

The TIMESTAMP WITH TIME ZONE value to be converted.

time-zone-offset

The time zone offset of the result. The value can be an integer representing the minutes before or after
Coordinated Universal Time (UTC), a string in the form { + | - } hh:nn, or Z for the Zulu Time Zone. The Zulu
Time Zone is the same time zone as UTC.

Returns

TIMESTAMP WITH TIME ZONE

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following example changes a time zone offset value from -04:00 hours to -07:00 hours. The value returned
is 2009-04-03 11:45:12.123-07:00:

SELECT CAST ('2009-04-03 14:45:12.123-04:00' AS datetimeoffset) AS EDT, SWITCHOFFSET(EDT,'-07:00') AS PDT;

1.13.5.2.116 SYNC_PROFILE_OPTION_VALUE Function
[System] - UltraLite

Returns the value of the option corresponding to the given option name.

 Syntax

SYNC_PROFILE_OPTION_VALUE(profile_name, option_name)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 499

Parameters

profile_name

The name of the sync profile to inspect.
option_name

The name of the option to retrieve the corresponding value for.

Returns

Returns the value of the option corresponding to the given option name.

Remarks

Option names with periods will retrieve values from a sublist with the given base option name before the period,
and the given sublist option name after the period.

Example

The following statement will return the value of the MobiLinkUid option for the synchronization profile named
Example:

SELECT SYNC_PROFILE_OPTION_VALUE('Example', 'MobiLinkUid')

Related Information

ML_GET_SERVER_NOTIFICATION function [System] [page 438]

1.13.5.2.117 TAN Function [Numeric]

Returns the tangent of a number.

 Syntax

TAN(numeric-expression)

500 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

numeric-expression

An angle, in radians.

Returns

DOUBLE

Remarks

The ATAN and TAN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating-point
arithmetic, and returns a DOUBLE as the result.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value of the tan of 0.52:

SELECT TAN(0.52);

Related Information

COS Function [Numeric] [page 370]
SIN Function [Numeric] [page 472]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 501

1.13.5.2.118 TODATETIMEOFFSET Function [Date and Time]

Converts a TIMESTAMP value to a TIME STAMP WITH TIME ZONE value using the specified time zone offset.

 Syntax

TODATETIMEOFFSET(timestamp-expression, time-zone-offset)

Parameters

timestamp-expression

The TIMESTAMP expression to be converted.

time-zone-offset

The time zone offset. The value can be an INTEGER representing minutes before or after UTC, a VARCHAR
string in the form of { + | - }hh:nn, or the string "Z" for the Zulu Time Zone. The Zulu Time Zone is the same
time zone as UTC.

Returns

TIMESTAMP WITH TIME ZONE

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following example converts a TIMESTAMP value to a TIMESTAMP WITH TIME ZONE value:

SELECT CAST('2009-04-03 14:45:12.123' AS TIMESTAMP) AS orig, TODATETIMEOFFSET (orig,'+11:00');

502 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.119 TODAY Function [Date and Time]

Returns the current date as a DATE value.

 Syntax

TODAY([*])

Returns

DATE

Remarks

TODAY(*) and TODAY() are semantically equivalent. TODAY is equivalent to the CURRENT DATE special value.

Each instance of the TODAY function in a request is evaluated at most once. Multiple instances of TODAY in the
same request may or may not share the identical DATE value.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statements return the current day according to the system clock:

SELECT TODAY(*); SELECT CURRENT DATE;

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 503

1.13.5.2.120 TRIM Function [String]

Removes leading and trailing blanks or specified characters from a string.

 Syntax

TRIM(string-expression [, trim-char-set])

Parameters

string-expression

The string to be trimmed.
trim-char-set

The set of characters to trim.

Returns

VARCHAR, NVARCHAR, LONG VARCHAR, or LONG NVARCHAR, depending on the data type of the input
expression.

Remarks

By default, trim-char-set is the space character. You can specify the set of characters to be trimmed.

This function supports NCHAR inputs and/or outputs.

UltraLite does not support NCHAR inputs and/or outputs and trim-char-set.

Standards

ANSI/ISO SQL Standard

Core Feature.

The software does not support the additional parameters trim specification and trim character,
as defined in the ANSI/ISO SQL Standard. The implementation of TRIM provided in the software
corresponds to a TRIM specification of BOTH.

For the other TRIM specifications defined by the ANSI/ISO SQL Standard (LEADING and TRAILING), the
software provides the LTRIM and RTRIM functions respectively.

504 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following statement returns the value chocolate with no leading or trailing blanks:

SELECT TRIM(' chocolate ');

The following statement returns the value def after the specified leading and trailing characters are removed:

SELECT TRIM('abccbadefabcabccba', 'abc');

Related Information

LTRIM Function [String] [page 428]
RTRIM Function [String] [page 464]
STRING Function [String] [page 490]

1.13.5.2.121 TRUNCNUM Function [Numeric]

Truncates a number at a specified number of places after the decimal point.

 Syntax

{ TRUNCNUM | TRUNCATE } (numeric-expression, integer-expression)

Parameters

numeric-expression

The number to be truncated. This argument may be of type NUMERIC or DOUBLE.
integer-expression

A positive integer specifies the number of significant digits to the right of the decimal point at which to
round. A negative value specifies the number of significant digits to the left of the decimal point at which to
round.

Returns

NUMERIC or DOUBLE

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 505

Remarks

You should use the TRUNCNUM function, not the TRUNCATE function, when truncating numbers.

Use of the TRUNCATE function is not recommended because the word truncate is a keyword, and therefore
requires you to either set the quoted_identifier option to OFF, or put quotes around the word TRUNCATE.

UltraLite: If any parameter is NULL, the result is NULL.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 600:

SELECT TRUNCNUM(655, -2);

The following statement: returns the value 655.340:

SELECT TRUNCNUM(655.348, 2);

Related Information

ROUND Function [Numeric] [page 463]

1.13.5.2.122 UCASE Function [String]

Converts all characters in a string to uppercase.

 Syntax

UCASE(string-expression)

506 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

string-expression

The string to be converted to uppercase.

Returns

LONG NVARCHAR when used on NCHAR data
LONG VARCHAR when used on CHAR data if the database collation is UCA
Otherwise, the data type is the same as the input data type
UltraLite returns the same data type as the input data type

Remarks

This function is identical to the UPPER function.

Standards

ANSI/ISO SQL Standard

Not in the standard. The UPPER function is ANSI/ISO SQL Standard compliant.

Example

The following statement returns the value CHOCOLATE:

SELECT UCASE('ChocoLate');

Related Information

UPPER Function [String] [page 508]
LCASE Function [String] [page 414]
STRING Function [String] [page 490]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 507

1.13.5.2.123 UPPER Function [String]

Converts all characters in a string to uppercase.

 Syntax

UPPER(string-expression)

Parameters

string-expression

The string to be converted to uppercase.

Returns

LONG NVARCHAR when used on NCHAR data
LONG VARCHAR when used on CHAR data if the database collation is UCA
Otherwise, the data type is the same as the input data type
UltraLite returns the same data type as the input data type

Remarks

This function is identical to the UCASE function.

Standards

ANSI/ISO SQL Standard

Core feature.

Example

The following statement returns the value CHOCOLATE:

SELECT UPPER('ChocoLate');

508 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

UCASE Function [String] [page 506]
LCASE Function [String] [page 414]
LOWER Function [String] [page 427]
STRING Function [String] [page 490]

1.13.5.2.124 UUIDTOSTR Function [String]

Converts a unique identifier value (UUID, also known as GUID) to a string value.

 Syntax

UUIDTOSTR(uuid-expression)

Parameters

uuid-expression

A unique identifier value.

Returns

VARCHAR

Remarks

Converts a unique identifier to a string value in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx,
where x is a hexadecimal digit. If the binary value is not a valid uniqueidentifier, NULL is returned.

This function is useful for viewing a UUID value.

 Note
In databases created before version 9.0.2, the UNIQUEIDENTIFIER data type was defined as a user-defined
data type and the STRTOUUID and UUIDTOSTR functions were needed to convert between binary and
string representations of UUID values.In databases created using version 9.0.2 or later, the
UNIQUEIDENTIFIER data type was changed to a native data type and the database server carries out
conversions as needed. You do not need to use STRTOUUID and UUIDTOSTR functions with these versions.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 509

UltraLite: In databases created before version 9.0.2, the STRTOUUID and UUIDTOSTR functions were
needed to convert between binary and string representations of UUID values In databases created using
version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a native data type. You do not need
to use STRTOUUID and UUIDTOSTR functions with these versions..

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement creates a table mytab with two columns. Column pk has a unique identifier data type,
and column c1 has an integer data type. It then inserts two rows with the values 1 and 2 respectively into
column c1.

CREATE TABLE mytab(pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
 c1 INT);
INSERT INTO mytab(c1) values (1); INSERT INTO mytab(c1) values (2);

Executing the following SELECT statement returns all the data in the newly created table:

SELECT * FROM mytab;

You will see a two-column, two-row table. The value displayed for column pk will be binary values.

To convert the unique identifier values into a readable format, execute the following statement:

SELECT UUIDTOSTR(pk), c1 FROM mytab;

The UUIDTOSTR function is not needed for databases created with version 9.0.2 or later.

Related Information

SQL Data Types [page 288]
NEWID Function [Miscellaneous] [page 445]
STRTOUUID Function [String] [page 491]
STRING Function [String] [page 490]

510 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.5.2.125 WEEKS Function [Date and Time]

Manipulates a TIMESTAMP or returns the number of weeks between two TIMESTAMP values.

 Syntax
Returns the number of weeks between 0000-02-29 and a TIMESTAMP value

WEEKS(timestamp-expression)

Returns the number of weeks between two TIMESTAMP values

WEEKS(timestamp-expression, timestamp-expression)

Adds weeks to a TIMESTAMP value

WEEKS(timestamp-expression, integer-expression)

Parameters

timestamp-expression

A date and time value of type TIMESTAMP.
integer-expression

The number of weeks to be added to timestamp-expression. If integer-expression is negative, the
appropriate number of weeks is subtracted from timestamp-expression. If you supply an integer-
expression, timestamp-expression must be explicitly cast as a DATE or TIMESTAMP.

Returns

INTEGER when comparing two TIMESTAMP values.

TIMESTAMP when adding weeks to a TIMESTAMP value.

Remarks

Given a single date, the WEEKS function returns the number of weeks since 0000-02-29.

Given two dates, the WEEKS function returns the number of weeks between them. The WEEKS function is
similar to the DATEDIFF function, however the method used to calculate the number of weeks between two
dates is not the same and can return a different result. The return value for WEEKS is determined by dividing
the number of days between the two dates by seven, and then rounding down. However, DATEDIFF uses
number of week boundaries in its computation. This can cause the values returned from the two functions to
be different. For example, if the first date is a Friday and the second date is the following Monday, the WEEKS

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 511

function returns a difference of 0, but the DATEDIFF function returns a difference of 1. While neither method is
better than the other, you should consider the difference when choosing between WEEKS and DATEDIFF.

Given a date and an integer, the WEEKS function adds the integer number of weeks to timestamp-
expression. With this syntax, you must explicitly cast timestamp-expression as a TIME, DATE, or
TIMESTAMP data type. If timestamp-expression is a TIME value, the current date is assumed.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 8, signifying that 2008-09-13 10:07:12 is eight weeks after
2008-07-13 06:07:12:

SELECT WEEKS('2008-07-13 06:07:12', '2008-09-13 10:07:12');

The following statement returns the value 104792, signifying that the date is 104792 weeks after 0000-02-29:

SELECT WEEKS('2008-07-13 06:07:12');

The following statement returns the TIMESTAMP value 2008-06-16 21:05:07.0, indicating the date and time five
weeks after 2008-05-12 21:05:07:

SELECT WEEKS(CAST('2008-05-12 21:05:07' AS TIMESTAMP), 5);

Related Information

DATEDIFF Function [Date and Time] [page 379]
DATEADD Function [Date and Time] [page 377]
CAST Function [Data Type Conversion] [page 358]

1.13.5.2.126 YEAR Function [Date and Time]

Returns the year component of the TIMESTAMP argument.

 Syntax

YEAR(timestamp-expression)

512 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Parameters

timestamp-expression

A TIMESTAMP value.

Returns

SMALLINT

Remarks

The value returned is the years component of the given TIMESTAMP value, returned as a SMALLINT.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following example returns the value 2001:

SELECT YEAR('2001-09-12');

1.13.5.2.127 YEARS Function [Date and Time]

Manipulates a TIMESTAMP or returns the number of years between two TIMESTAMP values.

 Syntax
Return the number of years between year 0000 and a TIMESTAMP value

YEARS(timestamp-expression)

Return the number of years between two TIMESTAMP values

YEARS(timestamp-expression, timestamp-expression)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 513

Add years to a TIMESTAMP value

YEARS(timestamp-expression, integer-expression)

Parameters

timestamp-expression

A date and time value of type TIMESTAMP.
integer-expression

The number of years (as a SMALLINT value) to be added to timestamp-expression. If integer-
expression is negative, the appropriate number of years is subtracted from timestamp-expression. If
you supply an integer-expression, the timestamp-expression must be explicitly cast as a DATE,
TIME, or TIMESTAMP value. If timestamp-expression is a TIME, the current year is assumed.

Returns

SMALLINT when comparing two TIMESTAMP values.

TIMESTAMP when adding years to a TIMESTAMP value.

Remarks

The value of YEARS is computed by counting the number of first days of the year between the two dates.

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statements both return -4:

SELECT YEARS('1998-07-13 06:07:12', '1994-03-13 08:07:13');

514 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

SELECT DATEDIFF(year, '1998-07-13 06:07:12', '1994-03-13 08:07:13');

The following statements return 1998:

SELECT YEARS('1998-07-13 06:07:12') SELECT DATEPART(year, '1998-07-13 06:07:12');

The following statements return the given date advanced 300 years:

SELECT YEARS(CAST('1998-07-13 06:07:12' AS TIMESTAMP), 300)

SELECT DATEADD(year, 300, '1998-07-13 06:07:12');

Related Information

DATEDIFF Function [Date and Time] [page 379]
DATEADD Function [Date and Time] [page 377]
CAST Function [Data Type Conversion] [page 358]

1.13.5.2.128 YMD Function [Date and Time]

Returns a date value corresponding to the given year, month, and day of the month. Arguments are INTEGER
values from -32768 to 32767.

 Syntax

YMD(smallint-expression1, smallint-expression2, smallint-expression3)

Parameters

smallint-expression1

The year.
smallint-expression2

The number of the month. The year is adjusted if the month is outside the range 1-12.
smallint-expression3

The day number. The day can be any integer; the date is adjusted accordingly.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 515

Returns

DATE

Standards

ANSI/ISO SQL Standard

Not in the standard.

Example

The following statement returns the value 1998-06-12:

SELECT YMD(1998, 06, 12);

If the values are outside their normal range, the date is adjusted accordingly. For example, the following
statement returns the DATE value 2000-03-01:

SELECT YMD(1999, 15, 1);

1.13.6 UltraLite SQL Statements

The SQL statements supported by UltraLite SQL are a subset of the statements supported by SQL Anywhere
databases.

Before You Begin

• Tables in UltraLite do not support the concept of an owner. As a convenience for existing SQL and for SQL
that is programmatically generated, UltraLite still allows the syntax owner.table-name. However, the
owner is not checked because table owners are not supported in UltraLite.

• UltraLite SQL statement documentation follows the same syntax conventions used by SQL Anywhere
statements. Ensure you understand these conventions and how they are used to represent SQL syntax.

• Using UltraLite SQL creates a transaction. A transaction consists of all changes (insert, update, and delete
statements) since the last rollback or commit statement.
These changes can be made permanent by executing a COMMIT. A ROLLBACK statement causes the
changes to be removed.

In this section:

516 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite Statement Categories [page 518]
SQL statements are organized and identified by the initial keyword in the statement, which is almost
always a verb. This action-oriented syntax makes the nature of the language into a set of imperative
statements (commands) to the database.

ALTER DATABASE SCHEMA FROM FILE Statement [UltraLite] [page 520]
Modifies the schema definition of an existing UltraLite database using a SQL script.

ALTER PUBLICATION Statement [UltraLite] [page 521]
Alters a publication.

ALTER SYNCHRONIZATION PROFILE Statement [UltraLite] [page 522]
Alters an UltraLite synchronization profile.

ALTER TABLE Statement [UltraLite] [page 524]
Modifies a table definition.

ALTER USER Statement [UltraLite] [page 528]
Alters user settings.

CHECKPOINT Statement [UltraLite] [page 529]
Checkpoints the database.

COMMIT Statement [UltraLite] [page 530]
Makes the changes to the database permanent.

CREATE INDEX Statement [UltraLite] [page 531]
Creates an index on a specified table.

CREATE PUBLICATION Statement [UltraLite] [page 533]
Creates a publication.

CREATE SYNCHRONIZATION PROFILE Statement [UltraLite] [page 535]
Creates or replaces an UltraLite synchronization profile.

CREATE TABLE Statement [UltraLite] [page 537]
Creates a table.

CREATE USER Statement [UltraLite] [page 543]
Creates a database user or group.

DELETE Statement [UltraLite] [page 544]
Deletes rows from a table in the database.

DROP INDEX Statement [UltraLite] [page 545]
Deletes an index.

DROP PUBLICATION Statement [UltraLite] [page 546]
Deletes publications.

DROP SYNCHRONIZATION PROFILE Statement [UltraLite] [page 547]
Deletes a synchronization profile.

DROP TABLE Statement [UltraLite] [page 548]
Removes a table, and all its data, from a database.

DROP USER Statement [UltraLite] [page 549]
Drops a user.

FROM Clause [UltraLite] [page 550]
Use this clause to specify the tables or views involved in a SELECT statement.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 517

INSERT Statement [UltraLite] [page 552]
Inserts rows into a table.

LOAD TABLE Statement [UltraLite] [page 553]
Imports bulk data into a database table from an external file.

ROLLBACK Statement [UltraLite] [page 557]
Ends a transaction and reverts any changes made to data since the last COMMIT or ROLLBACK
statement was executed.

SELECT Statement [UltraLite] [page 558]
Retrieves information from the database.

SET OPTION Statement [UltraLite] [page 560]
Changes the values of database options.

START SYNCHRONIZATION DELETE Statement [UltraLite] [page 561]
Restarts the logging of deleted rows for MobiLink synchronization.

STOP SYNCHRONIZATION DELETE Statement [UltraLite] [page 562]
Stops the logging of deleted rows for MobiLink synchronization.

SYNCHRONIZE Statement [UltraLite] [page 563]
Synchronize an UltraLite database via the MobiLink server.

TRUNCATE TABLE Statement [UltraLite] [page 565]
Deletes all rows from a table without deleting the table.

UNION Statement [UltraLite] [page 566]
Combines the results of two or more select statements.

UPDATE Statement [UltraLite] [page 567]
Modifies rows in a table.

Related Information

SQL Statements
Syntax Conventions
UltraLite Transaction Processing [page 585]

1.13.6.1 UltraLite Statement Categories

SQL statements are organized and identified by the initial keyword in the statement, which is almost always a
verb. This action-oriented syntax makes the nature of the language into a set of imperative statements
(commands) to the database.

In UltraLite, supported SQL statements can be classified as follows:

Data retrieval statements

Also known as queries. These statements allow select rows of data expressions from tables. Data retrieval
is achieved with the SELECT statement.
Data manipulation statements

518 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81738b736ce21014b823875d78c9a52c.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817b68476ce210149f95d48c949a32e9.html

Allow you to change content in the database. Data manipulation is achieved with the following statements:

• INSERT
• UPDATE
• DELETE

Data definition statements

Allow you to define the structure or schema of a database. The schema can be changed with the following
statements:

• ALTER DATABASE SCHEMA FROM FILE
• CREATE INDEX
• CREATE TABLE
• DROP INDEX
• DROP TABLE
• ALTER TABLE
• TRUNCATE TABLE

Transaction control statements

Allow you to control transactions within your UltraLite application. Transaction control is achieved with the
following statements:

• CHECKPOINT
• COMMIT
• ROLLBACK

Synchronization management

Allow you to temporarily control synchronization with a MobiLink server. Synchronization management is
achieved with:

• START SYNCHRONIZATION DELETE
• STOP SYNCHRONIZATION DELETE
• CREATE PUBLICATION
• ALTER PUBLICATION
• DROP PUBLICATION

Related Information

Operators in UltraLite [page 285]
Expressions in UltraLite [page 264]
SELECT Statement [UltraLite] [page 558]
INSERT Statement [UltraLite] [page 552]
UPDATE Statement [UltraLite] [page 567]
DELETE Statement [UltraLite] [page 544]
ALTER DATABASE SCHEMA FROM FILE Statement [UltraLite] [page 520]
CREATE INDEX Statement [UltraLite] [page 531]
CREATE TABLE Statement [UltraLite] [page 537]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 519

DROP INDEX Statement [UltraLite] [page 545]
DROP TABLE Statement [UltraLite] [page 548]
ALTER TABLE Statement [UltraLite] [page 524]
TRUNCATE TABLE Statement [UltraLite] [page 565]
CHECKPOINT Statement [UltraLite] [page 529]
COMMIT Statement [UltraLite] [page 530]
ROLLBACK Statement [UltraLite] [page 557]
START SYNCHRONIZATION DELETE Statement [UltraLite] [page 561]
STOP SYNCHRONIZATION DELETE Statement [UltraLite] [page 562]
CREATE PUBLICATION Statement [UltraLite] [page 533]
ALTER PUBLICATION Statement [UltraLite] [page 521]
DROP PUBLICATION Statement [UltraLite] [page 546]

1.13.6.2 ALTER DATABASE SCHEMA FROM FILE Statement
[UltraLite]

Modifies the schema definition of an existing UltraLite database using a SQL script.

 Syntax

ALTER DATABASE SCHEMA FROM FILE filename

Parameters

filename

Defines the name and path to the SQL script used to upgrade the schema of an existing UltraLite database.

Remarks

Use either ulinit or ulunload to extract the DDL statements required for your script. By using these utilities, you
ensure that the DDL statements are syntactically correct. Use ulinit (-l logfile option) or ulunload (using the
-n -s output-file options).

Backup the database before executing this statement.

The character set of the SQL script file must match the character set of the database you want to upgrade.

Ensure that your device is not reset while this statement is executing. If you reset the device during a schema
upgrade, the UltraLite database becomes unusable.

Any rows that do not fit into the schema will be dropped (for instance if a uniqueness constraint is added and
multiple rows contain the same values, all but one row will be dropped). In this case, the

520 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

SQLE_ROW_DROPPED_DURING_SCHEMA_UPGRADE warning is generated. You can use this warning to
detect the error and restore the database from the backup version.

Example

The following statement modifies the schema of the database using a SQL script, MySchema.sql:

ALTER DATABASE SCHEMA FROM FILE 'MySchema.sql'

Related Information

UltraLite Database Schemas [page 52]
Deploying UltraLite Database Schema Upgrades [page 131]
UltraLite Initialize Database Utility (ulinit) [page 227]
UltraLite Database Unload Utility (ulunload) [page 243]

1.13.6.3 ALTER PUBLICATION Statement [UltraLite]

Alters a publication.

 Syntax

ALTER PUBLICATION publication-name alterpub-clause

alterpub-clause : ADD TABLE table-name [WHERE search-condition] | ALTER TABLE table-name [WHERE search-condition] | { DROP | DELETE } TABLE table-name | RENAME publication-name

Remarks

A publication identifies data in a remote database that is to be synchronized.

Side effects

Automatic commit.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 521

Example

The following ALTER PUBLICATION statement adds the Customers table to the pub_contact publication.

ALTER PUBLICATION pub_contact ADD TABLE Customers

Related Information

UltraLite Client Synchronization Design [page 79]
Search Conditions in UltraLite [page 272]
CREATE PUBLICATION Statement [UltraLite] [page 533]
DROP PUBLICATION Statement [UltraLite] [page 546]
START SYNCHRONIZATION DELETE Statement [UltraLite] [page 561]
STOP SYNCHRONIZATION DELETE Statement [UltraLite] [page 562]

1.13.6.4 ALTER SYNCHRONIZATION PROFILE Statement
[UltraLite]

Alters an UltraLite synchronization profile.

 Syntax

ALTER SYNCHRONIZATION PROFILE sync-profile-name MERGE sync-option [; ...]

sync-option : sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters

sync-profile-name

The name of the synchronization profile.
MERGE clause

Use this clause to change existing, or add new, options to a synchronization profile.

522 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

sync-option

A string of one or more synchronization option value pairs, separated by semicolons. For example,
'option1=value1;option2=value2'.
sync-option-name

The name of the synchronization profile option.
sync-option-value

The value for the synchronization profile option.

Remarks

Synchronization profiles define how an UltraLite database synchronizes with the MobiLink server.

You can use the MERGE clause to make changes to an existing synchronization profile. When using this clause,
only the synchronization options that are specified in the MERGE clause are changed. To remove a
synchronization option from a synchronization profile, the sync-option string should look like 'option1=;' (to
set the option to an empty value).

The STREAM synchronization profile option is different from the other options because its value contains a
sub-list. For example: 'STREAM=TCPIP{host=192.168.1.1;port=1234}'. In this case
'host=192.168.1.1;port=1234' is the sub-list. To add or remove a sub-list value, use a period between the
STREAM sync-option-name and the sub-option-name. For example, MERGE
'stream.port=5678;stream.host=;compression=zlib' results in a synchronization profile of:
stream=TCPIP{port=5678;compression=zlib}. Attempting to set the stream to a new value will replace
the entire stream value. For example: MERGE 'stream=HTTPS' results in a synchronization profile of:
stream=HTTPS{}.

Side effects

None.

Example

The following is an example of the ALTER SYNCHRONIZATION PROFILE...REPLACE statement:

CREATE SYNCHRONIZATION PROFILE myProfile1; ALTER SYNCHRONIZATION PROFILE myProfile1 REPLACE 'publications=p1;uploadonly=on';

The following is an example of the ALTER SYNCHRONIZATION PROFILE...MERGE statement.

CREATE SYNCHRONIZATION PROFILE myProfile2 'publications=p1; ALTER SYNCHRONIZATION PROFILE myProfile2 MERGE 'publications=p2;uploadonly=on';

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 523

The following examples illustrate the changes that occur after executing a sequence of ALTER
SYNCHRONIZATION PROFILE commands with different options.

Suppose myProfile1='MobiLinkUID=mary;ScriptVersion=default'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 REPLACE
'MobiLinkPwd=sql;ScriptVersion=1', myProfile1 is 'MobiLinkPwd=sql;ScriptVersion=1'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkUID=mary;STREAM=tcpip', myProfile1 is
'MobiLinkPwd=sql;ScriptVersion=1;MobiLinkUID=mary;STREAM=tcpip'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkUID=;STREAM.host=192.168.1.1;STREAM.port=1234;ScriptVersion=;', myProfile1 is
'MobiLinkPwd=sql;STREAM=tcpip{192.168.1.1;port=1234}'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'MobiLinkPwd=;Ping=yes;STREAM =HTTP', myProfile1 is 'Ping=yes;STREAM=HTTP'.

After executing ALTER SYNCHRONIZATION PROFILE myProfile1 MERGE
'STREAM=HTTP{host=192.168.1.1}', myProfile1 is 'Ping=yes;STREAM=HTTP{host=192.168.1.1}'.

Related Information

UltraLite Synchronization Profile Options [page 241]
DROP SYNCHRONIZATION PROFILE Statement [UltraLite] [page 547]
SYNCHRONIZE Statement [UltraLite] [page 563]

1.13.6.5 ALTER TABLE Statement [UltraLite]

Modifies a table definition.

 Syntax

ALTER TABLE table-name { add-clause | modify-clause | drop-clause | rename-clause }

add-clause : ADD { column-definition | table-constraint }

modify-clause : ALTER column-definition | sync-constraint

drop-clause : DROP { column-name | CONSTRAINT constraint-name }

524 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

rename-clause : RENAME { new-table-name | [old-column-name TO] new-column-name | CONSTRAINT old-constraint-name TO new-constraint-name }

column-definition : column-name data-type [[NOT] NULL] [DEFAULT column-default] [UNIQUE]

column-default : GLOBAL AUTOINCREMENT [(number)] | AUTOINCREMENT | CURRENT DATE | CURRENT TIME | CURRENT TIMESTAMP | NULL | NEWID() | constant-value

table-constraint : [CONSTRAINT constraint-name] { fkey-constraint | unique-key-constraint } [WITH MAX HASH SIZE integer]

fkey-constraint : [NOT NULL] FOREIGN KEY [role-name] (ordered-column-list) REFERENCES table-name (column-name, ...) [CHECK ON COMMIT]

unique-key-constraint : UNIQUE (ordered-column-list)

 ordered-column-list : (column-name [ASC | DESC], ...)

sync-constraint :SYNCHRONIZE {ON| OFF|ALL|DOWNLOAD}

Parameters

add-clause

Adds a new column or table constraint to the table:

Adds a new column or table constraint to the table:

ADD column-definition clause

Adds a new column to the table. If the column has a default value, all rows in the new column are
populated with that default value.
ADD table-constraint clause

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 525

Adds a constraint to the table. The optional constraint name allows you to modify or drop individual
constraints at a later time, rather than having to modify the entire table constraint.

When adding a new unique constraint, all constraint columns must be non nullable. To add a unique
constraint, alter the column to be NOT NULL.

 Note
You cannot add a primary key in UltraLite.

modify-clause

Change a single column definition. You cannot use primary keys in the column-definition when part of
an ALTER statement. If necessary, the data in the modified column is converted to the new data type. If a
conversion error occurs, the operation will fail and the table is left unchanged.
drop-clause

Delete a column or a table constraint:

DROP column-name

Delete the column from the table. If the column is contained in any index, uniqueness constraint,
foreign key, or primary key, then the object must be deleted before UltraLite can delete the column.
DROP CONSTRAINT table-constraint

Delete the named constraint from the table definition.

 Note
You cannot drop a primary key in UltraLite.

rename-clause

Change the name of a table, column, or constraint:

RENAME new-table-name

Change the name of the table to new-table-name. Any applications using the old table name must be
modified. Foreign keys that were automatically assigned the old table name will not change names.
RENAME old-column-name TO new-column-name

Change the name of the column to the new-column-name. Any applications using the old column
name will need to be modified.
RENAME old-constraint-name TO new-constraint-name

Change the name of the constraint to the new-constraint-name. Any applications using the old
constraint name need to be modified.

 Note
You cannot rename a primary key in UltraLite.

column-constraint

A column constraint restricts the values the column can hold to ensure the integrity of data in the
database. A column constraint can only be UNIQUE.
UNIQUE

526 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Identifies one or more columns that uniquely identify each row in the table. No two rows in the table can
have the same values in all the named column(s). A table may have more than one unique constraint.
sync-constraint clause

Specify a sync constraint to determine whether a table can be synchronized or not and whether all rows
are uploaded, just changes to the table are uploaded, or no changes to the table are uploaded.

SYNCHRONIZE ON

Default setting - the table can be synchronized and only changes to the table are sent in the upload.
SYNCHRONIZE OFF

The table cannot be synchronized and it is an error to include the table in a publication.
SYNCHRONIZE ALL

The table can be synchronized and all rows in the table are sent in the upload.
SYNCHRONIZE DOWNLOAD

The table can be synchronized with changes to the consolidated database but no local changes are
uploaded.

Remarks

Only one table-constraint or column-constraint can be added, modified, or deleted in one ALTER
TABLE statement.

The role name is the name of the foreign key. The main function of the role-name is to distinguish two foreign
keys to the same table. Alternatively, you can name the foreign key with CONSTRAINT constraint-name.
However, do not use both methods to name a foreign key.

You cannot MODIFY a table or column constraint. To change a constraint, you must DELETE the old constraint
and ADD the new constraint.

ALTER TABLE cannot execute if a statement that affects the table is already being referenced by another
request or query. Similarly, UltraLite does not process requests referencing the table while that table is being
altered. Furthermore, you cannot execute ALTER TABLE when the database includes active queries or
uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the ULBulkCopy.Dispose
method for all data objects (for example, ULDataReader).

Statements are not released if schema changes are initiated at the same time.

Example

The following statement drops the Street column from a fictitious table called MyEmployees.

ALTER TABLE MyEmployees DROP Street

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 527

The following example changes the Street column of the fictitious table, MyCustomers, to hold approximately
50 characters.

ALTER TABLE MyCustomers ALTER Street CHAR(50)

Related Information

UltraLite Database Schemas [page 52]
SQL Data Types [page 288]
Table Alteration
Table and Column Constraints
Partition Sizes [page 77]
Methods for Finding the Last Assigned GLOBAL AUTOINCREMENT Value [page 77]
CREATE TABLE Statement [UltraLite] [page 537]
DROP TABLE Statement [UltraLite] [page 548]

1.13.6.6 ALTER USER Statement [UltraLite]

Alters user settings.

Syntax 1

ALTER USER user-name [IDENTIFIED BY password]

Parameters

user-name

The name of the user.
IDENTIFIED BY clause

The password for the user.

528 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/818257806ce21014a9ff8227e05c1a28.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/8188fffd6ce21014a723c13a5413ea30.html

Remarks

If you use this statement in a procedure, do not specify the password (IDENTIFIED BY clause) as a string literal
because the definition of the procedure is visible in the SYSPROCEDURE system view. For security purposes,
specify the password using a variable that is declared outside of the procedure definition.

• User IDs cannot:
• begin with white space, single quotes, or double quotes
• end with white space
• contain semicolons

• Passwords are case-sensitive and they cannot:
• begin with white space, single quotes, or double quotes
• end with white space
• contain semicolons
• be longer than 255 bytes in length

Side effects

None.

Example

The following alters a user named SQLTester. The password is set to "welcome".

ALTER USER SQLTester IDENTIFIED BY welcome

1.13.6.7 CHECKPOINT Statement [UltraLite]

Checkpoints the database.

 Syntax

CHECKPOINT

Remarks

You can use the CHECKPOINT statement as a trigger for a commit flush. A commit flush writes uncommitted
transactions to storage.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 529

If you are using the Embedded SQL API, you can also use the ULCheckpoint method. If you are writing a C++
component application, you can also use the Checkpoint method on a connection object. All other APIs must
use this statement.

Side effects

While this statement flushes any pending committed transactions to storage, it does not commit or flush
current transactions.

Example

The following statement performs a checkpoint of the database:

CHECKPOINT

Related Information

Flush Single or Grouped Transactions [page 586]
COMMIT Statement [UltraLite] [page 530]
UltraLite COMMIT_FLUSH Connection Parameter [page 188]

1.13.6.8 COMMIT Statement [UltraLite]

Makes the changes to the database permanent.

 Syntax

COMMIT [WORK]

Remarks

Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs, UPDATEs, and
DELETEs) since the last ROLLBACK or COMMIT. The COMMIT statement ends the current transaction and
makes all changes made during the transaction permanent in the database.

Changes to the database objects using the ALTER, CREATE, and DROP statements are committed
automatically.

530 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following statement makes the changes in the current transaction permanent in the database:

COMMIT

Related Information

CHECKPOINT Statement [UltraLite] [page 529]
ROLLBACK Statement [UltraLite] [page 557]

1.13.6.9 CREATE INDEX Statement [UltraLite]

Creates an index on a specified table.

 Syntax

CREATE [UNIQUE] INDEX [IF NOT EXISTS] [index-name] ON table-name (ordered-column-list) [WITH MAX HASH SIZE integer]

ordered-column-list : (column-name [ASC | DESC], ...)

Parameters

UNIQUE

The UNIQUE attribute ensures that there are not two rows in the table with identical values in all the
columns in the index. Each index key must be unique or contain a NULL in at least one column.

There is a difference between a unique constraint on a table and a unique index. Columns of a unique index
are allowed to be NULL, while columns in a unique constraint are not. A foreign key can reference either a
primary key or a unique constraint, but not a unique index, because it can include multiple instances of
NULL.

If the columns in a unique constraint are changed during an update, and a foreign key references that
unique constraint, any rows no longer referencing rows in the unique constraint are deleted from the
remote.
IF NOT EXISTS clause

When the IF NOT EXISTS attribute is specified and the named index already exists, no changes are made
and an error is not returned.
ordered-column-list

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 531

An ordered list of columns. Column values in the index can be sorted in ascending or descending order.
WITH MAX HASH SIZE

Sets the hash size (in bytes) for this index. This value overrides the default MaxHashSize database
property in effect for the database.

Remarks

UltraLite automatically creates indexes for primary keys and for unique constraints.

Indexes can improve query performance by providing quick ways for UltraLite to look up specific rows.
Conversely, because they have to be maintained, indexes may slow down synchronization and INSERT,
DELETE, and UPDATE statements.

Indexes are automatically used to improve the performance of queries issued to the database, and to sort
queries with an ORDER BY clause. Once an index is created, it is never referenced in a SQL statement again
except to remove it with DROP INDEX.

Indexes use space in the database. Also, the additional work required to maintain indexes can affect the
performance of data modification operations. For these reasons, you should avoid creating indexes that do not
improve query performance.

UltraLite does not process requests or queries referencing the index while the CREATE INDEX statement is
being processed. Furthermore, you cannot execute CREATE INDEX when the database includes active queries
or uncommitted transactions.

Use execution plans to optimize queries.

For UltraLite.NET users, you cannot execute this statement unless you also call the ULBulkCopy.Dispose
method for all data objects (for example, ULDataReader).

Statements are not released if database schema changes are initiated at the same time.

Side effects

• Automatic commit.

Example

The following statement creates a two-column index on the Employees table.

CREATE INDEX employee_name_index ON Employees (Surname, GivenName)

The following statement creates an index on the SalesOrderItems table for the ProductID column.

CREATE INDEX item_prod

532 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

ON SalesOrderItems (ProductID)

The following scenario illustrates the effects of MAX HASH SIZE on an UltraLite Java edition database, given an
Employees table that contains an Initials column that is VARCHAR(3) and an EmployeeID column that is TINY.

The following statement completely hashes all values when only ASCII7 characters are used:

CREATE INDEX ascii_a ON Employees(Initials) WITH MAX HASH SIZE 3

The following statement completely hashes all values no matter what characters they contain:

CREATE INDEX unicode_a ON Employees(Initials) WITH MAX HASH SIZE 9

The following statement only hashes the Initials values even when only ASCII characters are used because the
first 9 bytes for Initials are reserved:

CREATE INDEX compound_1 ON Employees(Initials, EmployeeID) WITH MAX HASH SIZE 9

The following statement completely hashes both Initials and EmployeeID values:

CREATE INDEX compound_2 ON Employees(Initials, EmployeeID) WITH MAX HASH SIZE
10

Related Information

UltraLite Performance Tips [page 569]
UltraLite Indexes [page 62]
UltraLite Database Schemas [page 52]
Execution Plans in UltraLite [page 575]
Reading Database Properties [page 43]
DROP INDEX Statement [UltraLite] [page 545]
UltraLite max_hash_size Creation Option [page 161]

1.13.6.10 CREATE PUBLICATION Statement [UltraLite]

Creates a publication.

 Syntax

CREATE PUBLICATION [IF NOT EXISTS] publication-name (TABLE table-name [WHERE search-condition], ...)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 533

Parameters

IF NOT EXISTS clause

When the IF NOT EXISTS clause is specified and the named publication already exists, no changes are
made and an error is not returned.
TABLE clause

Use the table to include a TABLE in the publication. There is no limit to the number of TABLE clauses.
WHERE clause

If a WHERE clause is specified, only rows satisfying search-condition are considered for upload from
the associated table during synchronization.

If you do not specify a WHERE clause, every row in the table that has changed in UltraLite since the last
synchronization is considered for upload.

Remarks

A publication identifies synchronized data in an UltraLite remote database.

A publication establishes tables that are synchronized during a single synchronization operation, and
determines which data is uploaded to the MobiLink server. The MobiLink server may send back rows for these
(and only these) tables during its download session; however, rows that are downloaded do not have to satisfy
the WHERE clause for a table.

Only entire tables can be published. You cannot publish specific columns of a table in UltraLite.

Side effects

• Automatic commit.

Example

The following statement publishes all the columns and rows of two tables.

CREATE PUBLICATION pub_contact (TABLE Contacts,
 TABLE Customers)

The following statement publishes only the rows of the Customers table where the State column contains MN.

CREATE PUBLICATION pub_customer (TABLE Customers
 WHERE State = 'MN')

534 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

UltraLite Clients [page 73]
Search Conditions in UltraLite [page 272]
DROP PUBLICATION Statement [UltraLite] [page 546]
ALTER PUBLICATION Statement [UltraLite] [page 521]
Search Conditions in UltraLite [page 272]

1.13.6.11 CREATE SYNCHRONIZATION PROFILE Statement
[UltraLite]

Creates or replaces an UltraLite synchronization profile.

 Syntax

CREATE [OR REPLACE] SYNCHRONIZATION PROFILE sync-profile-name sync-option [;...]

sync-option : sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters

OR REPLACE clause

If the named synchronization profile already exists, then it will be replaced. If the profile does not exist, it
will be created.
sync-profile-name

The name of the synchronization profile.
sync-option

A string of one or more synchronization option value pairs, separated by semicolons. For example,
'option1=value1;option2=value2'.
sync-option-name

The name of the synchronization profile option.
sync-option-value

The value for the synchronization profile option.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 535

Remarks

Synchronization profiles define how an UltraLite database synchronizes with the MobiLink server.

You can use the REPLACE clause to make changes to an existing synchronization profile. This clause replaces
the contents of the synchronization profile with whatever is contained in the new sync-option string. This
approach is the same as dropping the synchronization profile and then creating one with the same name but
using the new string. Therefore, a synchronization profile does not need to contain a full synchronization
definition because parameters can be merged in or overridden at synchronization time.

The STREAM synchronization profile option is different from the other options because its value contains a
sub-list. For example: 'STREAM=TCPIP{host=192.168.1.1;port=1234}'. In this case
'host=192.168.1.1;port=1234' is the sub-list. To add or remove a sub-list value, use a period between the
STREAM sync-option-name and the sub-option-name. For example, MERGE
'stream.port=5678;stream.host=;compression=zlib' results in a synchronization profile of:
stream=TCPIP{port=5678;compression=zlib}. Attempting to set the stream to a new value will replace
the entire stream value. For example: MERGE 'stream=HTTPS' results in a synchronization profile of:
stream=HTTPS{}.

Side effects

None.

Example

The following creates a synchronization profile called Test1.

CREATE SYNCHRONIZATION PROFILE Test1
'MobiLinkUid=mary;Stream=TCPIP{host=192.168.1.1;port=1234}'

Related Information

UltraLite Synchronization Profile Options [page 241]
ALTER SYNCHRONIZATION PROFILE Statement [UltraLite] [page 522]
DROP SYNCHRONIZATION PROFILE Statement [UltraLite] [page 547]
SYNCHRONIZE Statement [UltraLite] [page 563]

536 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.13.6.12 CREATE TABLE Statement [UltraLite]

Creates a table.

 Syntax

CREATE TABLE [IF NOT EXISTS] table-name ({ column-definition | table-constraint| sync-constraint }, ...)

column-definition : column-name data-type [[NOT] NULL] [DEFAULT column-default] [STORE AS FILE (file-name-column) [CASCADE DELETE] [column-constraint]

column-default : AUTOFILENAME(prefix,extension) | GLOBAL AUTOINCREMENT [(number)] | AUTOINCREMENT | CURRENT DATE | CURRENT TIME | CURRENT TIMESTAMP | CURRENT UTC TIMESTAMP | NULL | NEWID() | constant-value

file-name "filename"

column-constraint : PRIMARY KEY | UNIQUE

table-constraint : { [CONSTRAINT constraint-name] pkey-constraint | fkey-constraint | unique-key-constraint } [WITH MAX HASH SIZE integer]

pkey-constraint : PRIMARY KEY [ordered-column-list]

fkey-constraint : [NOT NULL] FOREIGN KEY [role-name] (ordered-column-list) REFERENCES table-name (column-name, ...) [CHECK ON COMMIT]

unique-key-constraint : UNIQUE (ordered-column-list)

 ordered-column-list : (column-name [ASC | DESC], ...)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 537

sync-constraint :SYNCHRONIZE {ON| OFF| ALL| DOWNLOAD}

Parameters

IF NOT EXISTS clause

Use this clause to create a table. No changes are made if the named table already exists, and an error is not
returned.
column-definition

Defines a column in a table. Available parameters for this clause include:

column-name

The column name is an identifier. Two columns in the same table cannot have the same name.
data-type

The data type of the column.
[NOT] NULL

If NOT NULL is specified, or if the column is in a PRIMARY KEY or UNIQUE constraint, the column
cannot contain NULL in any row. Otherwise, NULL is allowed.
column-default

Sets the default value for the column. If a DEFAULT value is specified, it is used as the value for the
column in any INSERT statement that does not specify a value for the column. If no DEFAULT is
specified, it is equivalent to DEFAULT NULL. Default options include:

AUTOFILENAME

This clause supports the storing of external BLOB files in a partitioned UltraLite Java edition
database.

When partitioning the database, the column designated to store the file names requires the
AUTOFILENAME(prefix,extension) clause. This clause specifies how new filenames are to be
generated for downloaded BLOB values. The prefix and extension values are string literal
constants.
AUTOINCREMENT

When using AUTOINCREMENT, the column must be one of the integer data types, or an exact
numeric type. On inserts into the table, if a value is not specified for the AUTOINCREMENT
column, a unique value larger than any other value in the column is generated. If an INSERT
specifies a value for the column that is larger than the current maximum value for the column, that
value is used as a starting point for subsequent inserts.

 Note
In UltraLite, the autoincrement value is not set to 0 when the table is created, and
AUTOINCREMENT generates negative numbers when a signed data type is used for the
column. Therefore, declare AUTOINCREMENT columns as unsigned integers to prevent
negative values from being used.

GLOBAL AUTOINCREMENT

538 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Similar to AUTOINCREMENT, except that the domain is partitioned. Each partition contains the
same number of values. You assign each copy of the database a unique global database
identification number. UltraLite supplies default values in a database only from the partition
uniquely identified by that database's number.

 Note
If the column is of type BIGINT or UNSIGNED BIGINT, the default partition size is 2^32 =
4294967296; for columns of all other types, the default partition size is 2^16 = 65536. Since
these defaults may be inappropriate, especially if your column is not of type INT or BIGINT, it is
best to specify the partition size explicitly.

[NOT] NULL

Controls whether the column can contain NULLs.
NEWID()

A function that generates a unique identifier value.
CURRENT TIMESTAMP

Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP value containing the year,
month, day, hour, minute, second, and fraction of a second. The fraction of a second is stored to 3
decimal places. The accuracy is limited by the accuracy of the system clock.
CURRENT UTC TIMESTAMP

A TIMESTAMP WITH TIME ZONE value containing the Coordinated Universal Time (UTC)
comprised of the year, month, day, hour, minute, second, fraction of a second, and time zone. The
fraction of a second is stored to 3 decimal places. The accuracy is limited by the accuracy of the
system clock.
CURRENT DATE

Stores the current year, month, and day.
CURRENT TIME

Stores the current hour, minute, second and fraction of a second.
constant-value

A constant for the data type of the column. Typically the constant is a number or a string.
STORE AS FILE (file-name-column) [CASCADE DELETE]

Supported by UltraLite Java edition databases only.

Specify that a LONG BINARY column is to be stored externally (partitioning the database) and specify
the file-name-column to name the column that will be used to store the file names of the externally
stored BLOB values. A column with this clause must be of type LONG BINARY and behave as a read-
only column.
column-constraint clause

Specify a column constraint to restrict the values allowed in a column. A column constraint can be one
of:

PRIMARY KEY

When set as part of a column-constraint, the PRIMARY KEY clause sets the column as the
primary key for the table. Primary keys uniquely identify each row in a table. By default, columns
included in primary keys do not allow NULL.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 539

UNIQUE

Identifies one or more columns that uniquely identify each row in the table. No two rows in the
table can have the same values in all the named column(s). A table may have more than one
unique constraint. NULL values are not allowed.

table-constraint clause

Specify a table constraint to restrict the values that one or more columns in the table can hold. Use the
CONSTRAINT clause to specify an identifier for the table constraint. Table constraints can be in the form of
a primary key constraint, a foreign key constraint, or a unique constraint, as defined below:

pkey-constraint clause

Sets the specified column(s) as the primary key for the table. Primary keys uniquely identify each row
in a table. Columns included in primary keys cannot allow NULLs.
fkey-constraint clause

Specify a foreign key constraint to restrict values for one or more columns that must match the values
in a primary key (or a unique constraint) of another table.

NOT NULL clause

Specify NOT NULL to disallow NULLs in the foreign key columns. A NULL in a foreign key means
that no row in the primary table corresponds to this row in the foreign table. If at least one value in
a multi-column foreign key is NULL, there is no restriction on the values that can be held in other
columns of the key.
role-name clause

Specify a role-name to name the foreign key. role-name is used to distinguish foreign keys
within the same table. Alternatively, you can name the foreign key using CONSTRAINT
constraint-name. However, do not use both methods to name a foreign key.
REFERENCES clause

Specify the REFERENCES clause to define one or more columns in the primary table to use as the
foreign key constraint. Any column-name you specify in a REFERENCES column constraint must
be a column in the primary table, and must be subject to a unique constraint or primary key
constraint.
CHECK ON COMMIT

not supported by UltraLite Java edition databases. Specify CHECK ON COMMIT to cause the
database server to wait for a COMMIT before enforcing foreign key constraints. By default, foreign
key constraints are enforced immediately during insert, update, or delete operations. However,
when CHECK ON COMMIT is set, database changes can be made in any order, even if they violate
foreign key constraints, if inconsistent data is resolved before the next COMMIT.

unique-key-constraint clause

Specify a unique constraint to identify one or more columns that uniquely identify each row in the
table. No two rows in the table can have the same values in all the named column(s). A table may have
more than one unique constraint.
WITH MAX HASH SIZE

Sets the hash size (in bytes) for this index. This value overrides the default MaxHashSize database
property in effect for the database.

sync-constraint clause

540 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Specify a sync constraint to determine whether a table can be synchronized or not and whether all rows
are uploaded, just changes to the table are uploaded, or no changes to the table are uploaded.

SYNCHRONIZE ON

Default setting - the table can be synchronized and only changes to the table are sent in the upload.
SYNCHRONIZE OFF

The table cannot be synchronized and it is an error to include the table in a publication.
SYNCHRONIZE ALL

The table can be synchronized and all rows in the table are sent in the upload. This constraint is not
supported by UltraLite Java edition databases.
SYNCHRONIZE DOWNLOAD

The table can be synchronized with changes to the consolidated database but no local changes are
uploaded.

Remarks

Column constraints are normally used unless the constraint references more than one column in the table. In
these cases, a table constraint must be used. If a statement causes a violation of a constraint, execution of the
statement does not complete. Any changes made by the statement before error detection are undone, and an
error is reported.

Each row in the table has a unique primary key value.

If no role name is specified, the role name is assigned as follows:

1. If there is no foreign key with a role name the same as the table name, the table name is assigned as the
role name.

2. If the table name is already taken, the role name is the table name concatenated with a zero-padded, three-
digit number unique to the table.

Schema changes

Statements are not released if database schema changes are initiated at the same time.

UltraLite does not process requests or queries referencing the table while the CREATE TABLE statement is
being processed. Furthermore, you cannot execute CREATE TABLE when the database includes active
queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the ULBulkCopy.Dispose
method for all data objects (for example, ULDataReader).

Side effects

Automatic commit.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 541

Example

The following statement creates a table for a library database to hold book information.

CREATE TABLE library_books (isbn CHAR(20) PRIMARY KEY,
 copyright_date DATE,
 title CHAR(100),
 author CHAR(50),
 location CHAR(50),
 FOREIGN KEY location REFERENCES room)

The following statement creates a table for a library database to hold information about borrowed books. The
default value for date_borrowed indicates that the book is borrowed on the day the entry is made. The
date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20),
 FOREIGN KEY (book) REFERENCES library_books (isbn))

The following statement creates tables for a sales database to hold order and order item information.

CREATE TABLE Orders (order_num INTEGER NOT NULL PRIMARY KEY,
 date_ordered DATE,
 name CHAR(80)
);
CREATE TABLE Order_item (
 order_num INTEGER NOT NULL,
 item_num SMALLINT NOT NULL,
 PRIMARY KEY (order_num, item_num),
 FOREIGN KEY (order_num)
 REFERENCES Orders (order_num))

Related Information

Identifiers in UltraLite [page 256]
SQL Data Types [page 288]
GLOBAL AUTOINCREMENT Columns in UltraLite [page 75]
CURRENT TIMESTAMP Special Value - UltraLite [page 261]
CURRENT UTC TIMESTAMP Special Value - UltraLite [page 262]
CURRENT DATE Special Value - UltraLite [page 260]
CURRENT TIME Special Value - UltraLite [page 260]
SQL Data Types [page 288]
Partition Sizes [page 77]
UltraLite Database Schemas [page 52]
Reading Database Properties [page 43]

542 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

UltraLite global_database_id Option [page 210]
NEWID Function [Miscellaneous] [page 445]
Expressions in UltraLite [page 264]
DROP TABLE Statement [UltraLite] [page 548]
CREATE TABLE Statement
UltraLite max_hash_size Creation Option [page 161]

1.13.6.13 CREATE USER Statement [UltraLite]

Creates a database user or group.

 Syntax

CREATE USER user-name IDENTIFIED BY password

Parameters

user-name

The name of the user you are creating.
password

The password for the user you are creating.

Remarks

If you use this statement in a procedure, do not specify the password as a string literal because the definition of
the procedure is visible in the SYSPROCEDURE system view. For security purposes, specify the password using
a variable that is declared outside of the procedure definition.

• User IDs cannot:
• begin with white space, single quotes, or double quotes
• end with white space
• contain semicolons

• Passwords are case-sensitive and they cannot:
• begin with white space, single quotes, or double quotes
• end with white space
• contain semicolons
• be longer than 255 bytes in length

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 543

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/816ce9fb6ce210148da3ff81f8580ad0.html

Side effects

None.

Example

The following example creates a user named SQLTester with the password welcome.

CREATE USER SQLTester IDENTIFIED BY welcome

1.13.6.14 DELETE Statement [UltraLite]

Deletes rows from a table in the database.

 Syntax

DELETE [FROM] table-name[[AS] correlation-name] [WHERE search-condition]

Parameters

correlation-name

An identifier to use when referencing the table from elsewhere in the statement.
WHERE clause

If a WHERE clause is specified, only rows satisfying search-condition are deleted.

The WHERE clause does not support non-deterministic functions (like RAND) or variables. Nor does this
clause restrict columns; columns may need to reference another table when used in a subquery.

Remarks

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes and
row states.

544 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following statement removes employee 105 from the Employees table.

DELETE FROM Employees WHERE EmployeeID = 105

The following statement removes all data before the year 2000 from the FinancialData table.

DELETE FROM FinancialData WHERE Year < 2000

Related Information

UltraLite Database Row State Management [page 584]
Search Conditions in UltraLite [page 272]
START SYNCHRONIZATION DELETE Statement [UltraLite] [page 561]
STOP SYNCHRONIZATION DELETE Statement [UltraLite] [page 562]

1.13.6.15 DROP INDEX Statement [UltraLite]

Deletes an index.

 Syntax

DROP INDEX [IF EXISTS] [table-name.]index-name

Remarks

You cannot drop the primary index of a table.

UltraLite does not process requests or queries referencing the index while the DROP INDEX statement is being
processed. Furthermore, you cannot execute DROP INDEX when the database includes active queries or
uncommitted transactions.

Use the IF EXISTS clause if you do not want an error returned when the DROP INDEX statement attempts to
remove an index that does not exist.

When you specify the IF EXISTS clause and the named table cannot be located, an error is returned.

For UltraLite.NET users: You cannot execute this statement unless you also call the ULBulkCopy.Dispose
method for all data objects (for example, ULDataReader).

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 545

Statements are not released if database schema changes are initiated at the same time.

Example

The following statement deletes a fictitious index, fin_codes_idx, on the FinancialData table:

DROP INDEX FinancialData.fin_codes_idx

Related Information

UltraLite Indexes [page 62]
UltraLite Database Schemas [page 52]
CREATE INDEX Statement [UltraLite] [page 531]

1.13.6.16 DROP PUBLICATION Statement [UltraLite]

Deletes publications.

 Syntax

DROP PUBLICATION [IF EXISTS] publication-name, ...

Remarks

Use the IF EXISTS clause if you do not want an error returned when the DROP PUBLICATION statement
attempts to remove a publication that does not exist.

Example

The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact

546 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

UltraLite Client Synchronization Design [page 79]
ALTER PUBLICATION Statement [UltraLite] [page 521]
CREATE PUBLICATION Statement [UltraLite] [page 533]

1.13.6.17 DROP SYNCHRONIZATION PROFILE Statement
[UltraLite]

Deletes a synchronization profile.

 Syntax

DROP SYNCHRONIZATION PROFILE [IF EXISTS] sync-profile-name

Parameters

sync-profile-name

The name of the synchronization profile.

Remarks

Synchronization profiles define how an UltraLite database synchronizes with the MobiLink server.

Use the IF EXISTS clause if you do not want an error returned when the DROP SYNCHRONIZATION PROFILE
statement attempts to remove a synchronization profile that does not exist.

Side effects

None.

Example

The following example shows the syntax for dropping a synchronization profile called Test1.

DROP SYNCHRONIZATION PROFILE Test1

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 547

Related Information

CREATE SYNCHRONIZATION PROFILE Statement [UltraLite] [page 535]
ALTER SYNCHRONIZATION PROFILE Statement [UltraLite] [page 522]
SYNCHRONIZE Statement [UltraLite] [page 563]

1.13.6.18 DROP TABLE Statement [UltraLite]

Removes a table, and all its data, from a database.

 Syntax

DROP TABLE [IF EXISTS] table-name

Remarks

The DROP TABLE statement drops the specified table from the database. All data in the table and any indexes
and keys are also removed.

UltraLite does not process requests or queries referencing the table, or its indexes, while the DROP TABLE
statement is being processed. Furthermore, you cannot execute DROP TABLE when there are active queries or
uncommitted transactions.

Use the IF EXISTS clause if you do not want an error returned when the DROP TABLE statement attempts to
remove a table that does not exist.

For UltraLite.NET, you cannot execute this statement unless you also call the ULBulkCopy.Dispose method for
all data objects (for example, ULDataReader).

Statements are not released if schema changes are initiated at the same time.

Example

The following statement deletes a fictitious table, EmployeeBenefits, from the database:

DROP TABLE EmployeeBenefits

Related Information

UltraLite Database Schemas [page 52]

548 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

ALTER TABLE Statement [UltraLite] [page 524]
CREATE TABLE Statement [UltraLite] [page 537]

1.13.6.19 DROP USER Statement [UltraLite]

Drops a user.

 Syntax

DROP USER userid IDENTIFIED BY password

Parameters

userid

The user ID of the user you are dropping.
password

The password for the user.

Remarks

If you use this statement in a procedure, do not specify the password as a string literal because the definition of
the procedure is visible in the SYSPROCEDURE system view. For security purposes, specify the password using
a variable that is declared outside of the procedure definition.

Side effects

None.

Example

The following example drops the user SQLTester from a database.

DROP USER SQLTester

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 549

Related Information

ALTER USER Statement [UltraLite] [page 528]
CREATE USER Statement [UltraLite] [page 543]

1.13.6.20 FROM Clause [UltraLite]

Use this clause to specify the tables or views involved in a SELECT statement.

 Syntax

FROM table-expression, ...

table-expression : table-name [[AS] correlation-name] | (select-list) [AS] derived-table-name (column-name, ...) | (table-expression) | table-expression join-operator table-expression [ON search-condition] ...

join-operator : , | INNER JOIN | CROSS JOIN | LEFT OUTER JOIN | JOIN

Parameters

table-name

A base table or temporary table. Tables cannot be owned by different users in UltraLite. If you qualify tables
with user ID, the ID is ignored.
correlation-name

An identifier to use when referencing the table from elsewhere in the statement. For example, in the
following statement, a is defined as the correlation name for the Contacts table, and b is the correlation
name for the Customers table.

SELECT * FROM Contacts a, Customers b WHERE a.CustomerID=b.ID

derived-table-name

A derived table is a nested SELECT statement in the FROM clause.

Items from the SELECT list of the derived table are referenced by the (optional) derived table name
followed by a period (.) and the column name. You can use the column name by itself if it is unambiguous.

550 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

You cannot reference derived tables from within the SELECT statement.
join-operator

Specify the type of join. If you specify a comma (,), or CROSS JOIN, you cannot specify an ON subclause. If
you specify JOIN, you must specify an ON subclause. For INNER JOIN and LEFT OUTER JOIN, the ON
clause is optional.

Remarks

When there is no FROM clause, the expressions in the SELECT statement must be a constant expression.

 Note
Although this description refers to tables, it also applies to derived tables unless otherwise noted.

The FROM clause creates a result set consisting of all the columns from all the tables specified. Initially, all
combinations of rows in the specified tables are in the result set, and the number of combinations is usually
reduced by JOIN conditions and/or WHERE conditions.

If you do not specify the type of join, and instead list the tables as a comma-separated list, a CROSS JOIN is
used, by default.

For INNER joins, restricting results of the join using an ON clause or WHERE clause returns equivalent results.
For OUTER joins, they are not equivalent.

 Note
UltraLite does not support KEY JOINS nor NATURAL joins.

Example

The following are valid FROM clauses:

... FROM Employees ...

... FROM Customers
CROSS JOIN SalesOrders
CROSS JOIN SalesOrderItems
CROSS JOIN Products ...

The following query uses a derived table to return the names of the customers in the Customers table who
have more than three orders in the SalesOrders table:

SELECT Surname, GivenName, number_of_orders FROM Customers JOIN
 (SELECT CustomerID, COUNT(*)
 FROM SalesOrders

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 551

 GROUP BY CustomerID)
 AS sales_order_counts(CustomerID, number_of_orders)
ON (Customers.id = sales_order_counts.CustomerID) WHERE number_of_orders > 3

Related Information

Joins: Retrieving Data from Several Tables
Subqueries in Expressions - UltraLite [page 270]
DELETE Statement [UltraLite] [page 544]
SELECT Statement [UltraLite] [page 558]
UPDATE Statement [UltraLite] [page 567]

1.13.6.21 INSERT Statement [UltraLite]

Inserts rows into a table.

 Syntax

INSERT [INTO] table-name [(column-name, ...)] { VALUES (expression, ...) | select-statement }

Remarks

The INSERT statement can be used to insert a single row, or to insert multiple rows from a query result set.

If columns are specified, values are inserted one for one into the specified columns. If the list of column names
is not specified, values are inserted into the table columns in the order in which they appear in the table (the
same order as retrieved with SELECT *). Rows are inserted into the table in an arbitrary order.

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive.

Example

The following statement adds an Eastern Sales department to the database.

INSERT INTO Departments (DepartmentID, DepartmentName) VALUES (230, 'Eastern Sales')

552 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/81972cc96ce210148677f5961f2d7d23.html

The following statement adds the values of a and b into mytable from othertable where the value of c in
othertable is greater than 10.

INSERT INTO mytable(col1, col2) SELECT a, b FROM othertable WHERE c > 10

Related Information

SELECT Statement [UltraLite] [page 558]

1.13.6.22 LOAD TABLE Statement [UltraLite]

Imports bulk data into a database table from an external file.

 Syntax

LOAD [INTO] TABLE [owner.]table-name (column-name, ...) FROM stringfilename [load-option ...]

load-option : CHECK CONSTRAINTS { ON | OFF } | COMPUTES { ON | OFF} | DEFAULTS { ON | OFF } | DELIMITED BY string | ENCODING encoding | ESCAPES { ON } | FORMAT { ASCII | TEXT} | ORDER { ON | OFF} | QUOTES { ON | OFF } | SKIP integer | STRIP { ON | OFF | BOTH } | WITH CHECKPOINT { ON | OFF }

comment-prefix : string

encoding : string

Parameters

column-name

Use this clause to specify one or more columns to load data into. Any columns not present in the column
list become NULL if DEFAULTS is OFF. If DEFAULTS is ON and the column has a default value, that value is
used. If DEFAULTS is OFF and a non-nullable column is omitted from the column list, the database server
attempts to convert the empty string to the column's type.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 553

When a column list is specified, it lists the columns that are expected to exist in the file and the order in
which they are expected to appear. Column names cannot be repeated.
FROM string-filename

Use this to specify a file from which to load the data. The string-filename is passed to the database
server as a string. The string is therefore subject to the same database formatting requirements as other
SQL strings. In particular:

• To indicate directory paths, the backslash character (\) must be represented by two backslashes. For
example, the string-filename that loads data from the c:\temp\input.dat file into the
Employees table is c:\\temp\\input.dat.

• The path name is relative to the database server, not to the client application.
• You can use UNC path names to load data from files on computers other than the database server.

load-option clause

There are several load options you can specify to control how data is loaded. The following list gives the
supported load options:

CHECK CONSTRAINTS clause

This clause controls whether constraints are checked during loading. CHECK CONSTRAINTS is ON by
default, but the Unload utility (ulunload) writes out LOAD TABLE statements with CHECK
CONSTRAINTS set to OFF. Setting CHECK CONSTRAINTS to OFF disables check constraints, which
can be useful, for example, during database rebuilding.
COMPUTES clause

This option is processed but ignored by UltraLite.
DEFAULTS clause

By default, DEFAULTS is set to OFF. If DEFAULTS is OFF, any column not present in the list of columns
is assigned NULL. If DEFAULTS is set to OFF and a non-nullable column is omitted from the list, the
database server attempts to convert the empty string to the column's type. If DEFAULTS is set to ON
and the column has a default value, that value is used.
DELIMITED BY clause

Use this clause to specify the column delimiter string. The default column delimiter string is a comma;
however, it can be any string up to 255 bytes in length (for example, ... DELIMITED BY
'###' ...). The formatting requirements of other SQL strings apply. To specify tab-delimited values,
you could specify the hexadecimal escape sequence for the tab character (9), ... DELIMITED BY
'\x09'
ENCODING clause

This clause specifies the character encoding used for the data being loaded into the database.
UltraLite does not perform character set translation: the encoding of the data file must match the
database.
ESCAPES clause

ESCAPES is always ON, therefore characters following the backslash character are recognized and
interpreted as special characters by the database server. Newline characters can be included as the
combination \n, and other characters can be included in data as hexadecimal ASCII codes, such as
\x09 for the tab character. A sequence of two backslash characters (\\) is interpreted as a single
backslash. A backslash followed by any character other than n, x, X, or \ is interpreted as two separate
characters. For example, \q inserts a backslash and the letter q.

554 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

FORMAT clause

This clause specifies the format of the data source you are loading data from. With TEXT, input lines
are assumed to be characters (as defined by the ENCODING option), one row per line, with values
separated by the column delimiter string. ASCII is also supported.
QUOTES clause

This clause specifies whether strings are enclosed in quotes. UltraLite only supports ON, therefore the
LOAD TABLE statement expects strings to be enclosed in quote characters. The quote character is an
apostrophe (single quote). The first such character encountered in a string is treated as the quote
character for the string. Strings must be terminated by a matching quote.

Column delimiter strings can be included in column values. Also, quote characters are assumed not to
be part of the value. Therefore, the following line is treated as two values, not three, despite the
presence of the comma in the address. Also, the quotes surrounding the address are not inserted into
the database.

'123 High Street, Anytown',(715)398-2354

To include a quote character in a value, you must use two quotes. The following line includes a value in
the third column that is a single quote character:

'123 High Street, Anytown','(715)398-2354',''''

SKIP clause

Use this clause to specify whether to ignore lines at the beginning of a file. The integer argument
specifies the number of lines to skip. You can use this clause to skip over a line containing column
headings, for example.
STRIP clause

This clause is processed but ignored. This clause specifies whether unquoted values should have
leading or trailing blanks stripped off before they are inserted. The STRIP option accepts the following
options:

STRIP ON

Strip leading blanks.
STRIP OFF

Do not strip off leading or trailing blanks.
STRIP BOTH

Strip both leading and trailing blanks.
WITH CHECKPOINT clause

Use this clause to specify whether to perform a checkpoint. The default setting is OFF. If this clause is
set to ON, a checkpoint is issued after successfully completing the statement.

Remarks

This statement also provides support for handling the output of the SQL Anywhere dbunload utility (the
reload.sql file). LOAD TABLE is only available using DBISQL on Windows.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 555

The recommended method for unloading and reloading UltraLite databases is to use the ulunload and ulload
utilities. Note also that the ulinit utility can load schema and data directly from a SQL Anywhere database.

LOAD TABLE allows efficient mass insertion into a database table from a file. It is provided primarily as a means
of supporting the output of the SQL Anywhere dbunload utility (the reload.sql file).

With FORMAT TEXT, a NULL value is indicated by specifying no value. For example, if three values are expected
and the file contains 1,,'Fred',, then the values inserted are 1, NULL, and Fred. If the file contains 1,2,,
then the values 1, 2, and NULL are inserted. Values that consist only of spaces are also considered NULL
values. For example, if the file contains 1, ,'Fred',, then values 1, NULL, and Fred are inserted. All other
values are considered not NULL. For example, '' (a single quote followed by single quote) is an empty string.
'NULL' is a string containing four letters.

If a column being loaded by LOAD TABLE does not allow NULL values and the file value is NULL, then numeric
columns are given the value 0 (zero), character columns are given an empty string (''). If a column being loaded
by LOAD TABLE allows NULL values and the file value is NULL, then the column value is NULL (for all types).

If the table contains columns a, b, and c, and the input data contains a, b, and c, but the LOAD statement only
specifies a and b as columns to load data into, the following values are inserted into column c:

• if DEFAULTS ON is specified, and column c has a default value, the default value is used.
• if column c does not have a default value, and NULLs are allowed, a NULL is used.
• if column c has no default value and does not allow NULLs, either a zero (0) or an empty string (''), is used,

or an error is returned, depending on the data type of the column.

Side effects

Automatic commit.

Example

Following is an example of LOAD TABLE. First, you create a table, and then load data into it using a file called
input.txt.

CREATE TABLE t(a CHAR(100) primary key, let_me_default INT DEFAULT 1, c
CHAR(100))

Following is the content of a file called input.txt:

'this_is_for_column_c', 'this_is_for_column_a', ignore_me

The following LOAD statement loads the file called input.txt:

LOAD TABLE T (c, a) FROM 'input.txt' FORMAT TEXT DEFAULTS ON

556 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The command SELECT * FROM t yields the result set:

a let_me_default c

this_is_for_column_a 1 this_is_for_column_c

Related Information

INSERT Statement [UltraLite] [page 552]
UltraLite Database Unload Utility (ulunload) [page 243]
Unload Utility (dbunload)

1.13.6.23 ROLLBACK Statement [UltraLite]

Ends a transaction and reverts any changes made to data since the last COMMIT or ROLLBACK statement was
executed.

 Syntax

ROLLBACK [WORK]

Remarks

Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs, UPDATEs, and
DELETEs) since the last ROLLBACK or COMMIT. The ROLLBACK statement ends the current transaction and
undoes all changes made to the database since the previous COMMIT or ROLLBACK.

Example

The following statement rolls the database back to the state it was in at the previous commit:

ROLLBACK

Related Information

COMMIT Statement [UltraLite] [page 530]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 557

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e16456ce21014b96dc39365129dc6.html

1.13.6.24 SELECT Statement [UltraLite]

Retrieves information from the database.

 Syntax

SELECT [DISTINCT] [row-limitation] select-list [FROM table-expression, ...] [WHERE search-condition] [GROUP BY group-by-expression, ...] [ORDER BY order-by-expression, ...] [FOR { UPDATE | READ ONLY }] [OPTION (FORCE ORDER)]

row-limitation : FIRST | TOP n [START AT m]

select-list : expression [[AS] alias-name], ...

order-by-expression : { integer | expression } [ASC | DESC]

Parameters

DISTINCT clause

Specify DISTINCT to eliminate duplicate rows from the results. If you do not specify DISTINCT, all rows that
satisfy the clauses of the SELECT statement are returned, including duplicate rows. Many statements take
significantly longer to execute when DISTINCT is specified, so you should reserve DISTINCT for cases
where it is necessary.
row-limitation clause

Use row limitations to return a subset of the results. For example, specify FIRST to retrieve the first row of a
result set. Use TOPn to return the first n rows of the results. Specify START ATm to control the location of
the starting row when retrieving the TOPn rows. To order the rows so that these clauses return meaningful
results, specify an ORDER BY clause for the SELECT statement.
select-list

A list of expressions specifying what to retrieve from the database. Usually, the expressions in a SELECT
list are column names. However, they can be other types of expressions, such as functions. Use an asterisk
(*) to select all columns of all tables listed in the FROM clause. Optionally, you can define an alias for each
expression in the select-list. Using an alias allows you to reference the select-list expressions
from elsewhere in the query, such as from within the WHERE and ORDER BY clauses.
FROM clause

Rows are retrieved from the tables and views specified in the table-expression.
WHERE clause

558 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

If a WHERE clause is specified, only rows satisfying search-condition are selected.
GROUP BY clause

The result of the query that has a GROUP BY clause contains one row for each distinct set of values in the
GROUP BY expression. The resulting rows are often referred to as groups since there is one row in the
result for each group of rows from the table list. Aggregate functions can be applied to the rows in these
groups. NULL is considered to be a unique value if it occurs.
ORDER BY clause

This clause sorts the results of a query according to the expression specified in the clause. Each expression
in the ORDER BY clause can be sorted in ascending (ASC) or descending (DESC) order (the default). If the
expression is an integer n, then the query results are sorted by the nth expression in the SELECT list.

The only way to ensure that rows are returned in a particular order is to use ORDER BY. In the absence of
an ORDER BY clause, UltraLite returns rows in whatever order is most efficient.

UltraLite does not support the ordering of LONG VARCHAR or LONG BINARY values.
FOR clause

This clause has two variations that control the query's behavior:

FOR READ ONLY

This clause indicates the query is not being used for updates. Specify this clause whenever possible
because UltraLite can sometimes achieve better performance when it is known that a query is not
going to be used for updates. For example, UltraLite could perform a direct table scan when it learns
that read-only access is required. FOR READ ONLY is the default behavior.
FOR UPDATE

This clause allows the query to be used for updates. This clause must be explicitly specified otherwise
updates are not permitted (FOR READ ONLY is the default behavior).

OPTION (FORCE ORDER) clause

This clause is not recommended for general use. It overrides the UltraLite choice of the order in which to
access tables, and requires that UltraLite access the tables in the order they appear in the query. Only use
this clause when the query order is determined to be more efficient than the UltraLite order.

UltraLite can also use execution plans to optimize queries.

Remarks

Always remember to close the query. Otherwise memory cannot be freed and the number of temporary tables
that remain can proliferate unnecessarily.

Example

The following statement selects the number of employees from the Employees table.

SELECT COUNT(*) FROM Employees

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 559

The following statement selects 10 rows from the Employees table starting from the 40th row and ending at the
49th row.

SELECT TOP 10 START AT 40 * FROM Employees

Related Information

UltraLite Performance Tips [page 569]
Queries
Execution Plans in UltraLite [page 575]
Direct Page Scans [page 578]
SELECT Statement
Search Conditions in UltraLite [page 272]
FROM Clause [UltraLite] [page 550]

1.13.6.25 SET OPTION Statement [UltraLite]

Changes the values of database options.

 Syntax

SET OPTION option-name=[option-value]

option-name: identifier

option-value: string, identifier, or number

Remarks

This statement allows you to set options on an UltraLite database. Most UltraLite options are set when the
database is initially created and cannot be modified afterward.

You cannot specify whether an option is persistent or not. UltraLite determines whether it is a persistent or
temporary option. Persistent options are stored in the database. Temporary options are used only until the
connection or database stops running.

UltraLite performs a commit when persistent options are set: global_database_id and ml_remote_id. UltraLite
does not perform a commit on temporary or connection-based options.

The only database option that can be unset is ml_remote_id. For example:

SET OPTION ml_remote_id=

560 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/819ab1a06ce21014b0e58e218a806bd9.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/3be640936c5f10149013d54460eaabb0.html

The result is that the ID is set to NULL. When this occurs, UltraLite will automatically generate a new value at
the next synchronization.

Example

The following statement sets the global_database_id option to 100:

SET OPTION global_database_id=100

Related Information

UltraLite Database Options [page 206]
UltraLite global_database_id Option [page 210]
UltraLite ml_remote_id Option [page 211]
DB_PROPERTY Function [System] [page 390]

1.13.6.26 START SYNCHRONIZATION DELETE Statement
[UltraLite]

Restarts the logging of deleted rows for MobiLink synchronization.

 Syntax

START SYNCHRONIZATION DELETE

Remarks

UltraLite databases automatically log changes made to rows that need to be synchronized. UltraLite uploads
these changes to the consolidated database during the next synchronization. This statement allows you to
restart logging of deleted rows, previously stopped by a STOP SYNCHRONIZATION DELETE statement.

When a STOP SYNCHRONIZATION DELETE statement is executed, none of the delete operations executed on
that connection are synchronized. The effect continues until a START SYNCHRONIZATION DELETE statement
is executed.

Do not use START SYNCHRONIZATION DELETE if your application does not synchronize data.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes and
row states.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 561

Example

The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION DELETE and
STOP SYNCHRONIZATION DELETE.

STOP SYNCHRONIZATION DELETE; DELETE FROM PROPOSAL
 WHERE last_modified < months(CURRENT TIMESTAMP, -1);
START SYNCHRONIZATION DELETE; COMMIT;

Related Information

UltraLite Database Row State Management [page 584]
STOP SYNCHRONIZATION DELETE Statement [UltraLite] [page 562]

1.13.6.27 STOP SYNCHRONIZATION DELETE Statement
[UltraLite]

Stops the logging of deleted rows for MobiLink synchronization.

 Syntax

STOP SYNCHRONIZATION DELETE

Remarks

UltraLite databases automatically log changes made to rows that need to be synchronized. UltraLite uploads
these changes to the consolidated database during the next synchronization. This statement allows you to stop
the logging of deleted rows, previously started using a STOP SYNCHRONIZATION DELETE statement. This
command can be useful when making corrections to a remote database, but should be used with caution as it
effectively disables MobiLink synchronization. You should only stop deletion logging temporarily.

When a STOP SYNCHRONIZATION DELETE statement is executed, no further delete operations executed on
that connection are synchronized. The effect continues until a START SYNCHRONIZATION DELETE statement
is executed.

Do not use STOP SYNCHRONIZATION DELETE if your application does not synchronize data.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes and
row states.

562 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Example

The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION DELETE and
STOP SYNCHRONIZATION DELETE.

STOP SYNCHRONIZATION DELETE; DELETE FROM PROPOSAL
WHERE last_modified < months(CURRENT TIMESTAMP, -1);
START SYNCHRONIZATION DELETE; COMMIT;

Related Information

UltraLite Database Row State Management [page 584]
START SYNCHRONIZATION DELETE Statement [UltraLite] [page 561]

1.13.6.28 SYNCHRONIZE Statement [UltraLite]

Synchronize an UltraLite database via the MobiLink server.

 Syntax

SYNCHRONIZE { PROFILE sync-profile-name [MERGE sync-option [;...]] | USING sync-option [;...] }

sync-option : sync-option-name = sync-option-value

sync-option-name : string

sync-option-value : string

Parameters

sync-profile-name

The name of the synchronization profile.
MERGE clause

Use this clause when you want to add or override options that are provided in the synchronization profile.
USING clause

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 563

Use this clause when you want to specify the synchronization options without referencing a
synchronization profile.
sync-option

A string of one or more synchronization option value pairs, separated by semicolons. For example,
'option1=value1;option2=value2'.
sync-option-name

The name of the synchronization option.
sync-option-value

The value for the synchronization option.

Remarks

The synchronization is configured according to the parameters in the synchronization profile, or the
parameters can be specified in the statement itself.

By allowing synchronization options to be merged in, developers can choose to omit storing some options in
the database (like the MobiLinkPwd for instance).

If a synchronization callback function is defined and registered with UltraLite, whenever a SYNCHRONIZE
statement is executed, progress information for that synchronization is passed to the callback function. If no
callback is registered, progress information is suppressed.

Side effects

None.

Example

The following example shows the syntax for synchronizing a synchronization profile called Test1 where the
MobiLinkPwd has not been stored as part of the profile:

 SYNCHRONIZE PROFILE Test1 MERGE 'MobiLinkPwd=sql'

The following example shows the syntax for adding the publication and uploadonly options to a
synchronization profile called Test1.

SYNCHRONIZE PROFILE Test1 MERGE 'publications=p2;uploadonly=on'

The following example illustrates how to use USING.

SYNCHRONIZE USING
'MobiLinkUid=joe;MobiLinkPwd=sql;ScriptVersion=1;Stream=TCPIP{host=localhost}'

564 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The following example shows the syntax for synchronizing the publication and uploadonly options.

SYNCHRONIZE USING 'publications=p2;uploadonly=on'

Related Information

CREATE SYNCHRONIZATION PROFILE Statement [UltraLite] [page 535]
ALTER SYNCHRONIZATION PROFILE Statement [UltraLite] [page 522]
DROP SYNCHRONIZATION PROFILE Statement [UltraLite] [page 547]

1.13.6.29 TRUNCATE TABLE Statement [UltraLite]

Deletes all rows from a table without deleting the table.

 Syntax

TRUNCATE TABLE table-name

Remarks

The TRUNCATE TABLE statement deletes all rows from a table and the MobiLink server is not informed of their
removal upon subsequent synchronization. It is equivalent to executing the following statements:

STOP SYNCHRONIZATION DELETE; DELETE FROM TABLE; START SYNCHRONIZATION DELETE;

 Note
This statement should be used with great care on a database involved in synchronization or replication.
Because the MobiLink server is not notified, this deletion can lead to inconsistencies that can cause
synchronization or replication to fail.

After a TRUNCATE TABLE statement, the table structure, all the indexes, and the constraints and column
definitions continue to exist; only data is deleted.

TRUNCATE TABLE cannot execute if a statement that affects the table is already being referenced by another
request or query. Similarly, UltraLite does not process requests referencing the table while that table is being
altered. Furthermore, you cannot execute TRUNCATE TABLE when the database includes active queries or
uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement unless you also call the ULBulkCopy.Dispose
method for all data objects (for example, ULDataReader).

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 565

Schema changes

Statements are not released if schema changes are initiated at the same time.

Side effects

If the table contains a column defined as DEFAULT AUTOINCREMENT or DEFAULT GLOBAL AUTOINCREMENT,
TRUNCATE TABLE resets the next available value for the column.

Once rows are marked as deleted with TRUNCATE TABLE, they are no longer accessible to the user who
performed this action, unless the user issues a ROLLBACK statement. However, they do remain accessible
from other connections. Use COMMIT to make the deletion permanent, thereby making the data inaccessible
from all connections.

If you synchronize the truncated table, all INSERT statements applied to the table take precedence over a
TRUNCATE TABLE statement.

Example

The following statement deletes all rows from the Departments table.

TRUNCATE TABLE Departments

If you execute this example, be sure to execute a ROLLBACK statement to revert your change.

Related Information

UltraLite Database Schemas [page 52]
DELETE Statement [UltraLite] [page 544]
START SYNCHRONIZATION DELETE Statement [UltraLite] [page 561]
STOP SYNCHRONIZATION DELETE Statement [UltraLite] [page 562]

1.13.6.30 UNION Statement [UltraLite]

Combines the results of two or more select statements.

 Syntax

select-statement-without-ordering [UNION [ALL | DISTINCT] select-statement-without-ordering]... [ORDER BY [number [ASC | DESC] , ...]

566 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Remarks

The results of several SELECT statements can be combined into a larger result using UNION. Each SELECT
statement must have the same number of expressions in their respective SELECT list, and cannot contain an
ORDER BY clause.

The results of UNION ALL are the combined results of the unioned SELECT statements. Specify UNION or
UNION DISTINCT to get results without duplicate rows; however, removing duplicate rows adds to the total
execution time for the statement. Specify UNION ALL to allow duplicate rows.

When attempting to combine corresponding expressions that are of different data types, UltraLite attempts
find a data type in which to represent the combined values. If this is not possible, the union operation fails and
an error is returned (for example "Cannot convert 'Surname' to a numeric").

The column names displayed in the results are column names (or aliases) used for the first SELECT statement.

ORDER BY for UNION is restricted to the integer format. The ORDER BY clause uses integers to establish the
ordering, where the integer indicates the query expression(s) on which to sort the results.

Example

The following example lists all distinct surnames found in the Employees and Customers tables, combined.

SELECT Surname FROM Employees UNION SELECT Surname FROM Customers

Related Information

SELECT Statement [UltraLite] [page 558]

1.13.6.31 UPDATE Statement [UltraLite]

Modifies rows in a table.

 Syntax

UPDATE table-name[[AS] correlation-name] SET column-name = expression, ... [WHERE search-condition]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 567

Parameters

table-name

The table-name specifies the name of the table to update. Only a single table is allowed.
correlation-name

An identifier to use when referencing the table from elsewhere in the statement.
SET clause

Each named column is set to the value of the expression on the right side of the equal sign. There are no
restrictions on the expression. If the expression is a column-name, the old value is used.

Only columns specified in the SET clause have their values changed. In particular, you cannot use UPDATE
to set a column's value to its default.
WHERE clause

If a WHERE clause is specified, only rows satisfying search-condition are updated.

Remarks

The UPDATE statement modifies values in a table.

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive.

Example

The following statement transfers employee Philip Chin (employee 129) from the sales department to the
marketing department (department 400).

UPDATE Employees SET DepartmentID = 400 WHERE EmployeeID = 129

An example using correlation-name.

UPDATE Employee E SET salary = salary * 1.05
WHERE EXISTS(SELECT 1 FROM Sales S HAVING E.Sales > Avg(S.sales) GROUP BY S.dept_no)

Related Information

INSERT Statement [UltraLite] [page 552]
DELETE Statement [UltraLite] [page 544]

568 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Search Conditions in UltraLite [page 272]

1.14 UltraLite Performance Tips

Several topics are provided to help improve performance of UltraLite databases.

In this section:

Cache Size Adjustment for an UltraLite Database [page 569]
Although adjusting the cache size is not required, you should adjust the cache size when your UltraLite
database application is requested to reduce its memory usage by the operating system on mobile
devices.

Query Performance Tips [page 570]
Several topics are provided to help improve performance of queries in UltraLite databases.

Insert and Update Performance Tips [page 582]
Several topics are provided to help improve performance of inserts and updates in UltraLite databases.

UltraLite Benchmark Tips [page 587]
Benchmark testing activity is generally performed before reaching the production stage of the
application development cycle.

1.14.1 Cache Size Adjustment for an UltraLite Database

Although adjusting the cache size is not required, you should adjust the cache size when your UltraLite
database application is requested to reduce its memory usage by the operating system on mobile devices.

UltraLite database cache sizes increase dynamically in response to data operations and as available device
memory allows within the parameters you specify. Normally you do not need to specify any parameters. If your
database is large (400 MB for instance), you may want to specify the CACHE_MAX_SIZE parameter to raise the
maximum limit beyond the default. UltraLite allocates some data structures based on the maximum cache
size, so the default is not extremely large: you must explicitly request a large maximum to incur this extra
memory overhead. There is no benefit to specifying a maximum cache size that is much larger than your
maximum actual database file size.

UltraLite does not shrink the cache automatically. The database cache size can only be controlled explicitly in
your application with the cache_allocation database option. In response to a low memory event raised by the
operating system, adjust the cache_allocation database option after connecting to the database.

Example

The following UltraLite C++ code sample illustrates how to set the maximum cache size to 100 MB by updating
the connection string:

static ul_char const * ConnectionParms =

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 569

 "UID=DBA;PWD=sql;DBF=sample.udb;CACHE_MAX_SIZE=100m";

The following UltraLite C++ code sample illustrates how to reduce the cache allocation in half to resize the
cache:

ULConnection * conn = ULDatabaseManager::OpenConnection(ConnectionParms); ul_u_long percent;
percent = conn->GetDatabasePropertyInt("cache_allocation"); conn->SetDatabaseOptionInt("cache_allocation", percent / 2);

Related Information

UltraLite cache_allocation Option [page 207]
UltraLite CACHE_SIZE Connection Parameter [page 187]
UltraLite CACHE_MIN_SIZE Connection Parameter [page 186]
UltraLite CACHE_MAX_SIZE Connection Parameter [page 185]

1.14.2 Query Performance Tips

Several topics are provided to help improve performance of queries in UltraLite databases.

In this section:

Index Scan Creation and Maintenance [page 570]
You can create one or more indexes to improve the performance of your queries, or to ensure that row
values remain unique.

Index Hashing [page 571]
You can tune the performance of your queries by choosing a specific size for the maximum hash.

Optimal Hash Size Limit [page 573]
The UltraLite default maximum hash size of 4 bytes suits most deployments.

Execution Plans in UltraLite [page 575]
UltraLite execution plans show how tables and indexes are accessed when a query is executed.

1.14.2.1 Index Scan Creation and Maintenance

You can create one or more indexes to improve the performance of your queries, or to ensure that row values
remain unique.

An index provides an ordering of a table's rows based on the values in some or all of the columns. When
creating indexes, the order in which you select columns to be indexed becomes the order in which the columns
actually appear in the index. Indexes can greatly improve the performance of searches on the indexed
column(s) when used strategically.

570 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Use the following recommended practices for improving query performance:

• Create an index on any column:
• for values that you search for on a regular basis
• that the query uses to join tables
• that are commonly used in ORDER BY, GROUP BY, or WHERE clauses

• Create a composite index and ensure that the first column of the index is used most often by the predicate
in your query when creating it.

• Ensure that the update maintenance overhead an index introduces is not too high for the memory of your
device.

• Do not create or maintain unnecessary indexes. Indexes must be updated when the data in a column is
modified, so all insert, update, and delete operations are performed on the indexes as well.

• Create an index on large tables.
• Do not create redundant indexes. For example, if you create an index on table T with columns (x, y), you

can create a redundancy if there is another existing index on T with columns (x, y, z).

Related Information

UltraLite Indexes [page 62]
Manage Temporary Tables [page 577]
Direct Page Scans [page 578]
Viewing an Execution Plan [page 579]
EXPLANATION Function [Miscellaneous] [page 396]

1.14.2.2 Index Hashing

You can tune the performance of your queries by choosing a specific size for the maximum hash.

A hash key represents the actual values of the indexed column. An index hash key aims to avoid the expensive
operation of finding, loading, and then unpacking the rows to determine the indexed value. It prevents these
operations by including enough of the actual row data with a row ID.

A row ID allows UltraLite to locate the actual row data in the database file. If you set the hash size to 0 (which
disables index hashing), then the index entry only contains this row ID. If you set the hash size to anything other
than 0, then a hash key is also used. A hash key can contain all or part of the transformed data in that row, and
is stored with the row ID in the index page.

How much row data the hash key includes is determined by:

• The maximum hash size property you configure.
• How much is actually needed for the data type of the column.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 571

A Hash Example

The value of an index hash maintains the order of the actual row data of indexed columns. For example, if you
have indexed a LastName column for a table called Employees, you may see four names ordered as follows:

• Anders
• Anderseck
• Andersen
• Anderson

If you hashed the first six letters, your hash keys for these row values would appear as follows:

• Anders
• Anders
• Anders
• Anders

While these entries look the same, the first Anders in the list is used to represent the actual row value of
Anders. The last Anders in the list, however, is used to represent the actual row value Anderson.

Consider the following statement:

SELECT * FROM Employees WHERE LastName = 'Andersen'

If the Employees table only contained a very high proportion of names similar to Andersen, then the hash key
may not offer enough uniqueness to gain any performance benefits. In this case, UltraLite cannot determine if
any of the hash keys actually meets the conditions of this statement. When duplicate index hash keys exist,
UltraLite still needs to:

1. Find the table row that matches the row ID in question.
2. Load and then unpack the data so the value can be evaluated.

Performance benefits only occur when UltraLite can discern a proportionate number of unique hash so that the
query condition evaluation is immediate to the index itself. For example, if the Employees table had thousands
of names, there is still enough benefit to be gained by a hash of six letters. However, if the Employees table only
contained an inordinate number of names that begin with Anders*, then you should hash at least seven letters
so the degree of unique keys increases. Therefore, the original four names at the start of this example how are
now represented with these hash keys:

• Anders
• Anderse
• Anderse
• Anderso

In this example, only two of the four row values would need to be unpacked and evaluated, rather than all four.

Related Information

Optimal Hash Size Limit [page 573]

572 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Adding an UltraLite Index [page 65]
UltraLite max_hash_size Creation Option [page 161]

1.14.2.3 Optimal Hash Size Limit

The UltraLite default maximum hash size of 4 bytes suits most deployments.

You can increase the size to include more data with the row ID. However, this change could increase the size of
the index and fragment it among multiple pages. This change can possibly increase the size of the database as
a result. The impact of an increased maximum hash size depends on the number of rows in the table: for
example, if you only have a few rows, a large index hash key would still fit on the index page. No index
fragmentation occurs in this case.

When choosing an optimal hash size, consider the data type, the row data, and the database size (especially if a
table contains many rows).

The only way to determine if you have chosen an optimal hash size is to run benchmark tests against your
UltraLite client application on the target device. Observe how various hash sizes affect the application and
query performance, in addition to the changes in database size itself.

Index hashing improves inserts, updates, deletes, and searches when the columns being indexed have a good
distribution of values, such as strings that do not have a common prefix, at the cost of bigger index structures.
Hashed indexes locate rows first by using the hash, and then by using direct row comparison to differentiate
rows with the same hash value. If the hash size is sufficiently big, the hash uniquely identifies a row without
reading and comparing the row. However, if the hash size is too big and the page size small, the index may need
too many database pages.

The Data Type

To hash the entire value in a column, note the size required by each data type in the table that follows. UltraLite
only uses the maximum hash size if it is necessary, and it never exceeds the maximum hash size you specify.
UltraLite uses a smaller hash size if the column type does not use the full byte limit.

Data type Bytes used to hash the entire value

LONG VARCHAR, DOUBLE, FLOAT, REAL, LONG BINARY,
ST_GEOMETRY

Not hashed.

BIT, TINYINT 1

SMALLINT 2

INTEGER, DATE 4

BIGINT, DATETIME, TIME, TIMESTAMP, TIMESTAMP WITH
TIME ZONE

8

DECIMAL, NUMERIC Approximately the precision divided by two.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 573

Data type Bytes used to hash the entire value

CHAR, VARCHAR To hash the entire string, the maximum hash size in bytes
must match the declared size of the column. In a UTF-8 en
coded database, always multiply the declared size by a fac
tor of 2, but only to the allowed maximum of 32 bytes.

For example, if you declare a column VARCHAR(10) in a non-
UTF-8 encoded database, the required size is 10 bytes. How
ever, if you declare the same column in a UTF-8 encoded da
tabase, the size used to hash the entire string is 20 bytes.

BINARY, VARBINARY The maximum hash size in bytes must match the declared
size of the column.

For example, if you declare a column BINARY(30), the re
quired size is 30 bytes.

UNIQUEIDENTIFIER 16

For example, if you set a maximum hash size of 6 bytes for a two-column composite index that you declared as
INTEGER and BINARY (20) respectively, then based on the data type size requirements, the following changes
occur:

• The entire value of the row in the INTEGER column is hashed and stored in the index because only 4 bytes
are required to hash integer data types.

• Only the first 2 bytes of the BINARY column are hashed and stored in the index because the first 4 bytes
are used by the INTEGER column. If these remaining 2 bytes do not hash an appropriate amount of the
BINARY column, increase the maximum hash size.

The Row Data

The row values of the data being stored in the database also influence the effectiveness of a hashed index.

For example, if you have a common prefix shared among entries of a given column, you can render the hash
ineffective if you choose a size that only hashes prefixes. In this case, choose a size that ensures more than just
the common prefix is hashed. If the common prefix is long, consider not hashing the values at all.

When a non-unique index stores many duplicate values, and UltraLite cannot hash the entire value, the hash
likely cannot improve performance.

The Database Size

Each index page has some fixed overhead, but the majority of the page space is used by the actual index
entries. A larger hash size means each index entry is bigger, which means that fewer entries can fit on a page.
For large tables, indexes with large hashes use more pages than indexes with small or no hashes. Requiring
more pages increases the database size and degrades performance. The latter typically occurs because the
cache can only hold a fixed number of pages, thereby causing UltraLite to swap pages.

574 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

The following table gives you an approximation of how the hash size can affect the number of pages required to
store data in an index:

Table Page size Hash size Number of entries Pages required

Table A 4 KB 0 1200 3 pages

Table B 4 KB 32 bytes 116 3 pages

Table C 4 KB 32 bytes 1200 entries 11 pages

Set the Hash Size

You can set the maximum hash size in two ways:

• To store a database default for the maximum size, set the max_hash_size creation parameter when you
create your database. If you do not want to hash indexes by default, set this value to 0. Otherwise, you can
change it to any value up to 32 bytes, or keep the UltraLite default of 4 bytes.

• Override the default by setting a specific hash size when you create a new index. Use one of the following
approaches:
• In SQL Central, set the Maximum Hash Size property when creating a new index.
• With SQL, use the WITH MAX HASH SIZE clause in either the CREATE TABLE or CREATE INDEX

statement.

Related Information

SQL Data Types [page 288]
Adding an UltraLite Index [page 65]
UltraLite max_hash_size Creation Option [page 161]
CREATE INDEX Statement [UltraLite] [page 531]
CREATE TABLE Statement [UltraLite] [page 537]

1.14.2.4 Execution Plans in UltraLite

UltraLite execution plans show how tables and indexes are accessed when a query is executed.

UltraLite includes a query optimizer. The optimizer is an internal component of the UltraLite runtime that
attempts to produce an efficient plan for the query. It tries to avoid the use of temporary tables to store
intermediate results and attempts to ensure that only the pertinent subset of a table is accessed when a query
joins two tables.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 575

Overriding the Optimizer

The optimizer always aims identify the most efficient access plan possible, but this goal is not guaranteed,
especially with a complicated query where a great number of possibilities may exist. In extreme cases, you can
override the table order it selects by adding the OPTION (FORCE ORDER) clause to a query, which forces
UltraLite to access the tables in the order they appear in the query. This option is not recommended for general
use. If performance is slow, a better approach is usually to create appropriate indexes to speed up execution.

 Note
If you are not going to update data with the query, specify the FOR READ ONLY clause in your query. This
clause may yield better performance.

In this section:

Determine the Access Method Used by the Optimizer [page 576]
The UltraLite optimizer uses sophisticated optimization strategies when choosing an index for query
optimization.

When to View Execution Plans [page 579]
An execution plan can give insight into what the database server considers when processing a query.

Viewing an Execution Plan [page 579]
Use Interactive SQL to display an UltraLite plan that summarizes how a prepared statement is to be
executed. The text plan is displayed in the Interactive SQL Plan Viewer.

How to Read Execution Plans [page 580]
UltraLite short plans are textual summaries of how a query is accessed.

Related Information

SELECT Statement [UltraLite] [page 558]

1.14.2.4.1 Determine the Access Method Used by the
Optimizer

The UltraLite optimizer uses sophisticated optimization strategies when choosing an index for query
optimization.

However, with simple queries you cannot easily predetermine which index the optimizer uses to optimize the
query performance, or if an index is used at all. As the complexity increases, the index selected depends on the
clauses required by your query. Usually, the presence of a FOR READ ONLY clause may cause the optimizer to
choose a direct table scan instead of an index to yield better query performance.

When optimizing a query, the optimizer looks at the requirements of the query and checks if there are any
indexes that it can use to improve performance. If performance cannot be improved with any index, then the

576 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

optimizer does not scan one: either a temporary table or a direct page scan is used instead. Therefore, you may
need to experiment with your indexes and frequently check the generated execution plans to ensure that:

• You are not maintaining indexes that are not being used by the optimizer.
• You are minimizing the number of temporary tables being created.

For complex queries, knowing which index is used is even less predictable. For example, when a query contains
a WHERE predicate and a GROUP BY clause in addition to an ORDER BY clause, one index alone might not
satisfy the search conditions of this query. So, if you have created an index to meet the selectivity requirements
of the WHERE predicate, you may find that the optimizer does not actually use it. Instead, the optimizer may
use an index that offers better performance for the ORDER BY conditions because this clause could require the
most processing.

Checking the Execution Plan

You can check the execution plan either programmatically with the appropriate API call or in the Plan Viewer in
Interactive SQL:

If no index is used

the execution plan appears as follows:

scan(T)

If a temporary table is used

the execution plan appears as follows:

temp [scan(T)]

If an index is used

the index name is included the execution plan:

scan (T, index_name)

In this section:

Manage Temporary Tables [page 577]
A temporary table is used by an access plan to store data during its execution in a transient or
temporary work table. This table only exists while the access plan is being executed.

1.14.2.4.1.1 Manage Temporary Tables

A temporary table is used by an access plan to store data during its execution in a transient or temporary work
table. This table only exists while the access plan is being executed.

The optimizer tries to avoid creating temporary tables to return query results because the entire temporary
table must be populated before the first row can be returned. If an index exists, the optimizer tries to use the
index first and only creates a temporary table as a last resort.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 577

Generally, temporary tables are used when intermediate results do not fit in the available memory, such as:

• When subqueries need to be evaluated early in the access plan.
• When data in a temporary table is held for a single connection only.
• When a query contains an ORDER BY on a column other than an index.
• When a query contains a GROUP BY on a column other than an index.

It is difficult to anticipate whether an index you have created avoids the necessity for a temporary table.
Therefore, check the plans for a query to ensure the indexes you have created are actually being used by the
UltraLite query optimizer.

You can avoid using temporary tables by using an index for the columns used in the ORDER BY or GROUP BY
clauses.

In this section:

Direct Page Scans [page 578]
UltraLite uses direct page scans as an alternative to index scans when it is more efficient to access
information directly from the database page.

Related Information

How to Read Execution Plans [page 580]
When to View Execution Plans [page 579]
UltraLite TEMP_DIR Connection Parameter [page 201]

1.14.2.4.1.1.1 Direct Page Scans

UltraLite uses direct page scans as an alternative to index scans when it is more efficient to access information
directly from the database page.

A direct page scan is only used after the optimizer confirms that:

• No preexisting index can return results more efficiently.
• You are not using the query to perform updates. For example, you have declared the statement to be FOR

READ ONLY (the default setting if no FOR clause has been specified), or have written the query in such a
way that it is obvious that data is not being updated.

Because UltraLite reads the rows directly from the pages on which the rows are stored, query results are
returned without order. The order of subsequent query results is unpredictable. If you need the order of rows to
be predictable and deterministic, use an ORDER BY clause to get results in a consistent order. However, if order
is not important, you can omit the ORDER BY clause to improve query performance.

 Note
You cannot use direct page scans if you are using a ULTable class in an UltraLite API to program your
application.

578 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

You can check to see when UltraLite scans a page directly or which index was used to return results.

Related Information

Determine the Access Method Used by the Optimizer [page 576]
Index Scan Creation and Maintenance [page 570]

1.14.2.4.2 When to View Execution Plans

An execution plan can give insight into what the database server considers when processing a query.

View an execution plan in Interactive SQL when you need to know:

• What index will be used to return the results. An index scan object contains the name of the table and the
index on that table that is being used.

• Whether a temporary table will be used to return the results. Temporary tables are written to the UltraLite
temporary file.

• Which order tables are joined. This information allows you to determine how performance is affected.
• Why a query is running slowly or to ensure that a query does not run slowly.

Related Information

UltraLite TEMP_DIR Connection Parameter [page 201]

1.14.2.4.3 Viewing an Execution Plan

Use Interactive SQL to display an UltraLite plan that summarizes how a prepared statement is to be executed.
The text plan is displayed in the Interactive SQL Plan Viewer.

Context

In UltraLite, an execution plan is strictly a short textual summary of the plan. No other plan types are
supported. However, being a short plan, it allows you to compare plans quickly, because information is
summarized on a single line.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 579

Procedure

1. Click Tools Plan Viewer .
2. In the SQL pane, type a query.
3. Click Get Plan to generate a plan for the specified SQL statements.

Results

The text plan appears in the lower pane of the Plan Viewer.

Example

Consider the following statement:

SELECT I.inv_no, I.name, T.quantity, T.prod_no FROM Invoice I, Transactions T WHERE I.inv_no = T.inv_no

This statement might produce the following plan:

join[scan(Invoice,primary),index-scan(Transactions,secondary)]

The plan indicates that the join operation is completed by reading all rows from the Invoice table (following an
index named primary). It then uses the index named secondary from the Transactions table to read only the
row whose inv_no column matches.

Related Information

How to Read Execution Plans [page 580]
Interactive SQL Utility (dbisql)

1.14.2.4.4 How to Read Execution Plans

UltraLite short plans are textual summaries of how a query is accessed.

You must understand how the operations of either a join or a scan of a table are implemented to read a short
plan.

For scan operations

Represented with a single operand, which applies to a single table only and uses an index. The table name
and index name are displayed as round brackets ((,)) following the operation name.

580 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813b167e6ce210149a60c94ce1563ea7.html

For other operations

Represented with one or more operands, which can also be plans in and of themselves. In UltraLite, these
operands are comma-separated lists contained by square brackets ([]).

Operation list

Operations supported by UltraLite are listed in the table that follows.

Operation Description

count(*) Counts the number of rows in a table.

distinct[plan] Implements the DISTINCT aspect of a query to compare and
eliminate duplicate rows. It is used when the underlying plan
sorts rows in such a way that duplicate contiguous rows are
eliminated. If two contiguous rows match, only the first row
is added to the result set.

dummy No operation performed. It only occurs in two cases:

• When you specify DUMMY in a FROM clause.

• When the FROM clause is missing from the query.

filter[plan] Executes a search condition for each row supplied by the un
derlying plan. Only the rows that evaluate to true are for
warded as part of the result set.

group-by[plan] Creates an aggregate of GROUP BY results, to sort multiple
rows of grouped data. Rows are listed in the order they occur
and are grouped by comparing contiguous rows.

group-single[plan] Creates an aggregate of GROUP BY results, but only when it
is known that a single row will be returned.

keyset[plan] Records which rows were used to create rows in a temporary
table so UltraLite can update the original rows. If you do not
want those rows to be updated, then use the FOR READ
ONLY clause in the query to eliminate this operation.

index-scan(table-name, index-name) Reads only part of the table; the index is used to find the
starting row.

join[plan, plan] Performs an inner join between two plans.

lojoin[plan, plan] Performs a left outer join between two plans.

like-scan(table-name, index-name) Reads only part of a table; the index is used to find the start
ing row by pattern matching.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 581

Operation Description

rowlimit[plan] Performs the row limiting operation on propagated rows.
Row limits are set by the TOP n or FIRST clause of the SE
LECT statement.

scan(table-name, index-name) Reads an entire table following the order indicated by the in
dex.

sub-query[plan] Marks the start of a subquery.

temp[plan] Creates a temporary table from the rows in the underlying
plan. UltraLite uses a temporary table when underlying rows
must be ordered and no index was found to do this ordering.

You can add an index to eliminate the need for a temporary
table. However, each additional index used increases the du
ration needed to insert or synchronize rows in the table for
which the index applies.

union-all[plan, ..., plan] Performs a UNION ALL operation on the rows generated in
the underlying plan.

1.14.3 Insert and Update Performance Tips

Several topics are provided to help improve performance of inserts and updates in UltraLite databases.

In this section:

Transaction and Row State Management [page 582]
UltraLite maintains state information along with the data in the database.

Flush Single or Grouped Transactions [page 586]
You can choose your recovery point in UltraLite by delaying committed transaction flushes.

1.14.3.1 Transaction and Row State Management

UltraLite maintains state information along with the data in the database.

UltraLite tracks and stores state information so it can manage:

• Concurrent connections, so UltraLite can share resources as required.
• Synchronization progress state, to ensure that synchronization occurs successfully.
• Row state, to maintain data integrity by tracking how data has changed between synchronizations.
• Transactions, to determine when and how data gets committed. In UltraLite, a transaction is processed in

its entirety or not at all.
• Recovery and backup information, to protect data against operating system crashes, and end-user actions

such as removing storage cards, or device resets while UltraLite is running.

582 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

In this section:

UltraLite Concurrency [page 583]
There are several aspects to UltraLite concurrency.

UltraLite Database Row State Management [page 584]
UltraLite maintains row state information. Tracking the state of tables and rows is particularly
important for data synchronization.

UltraLite Transaction Processing [page 585]
A transaction is a logical set of operations that are executed atomically: either all operations in the
transaction are stored in the database or none are.

Related Information

UltraLite Synchronization Client Features [page 10]
UltraLite Database Back up and Recovery [page 52]

1.14.3.1.1 UltraLite Concurrency

There are several aspects to UltraLite concurrency.

Multiple UltraLite database access

A single application can open connections to multiple databases.
Multiple applications

An UltraLite database can only be opened by one process at a time. Use the UltraLite engine to handle
multiple applications.
Multiple threads

UltraLite supports multithreaded applications. A single application can be written to use multiple threads,
each of which can connect to the same or different databases.Only a single thread may access a given
connection (or SQLCA) at a time. (UltraLite is thread safe and connections are thread agnostic, but you
may not make concurrent requests on a single connection/SQLCA.) Requests on a given database are
generally serialized; synchronization is an exception. Requests on separate databases run concurrently.
Multiple transactions/requests

Each connection can have a single transaction in progress at one time. Transactions can consist of a single
request or multiple requests. Data modifications made during a transaction are not made permanent in the
database until the transaction is committed. Either all data modifications made in a transaction are
committed, or all are rolled back.
Synchronization

During upload and download, read-write access to the database is permitted. However, if an application
changes a row that the download then attempts to change, the download fails and rolls back. Use the
Disable Concurrency synchronization parameter to disable access to data during synchronization.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 583

UltraLite supports resumable downloads on all platforms. Use resumable downloads to complete
downloads that stop because of network problems or because your application must exit.

Related Information

Failed Downloads
UltraLite Database Limitations [page 15]
UltraLite Transaction Processing [page 585]
UltraLite Clients [page 73]
Additional Parameters Synchronization Parameter [page 95]

1.14.3.1.2 UltraLite Database Row State Management

UltraLite maintains row state information. Tracking the state of tables and rows is particularly important for
data synchronization.

An internal marker is used to keep track of the row state in an UltraLite database. Row states control
transaction processing, recovery, and synchronization. When an application inserts, updates, or deletes a row,
UltraLite modifies the state of the row to reflect the operation and the connection that performed the
operation. When a transaction is committed, the states of all rows affected by the transaction are modified to
reflect the commit. If an unexpected failure occurs during a commit, the entire transaction is rolled back. The
following list summarizes these behaviors:

When a delete is issued

The state of each affected row is changed to reflect the fact that it was deleted. When a delete is undone
through a rollback, the original state of the row is restored.
When a delete is committed

The affected rows are not always removed from memory. If the row has never been synchronized, then it is
removed. If the row has been synchronized, then it is not removed, because the delete operation needs to
be synchronized to the consolidated database first. After the next synchronization, the row is removed
from memory.
When a row is updated

A new version of the row is created. The states of the old and new rows are set so the old row is no longer
visible and the new row is visible.
When a row update is committed

When a transaction is committed, the states of all rows affected by the transaction are modified to reflect
the commit. When an update is synchronized, both the old and new versions of the row are needed to allow
conflict detection and resolution. The old row is then deleted from the database and the new row simply
becomes a normal row.
When a row is added

The row is added to the database and is marked as not committed.
When an added row is committed

584 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c0a9d66ce210148d60ece1d123ea22.html

The row is marked as committed and is also flagged as requiring synchronization with the consolidated
database.

Related Information

UltraLite Database Back up and Recovery [page 52]
Flush Single or Grouped Transactions [page 586]
UltraLite Transaction Processing [page 585]

1.14.3.1.3 UltraLite Transaction Processing

A transaction is a logical set of operations that are executed atomically: either all operations in the transaction
are stored in the database or none are.

An UltraLite application's access to the UltraLite runtime is serialized. While it is possible for multiple
transactions to be open simultaneously, UltraLite only processes one transaction at a time. This behavior
means that an application cannot:

• Have blocked transactions (also known as deadlocks). UltraLite never blocks a request based on an
existing row lock. In this case, UltraLite immediately returns an error.

• Overwrite outstanding changes. A transaction cannot overwrite another transaction's outstanding
changes. When a transaction changes a row, UltraLite locks that row until the transaction is committed or
rolled back. The lock prevents other transactions from changing the row, although they can still read the
row.

 Note
All UltraLite APIs except the UltraLiteJ and C++ APIs can operate in autocommit mode.

In autocommit mode, UltraLite executes a commit after each operation. Some APIs use autocommit by
default. If you are using one of these interfaces, you must set autocommit to off to exploit multi-operation
transactions. The way of turning autocommit off depends on the programming interface you are using. In
most interfaces it is a property of the connection object.

For example, two applications, A and B, are reading the same row from the database and they both calculate
new values for one of its columns based on the data they read. If A updates the row with its new value and B
then tries to modify the same row, B gets an error. An attempt to change a locked row sets the error SQLCODE
SQLE_LOCKED, while an attempt to change a deleted row sets the error SQLE_NOTFOUND. Therefore, you
should program your application so it checks the SQLCODE value after attempting to modify data.

Related Information

Error Handling [page 665]
Error Handling in UltraLite.NET [page 619]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 585

Transaction Management in UltraLite C++ [page 664]
Transaction Management in UltraLite.NET [page 618]

1.14.3.2 Flush Single or Grouped Transactions

You can choose your recovery point in UltraLite by delaying committed transaction flushes.

When UltraLite releases the commit to storage, the recovery point helps control when a subset of SQL
statements in a transaction triggers additional operational overhead.

By default, UltraLite uses an operational-based default that flushes individual transactions to storage
immediately upon a commit. For some deployments, these frequent operations can be excessive and limit the
amount of transaction throughput. To reduce the performance expense caused by this default, you may choose
a state-based approach. Especially for applications that rely on autocommit operations, this approach delays
the additional overhead required to flush the committed transactions to storage:

On checkpoint

You can set your own checkpoint, and then use it to release the work performed over the course of time.
You can use as many checkpoints as you require, either within a single transaction or over multiple
transactions.
Grouped

You can choose a transaction count threshold and/or a timeout threshold to release the work performed.

Delaying commit flushes based on state yields better performance and a cleaner application design because
applications are not required to wait for a response from UltraLite. By delaying commit flushes you also
minimize the exposure to transactions by giving more granular control over data for which work has not been
fully completed. For example, in a sales application, an order may be available to a second application before all
items have been added or even approved.

However, it is important for you to take into account the recoverability of a transaction for which commit
flushes have been delayed. Transactions that have not been released cannot be recovered. Therefore, you need
to evaluate the trade-off between the data integrity of your application and its performance.

Related Information

UltraLite COMMIT_FLUSH Connection Parameter [page 188]
UltraLite commit_flush_count Option [Temporary] [page 208]
UltraLite commit_flush_timeout Option [Temporary] [page 209]
CHECKPOINT Statement [UltraLite] [page 529]

586 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

1.14.4 UltraLite Benchmark Tips

Benchmark testing activity is generally performed before reaching the production stage of the application
development cycle.

This phase requires that you test the UltraLite database with the application and ensure both components
inter-operate as efficiently as possible. If you discover through your tests that performance is not as efficient as
it could be, you can then tune your database and/or optimize your application to improve benchmark results.

 Note
If your UltraLite deployment is part of a MobiLink synchronization environment, remember to test
synchronization performance as well.

In this section:

Types of Benchmark Tests [page 587]
There are several kinds of performance you can observe using benchmark tests.

Methodology [page 589]
There are three phases used for benchmark testing: preparation, creation, and execution.

Related Information

MobiLink Tuning for Performance

1.14.4.1 Types of Benchmark Tests

There are several kinds of performance you can observe using benchmark tests.

• SQL statements: The UltraLite database has been optimized to handle SQL queries efficiently and return
results quickly. Nonetheless, you should see how well important queries perform to improve database
performance.

• Synchronization: The key to achieving optimal MobiLink synchronization throughput is to have multiple
synchronizations occurring simultaneously and executing efficiently.

• Indexes
• Table design
• Application code
• Device configuration: For example, compare using external flash memory and a device's internal memory

as deployment locations for UltraLite.
• Database configuration: For example, try different cache sizes, page sizes, reserve sizes, indexes, hash

sizes, and so on.
• Data throughput (based on transactions per second): While UltraLite is not typically a database intended

for mass data entry processing, depending on your business requirements, this benchmark is one that you
may to run tests for.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 587

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81ca8b316ce21014bc51f61aba9a022e.html

• Software changes: You should test the effect of software changes between two different versions of
UltraLite or different versions of an application.

In this section:

SQL Query Testing [page 588]
There are two types of query benchmark testing you can perform: representational SQL benchmarks,
and targeted SQL benchmarks.

Related Information

MobiLink Tuning for Performance

1.14.4.1.1 SQL Query Testing

There are two types of query benchmark testing you can perform: representational SQL benchmarks, and
targeted SQL benchmarks.

Representational SQL Benchmarks

This type of testing requires that you test a selection of statements that are representative of typical
transactions that the application performs during day-to-day operations. Different applications require
different benchmark tests because the fundamental business use for each application varies. For example, a
meter reading application might simply test a basic INSERT statement. However a mobile sales force
application might test multiple INSERT statements, in addition to multiple SELECT statements and perhaps an
UPDATE statement.

The volume of queries in your application can limit what you can realistically test. If you have excessive query
processing, you may be limited to performing the targeted SQL benchmark testing.

Targeted SQL Benchmarks

If you have a lot of statements used by your applications, you may want to narrow the scope of your test to
include some or all of the following:

• The most frequently used statements.
• The statements that process high volumes of data.
• The statements that have time-sensitive requirements.
• The statements that are most important to the business case of your application.
• The most complex statements: for example, those that have the largest number of table joins or that use

many subqueries. These types of statements can use a large amount of device resources. Even if the

588 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81ca8b316ce21014bc51f61aba9a022e.html

statements are only used infrequently, you may want to check that they don't exceed the capacity of the
device.

• The statements that are not supported by an index.
• The statements that use a large amount of memory resources.

1.14.4.2 Methodology

There are three phases used for benchmark testing: preparation, creation, and execution.

1. The preparation phase
Allows you to finalize your database design and reach a stable point in your application development before
starting your benchmark testing.

2. The creation phase
Allows you to build a custom program that replicates the end-user behavior you predict for your UltraLite
deployment.

3. The execution and analysis phase
Allows you to fine tune different elements of your database and record the results of those changes so you
can analyze them. Tests are repeated until the maximum benefit of all modifications has been reached.

In this section:

The Preparation Phase [page 589]
The preparation phase allows you to get your database and application in a state where they can be
successful benchmark candidates, and to determine what goals you hope to achieve from your tests.

The Creation Phase [page 590]
Create tests that yield reliable results. Otherwise, you cannot legitimately compare results over time.

Performing a Benchmark Test [page 591]
Perform a benchmark test.

1.14.4.2.1 The Preparation Phase

The preparation phase allows you to get your database and application in a state where they can be successful
benchmark candidates, and to determine what goals you hope to achieve from your tests.

In the preparation phase, you do the following:

1. Complete the logical design of the database.
Ensure you have:
• Created and populated tables with representative data.
• Created indexes to retrieve data in those tables more effectively.

2. Prepare the physical deployment environment of both the database and application. The deployment
environment must accurately represent the final production environment: that is, the lab and production
environments should share the same memory and disk configurations on the same platform/device type.

3. Ensure you have reached a stable point in your application programming phase. Remember you are looking
for performance optimizations not defects; however, the latter may also be revealed as a result of testing.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 589

All database queries should access and return as much data as required. If the production environment
requires sorting of data, ensure queries include this data as well. Otherwise, the application cannot
accurately test representative memory requirements.

4. Deploy a copy of the database and application to the final disk location.
5. Decide what element of the database performance you want to check and potentially tune.

You can now run benchmark tests against your database and application.

Related Information

Types of Benchmark Tests [page 587]

1.14.4.2.2 The Creation Phase

Create tests that yield reliable results. Otherwise, you cannot legitimately compare results over time.

The following characteristics make a benchmark test effective and reliable:

Goal

Are you looking to capture a performance ratio or are you trying to see the duration required to process a
command against a database? For the former, if you are testing SQL performance, you may want to run
one or more statements repeatedly until a set time interval has expired. This testing gives you the
throughput ratio, which can be summarized as follows:

statement-number / time-interval = throughput ratio

Environment

Establish a test environment as your baseline and record the design and scope of it. If you cannot run the
same test under the same conditions, you cannot legitimately compare results of that test. Additionally,
the hardware and software you use in the lab as part of your benchmark test should match that of your
production environment.
State

Reliable benchmark tests always start each iteration with the same action. Decide whether third-party
applications should operate concurrently with UltraLite. If they affect performance, you should add them to
the benchmark test design. For third-party applications that should not be running, always exit these
applications completely, even minimized or idle applications/processes could skew results because
memory is still being used.
Results

Results of benchmarks must be captured in a consistent way after each iteration of the test. Over time the
results can indicate a trend and help you determine what changes can yield an improvement in UltraLite
performance, either in the database or in the application (or both).
Timing mechanism

Benchmark tests simulate user actions; therefore, you typically track the elapsed execution times of these
actions. Ensure your timing mechanism is systematic so execution times are accurately reflected in the
results of your tests.

590 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Related Information

SQL Query Testing [page 588]

1.14.4.2.3 Performing a Benchmark Test

Perform a benchmark test.

Context

Benchmark testing is the phase during which you tune your database by iteratively running a test, modifying
something about the database (for example, the value of one or more database properties or connection
parameters), and then running the test again to see the outcome of any changes.

The following procedure assumes you are testing different database properties and/or connection parameters
to find the maximum benefit. Repeat this procedure until all parameters that require testing have been tested.

 Note
Choose only those properties or parameters that are significant to the workload and the objectives of your
UltraLite deployment.

Procedure

1. Create a baseline by running the first iteration of the test. In this case, because you are testing different
database properties and/or connection parameters, you would use UltraLite defaults wherever possible.

2. Begin your normal test runs by tuning only one database property or connection parameter at a time. This
limitation ensures that the results you collect are systematic in their approach and helps you more readily
determine when you have reached the maximum benefit of your tuning activities.

3. Output from the benchmark program should include:

• an identifier or label for each test
• the iteration of the program execution
• the name of the element being checked and what you did to change it
• the recorded elapsed time

For example, even though you could test other database parameters, if you limited your test to just varying
page sizes, cache sizes, and reserve sizes, your output might be saved to a table that looks similar to the
example that follows:

 PROP/PARM VALUES
TEST NUMBER 001 002 003
page_size 1 2 8
CACHE_SIZE 128 256 512

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 591

RESERVE_SIZE 128 256 512

STMT ID EXECUTION (seconds)
 01 01.55 01.50 01.49
 02 02.01 02.20 01.59 03 00.33 00.55 00.44

4. When you have completed an iteration, return the database to the baseline state to ensure you do not
inadvertently contaminate results of subsequent runs.

Results

Depending on the results of the benchmark test, do one of the following:

• If performance improves, change the value of the same property or parameter and rerun the test. Keep
tuning this value until you cannot improve performance any further.

• If the performance worsens, return the value of the property or parameter to the previous value.

Next Steps

Test another new property or parameter.

1.15 UltraLite Troubleshooting

Several topics are provided to help you troubleshoot problems with your UltraLite database.

In this section:

Unable to Start the UltraLite Engine [page 593]
You have to use the START connection parameter to start the UltraLite engine with the following
definition; however, the client returns SQLE_UNABLE_TO_CONNECT_OR_START.

Unable to Connect to Databases After Upgrade [page 593]
You have upgraded UltraLite. You discover that you are able to create an empty database using the
administration tools. However, when you try to connect to this or any other database (including
CustDB.udb) with SQL Central, you receive an error. Connecting to SQL Anywhere databases works
without incident, however.

UltraLite Database Corruption [page 594]
You receive an error message indicating that the database is corrupted.

Database Size Not Stabilizing [page 595]
Your application collects a lot of large binary objects among multiple client devices, synchronizes this
information to a consolidated database, and then the synchronized data is deleted from each client
device. However, the database size remains large despite the data being removed from the database.

Importing ASCII Data into a New UltraLite Database [page 596]

592 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

You have created a new UltraLite database, but have a .csv ASCII data file that you cannot import.

Utilities Still Running as the Previous Version [page 597]
You have just installed UltraLite 17. However, when you try to run any of the UltraLite utilities, the
previous version starts.

Result Set Changes Unpredictably [page 598]
You run a query and the result set you expect changes each time you run it.

UltraLite Engine Client Fails with Error -764 [page 598]
You are running the UltraLite engine on Microsoft Windows Mobile device, and the client returns a -764
error.

1.15.1 Unable to Start the UltraLite Engine

You have to use the START connection parameter to start the UltraLite engine with the following definition;
however, the client returns SQLE_UNABLE_TO_CONNECT_OR_START.

START="\Program Files\uleng17.exe"

Explanation

The location of the quotes is incorrect.

Recommendation

For this parameter to work, the first quotation mark must follow the \ character. For example, you can delimit
spaces in this path as follows:

START=\"Program Files\uleng17.exe"

or

START='"\Program Files\uleng17.exe"'

1.15.2 Unable to Connect to Databases After Upgrade

You have upgraded UltraLite. You discover that you are able to create an empty database using the
administration tools. However, when you try to connect to this or any other database (including CustDB.udb)

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 593

with SQL Central, you receive an error. Connecting to SQL Anywhere databases works without incident,
however.

Explanation

You did not close all SQL Anywhere applications and processes. Therefore, your UltraLite plug-ins were not
installed correctly.

Recommendation

Remove and reinstall SQL Anywhere.

1. Close SQL Central, Interactive SQL, and any running database engines.
2. Run the following commands:

dbisql -terminate

scjview -terminate

3. Open the Windows Task Manager, and end any scjview.exe and dbisql.exe processes.
4. Reinstall the latest version of UltraLite.

Related Information

UltraLite Upgrades

1.15.3 UltraLite Database Corruption

You receive an error message indicating that the database is corrupted.

Symptom

Your UltraLite database may be corrupt if it:

• Generates the following errors:
• SQLE_DEVICE_ERROR
• SQLE_DATABASE_ERROR (can also be a symptom of other issues)
• SQLE_MEMORY_ERROR (can also be a symptom of other issues)

594 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/a3e900ad39b94d689987e838835f39fe/17.0.01/en-US/815959406ce210149981f931630bf790.html

• Crashes or returns invalid query results.

Explanation

There are two more typical causes corruption:

• The more frequent cause occurs if the device has problems storing the file, thereby spuriously changing
the contents of it. This issue usually stops the UltraLite database from functioning fairly quickly.

• The less frequent cause occurs if an error in the UltraLite code fails to maintain an index correctly. These
issues can go undetected for much longer because the change to the results of a query are more subtle.

Recommendation

Checksums are used to detect offline corruption in an UltraLite database, which can help reduce the chances
of other data being corrupted as the result of a bad critical page. If a checksum validation fails when the
UltraLite database loads a page, then UltraLite immediately stops the database and reports a fatal error. This
error cannot be corrected. Instead you must:

1. Report the error. It is helpful if you know the sequence of events that caused the corruption to occur, and if
the error is reproducible.

2. If you need the data, unload the contents of the UltraLite database to a file.
3. Create a new UltraLite database.
4. Repopulate the data either by synchronizing or by loading the unloaded data.

Related Information

UltraLite checksum_level Creation Option [page 149]

1.15.4 Database Size Not Stabilizing

Your application collects a lot of large binary objects among multiple client devices, synchronizes this
information to a consolidated database, and then the synchronized data is deleted from each client device.
However, the database size remains large despite the data being removed from the database.

Explanation

This is a concern because file size needs to be managed carefully due to limited resources of the device.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 595

Database size should only increase if your data grows in the database. However, once grown, the database file
keeps that size, and does not shrink on its own. Free space is maintained internally to the file.

Recommendation

Ensure you are not using the STOP SYNCHRONIZATION DELETE or TRUNCATE statements for tables that do
not get synchronized. Instead use the DELETE statement with a FROM table-name clause for tables that do
not get synchronized.

Recreate the database post-synchronization:

1. Create the database that is deployed to the devices.
2. Creating a SQL script of DDL statements that define the schema required by the client devices.
3. Synchronize the data.
4. Drop the database.
5. Create a new, empty database and use standard database schema with the ALTER DATABASE SCHEMA

FROM FILE statement.

Related Information

Deploying UltraLite Database Schema Upgrades [page 131]
STOP SYNCHRONIZATION DELETE Statement [UltraLite] [page 562]
TRUNCATE TABLE Statement [UltraLite] [page 565]
DELETE Statement [UltraLite] [page 544]
ALTER DATABASE SCHEMA FROM FILE Statement [UltraLite] [page 520]

1.15.5 Importing ASCII Data into a New UltraLite Database

You have created a new UltraLite database, but have a .csv ASCII data file that you cannot import.

Explanation

The .csv format is not supported by any of the UltraLite administration tools.

596 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

Recommendation

You can try one of the following techniques:

• Use Interactive SQL (dbisql) to import the data. You can connect to the UltraLite database and then click
Data Import Data . Alternatively, you can connect to the UltraLite database and run the INPUT

statement (this statement cannot be used in an UltraLite PreparedStatement object).

 Note
UltraLite requires primary keys. Although Interactive SQL can create the table for you, it does not
automatically create the primary keys for them. Always connect to an empty UltraLite database you
have created for this purpose.

• If you incorporate this functionality as part of a batch process, you must write your own code.

Related Information

INPUT Statement [Interactive SQL]
Interactive SQL for UltraLite Utility (dbisql) [page 214]

1.15.6 Utilities Still Running as the Previous Version

You have just installed UltraLite 17. However, when you try to run any of the UltraLite utilities, the previous
version starts.

Explanation

If you have multiple versions of UltraLite on your computer, you must pay attention to your system path when
using the administration. Since the installation adds the most recently installed version executable directory to
the end of your system path, it is possible to install a new version of the software, and still inadvertently be
running the previously installed version.

Recommendation

There are various workarounds to this problem.

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 597

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817126526ce21014b4b6e257c19b45eb.html

Related Information

How to Ensure That You Are Running the Correct Version of the Utilities When You Have Multiple Versions
Installed

1.15.7 Result Set Changes Unpredictably

You run a query and the result set you expect changes each time you run it.

Explanation

Carefully review the result set you are getting. Are the results in the set truly different? Or are they simply being
returned in the most efficient order each time. The order selected can change each time you execute the query,
depending on when you last accessed the row and other factors.

Recommendation

If your result set must be returned in a predictable or consistent order, ensure that the SELECT statement
includes an ORDER BY clause. If the result set is still returning results incorrectly, your database may be
corrupt.

Related Information

SELECT Statement [UltraLite] [page 558]
UltraLite Database Corruption [page 594]

1.15.8 UltraLite Engine Client Fails with Error -764

You are running the UltraLite engine on Microsoft Windows Mobile device, and the client returns a -764 error.

Applies to

Microsoft Windows Mobile

598 PUBLIC
UltraLite Administration

UltraLite - Database Management and Developer Guide

https://help.sap.com/viewer/a3e900ad39b94d689987e838835f39fe/17.0.01/en-US/8157a3f16ce21014a1ca892dfeb8b9dd.html
https://help.sap.com/viewer/a3e900ad39b94d689987e838835f39fe/17.0.01/en-US/8157a3f16ce21014a1ca892dfeb8b9dd.html

Explanation

An error of -764 means that the engine could not be found and was unable to start.

Recommendation

Consider one of the following actions:

• Consider redeploying the engine to the recommended deployment location, the \Windows directory.
UltraLite automatically looks for the engine files in this location.

• If you have install the engine to any other location, ensure your connection code uses the START
connection parameter.

• If you have used the START connection parameter, and you are sure the path to the engine is correct,
ensure you have used the correct escape sequences for special characters in the path name.
For example, you may need to change this code:

ULConnection conn = new ULConnection(@"dbf=\Program Files\HelloEngine
\HelloEngine.udb; START=\Windows\uleng17.exe")

To something similar to:

ULConnection conn = new ULConnection(@"dbf=\\\"Program Files \"\\HelloEngine\
\HelloEngine.udb; START=\\Windows\\uleng17.exe");

Related Information

UltraLite Engine Startup [page 133]
UltraLite START Connection Parameter [page 200]

UltraLite Administration
UltraLite - Database Management and Developer Guide PUBLIC 599

2 UltraLite.NET Application Development

The UltraLite.NET API provides the Sap.Data.UltraLite namespace. This namespace provides a Microsoft
ADO.NET interface to UltraLite. It has the advantage of being built on an industry-standard model and
providing a migration path to the SQL Anywhere ADO.NET interface, which is very similar.

The .NET Compact Framework is the Microsoft .NET runtime component for Microsoft Windows Mobile. It
supports several programming languages. You can use either Visual Basic.NET or C# to build applications
using UltraLite.NET.

 Note
You can use the UltraLite C++ API as an alternative to the UltraLite.NET API to create applications for
Microsoft Windows Mobile devices and desktop.

In this section:

UltraLite .NET System Requirements and Supported Platforms [page 601]
UltraLite.NET supports Microsoft Windows Mobile devices. Third-party software is required for
database development.

SQL Anywhere Tools in Microsoft Visual Studio [page 602]
Microsoft Visual Studio integration is supported for UltraLite.NET. You can access the SQL Anywhere
integration tools from the Microsoft Visual Studio Server Explorer in Microsoft Visual Studio 2005 or
later.

Connection Setup for an UltraLite Database [page 602]
UltraLite applications must connect to a database before carrying out operations on the data in it.

Data Creation and Modification in UltraLite.NET Using SQL Statements [page 604]
UltraLite applications can access table data using SQL statements or the Table API.

Data creation and modification in UltraLite.NET using the ULTable Class [page 610]
UltraLite applications can access table data using SQL statements or by using the ULTable class.

Transaction Management in UltraLite.NET [page 618]
UltraLite provides transaction processing to ensure the integrity of the data in your database. A
transaction is a logical unit of work. Either an entire transaction is executed, or none of the statements
in the transaction are executed.

Schema Information in UltraLite.NET [page 618]
The objects in the table API represent tables, columns, indexes, and synchronization publications. Each
object has a Schema property that provides access to information about the structure of that object.

Error Handling in UltraLite.NET [page 619]
You can use the standard .NET error-handling features to handle errors. Most UltraLite methods throw
ULException errors.

MobiLink Data Synchronization in UltraLite.NET [page 620]
You synchronize an UltraLite database with a central consolidated database. Synchronization requires
the MobiLink synchronization software included with SQL Anywhere.

How to Deploy UltraLite.NET Applications [page 621]

600 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

UltraLite.NET applications can be deployed to Microsoft Windows Mobile and Microsoft Windows. If you
are deploying to Microsoft Windows Mobile, UltraLite.NET requires the Microsoft .NET Compact
Framework. If you are deploying to Microsoft Windows, it requires the Microsoft .NET Framework.
UltraLite.NET also supports Microsoft ActiveSync synchronization.

Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET [page 625]
This tutorial guides you through the process of building an UltraLite application for Microsoft Windows
Mobile using Microsoft Visual Studio. It uses the Microsoft ADO.NET interface provided by the
Sap.Data.UltraLite namespace and runs on the Microsoft .NET 3.5 Compact Framework.

Related Information

UltraLite C++ Application Development [page 644]
UltraLite .NET API Reference

2.1 UltraLite .NET System Requirements and Supported
Platforms

UltraLite.NET supports Microsoft Windows Mobile devices. Third-party software is required for database
development.

Development Platforms

To develop applications using UltraLite.NET, you must have the following:

• A supported desktop version of Microsoft Windows.
• Microsoft Visual Studio.

Target Platforms

UltraLite.NET supports the following target platforms:

• Microsoft .NET Framework 2.0 or later for Microsoft Windows.
• Microsoft .NET Compact Framework 2.0 or later for Microsoft Windows Mobile.

Related Information

Supported Platforms

UltraLite Administration
UltraLite.NET Application Development PUBLIC 601

https://help.sap.com/viewer/8807b3b3f4c045af8afd8f5cc5c2ed47/17.0.01/en-US/827984206ce210148124d4292d568f84.html
https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/8155387d6ce21014937df18c3511be8f.html

2.2 SQL Anywhere Tools in Microsoft Visual Studio

Microsoft Visual Studio integration is supported for UltraLite.NET. You can access the SQL Anywhere
integration tools from the Microsoft Visual Studio Server Explorer in Microsoft Visual Studio 2005 or later.

2.3 Connection Setup for an UltraLite Database

UltraLite applications must connect to a database before carrying out operations on the data in it.

 Note
The code samples in this chapter are written in Microsoft C#. If you are using one of the other supported
development tools, you must modify the instructions appropriately.

Using the ULConnection Object

Most applications use a single connection to an UltraLite database and leave the connection open. Multiple
connections are only required for multithreaded data access. For this reason, it is often best to declare the
ULConnection object as global to the application.

The following properties of the ULConnection object govern global application behavior.

Commit behavior

By default, UltraLite.NET applications are in AutoCommit mode. Each Insert, Update, or Delete statement
is committed to the database immediately. You can use ULConnection.BeginTransaction to define the start
of a transaction in your application.
User authentication

You can change the user ID and password for the application from the default values of DBA and sql,
respectively, by using methods. Each UltraLite database can define a maximum of four user IDs.
Synchronization

A set of objects governing synchronization is accessed from the Connection object.
Tables

UltraLite tables are accessed using methods of the Connection object.
Commands

A set of objects is provided to handle the execution of dynamic SQL statements and to navigate result sets.

Multithreaded Applications

Each ULConnection object and all objects created from it should be used on a single thread. If your application
requires multiple threads accessing the UltraLite database, each thread requires a separate connection. For

602 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

example, if you design your application to perform synchronization in a separate thread, you must use a
separate connection for the synchronization and you must open the connection from that thread.

In this section:

Connecting to an UltraLite Database Using UltraLite.NET [page 603]
Use the ULConnectionParms object to connect to an UltraLite database named mydata.udb.

Related Information

Transaction Management in UltraLite.NET [page 618]
MobiLink Data Synchronization in UltraLite.NET [page 620]
Data creation and modification in UltraLite.NET using the ULTable Class [page 610]
Data Creation and Modification in UltraLite.NET Using SQL Statements [page 604]

2.3.1 Connecting to an UltraLite Database Using
UltraLite.NET

Use the ULConnectionParms object to connect to an UltraLite database named mydata.udb.

Procedure

1. Declare a ULConnection object.

ULConnection conn;

2. Open a connection to an existing database.

You can specify connection parameters either as a connection string or using the ULConnectionParms
object.

ULConnectionParms parms = new ULConnectionParms(); parms.DatabaseOnDesktop = "mydata.udb";
conn = new ULConnection(parms.ToString()); conn.Open();

Results

A connection to the mydata.udb database is established.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 603

Next Steps

Use the database connection to perform SQL operations that create, modify, or delete data. You can modify
existing database options on an open connection. Close the ULConnection object when finished.

2.4 Data Creation and Modification in UltraLite.NET Using
SQL Statements

UltraLite applications can access table data using SQL statements or the Table API.

The following tasks can be performed using SQL statements:

• Inserting, deleting, and updating rows.
• Executing queries and retrieving rows to a result set.
• Scrolling through the rows of a result set.

In this section:

Data Modification in UltraLite.NET Using INSERT, UPDATE, and DELETE [page 605]
With UltraLite, you can perform SQL data manipulation language operations. These operations are
performed using the ULCommand.ExecuteNonQuery method.

Retrieving Data in UltraLite.NET Using SELECT [page 608]
Execute a SELECT statement to retrieve information from an UltraLite database and handle the result
set that is returned.

Result Set Schema Description [page 609]
The ULDataReader.GetSchemaTable method and ULDataReader.Schema property allow you to retrieve
information about a result set, such as column names, total number of columns, column scales,
column sizes, and column SQL types.

SQL Result Set Navigation in UltraLite.NET [page 609]
You can navigate through a result set using methods associated with the ULDataReader object.

Related Information

Data creation and modification in UltraLite.NET using the ULTable Class [page 610]
SQL Statements

604 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81738b736ce21014b823875d78c9a52c.html

2.4.1 Data Modification in UltraLite.NET Using INSERT,
UPDATE, and DELETE

With UltraLite, you can perform SQL data manipulation language operations. These operations are performed
using the ULCommand.ExecuteNonQuery method.

In this section:

Inserting a Row in a Table Using UltraLite.NET [page 605]
Placeholders for parameters in SQL statements are indicated by the ? character. For any INSERT,
UPDATE, or DELETE, each ? is referenced according to its ordinal position in the command's
parameters collection. For example, the first ? is referred to as 0, and the second as 1.

Updating a Row in a Table Using UltraLite.NET [page 606]
Placeholders for parameters in SQL statements are indicated by the ? character. For any INSERT,
UPDATE, or DELETE, each ? is referenced according to its ordinal position in the command's
parameters collection. For example, the first ? is referred to as 0, and the second as 1.

Deleting a Row in a Table in UltraLite.NET [page 607]
Placeholders for parameters in SQL statements are indicated by the ? character. For any INSERT,
UPDATE, or DELETE, each ? is referenced according to its ordinal position in the command's
parameters collection. For example, the first ? is referred to as 0, and the second as 1.

2.4.1.1 Inserting a Row in a Table Using UltraLite.NET

Placeholders for parameters in SQL statements are indicated by the ? character. For any INSERT, UPDATE, or
DELETE, each ? is referenced according to its ordinal position in the command's parameters collection. For
example, the first ? is referred to as 0, and the second as 1.

Procedure

1. Declare a ULCommand.

ULCommand cmd;

2. Assign a SQL statement to the ULCommand object.

cmd = conn.CreateCommand(); cmd.CommandText = "INSERT INTO MyTable(MyColumn) values (?)";

3. Assign input parameter values for the statement.

The following code shows a string parameter.

String newValue; cmd.Parameters.Clear();
// assign value cmd.Parameters.Add("", newValue);

UltraLite Administration
UltraLite.NET Application Development PUBLIC 605

4. Execute the statement.

The return value indicates the number of rows affected by the statement.

int rowsInserted = cmd.ExecuteNonQuery();

5. If you are using explicit transactions, commit the change.

myTransaction.Commit();

Results

A new row is added to MyTable where the MyColumn value is set to an empty string.

2.4.1.2 Updating a Row in a Table Using UltraLite.NET

Placeholders for parameters in SQL statements are indicated by the ? character. For any INSERT, UPDATE, or
DELETE, each ? is referenced according to its ordinal position in the command's parameters collection. For
example, the first ? is referred to as 0, and the second as 1.

Procedure

1. Declare a ULCommand.

ULCommand cmd;

2. Assign a statement to the ULCommand object.

cmd = conn.CreateCommand(); cmd.CommandText = "UPDATE MyTable SET MyColumn1 = ? WHERE MyColumn2 = ?";

3. Assign input parameter values for the statement.

String newValue; String oldValue;
cmd.Parameters.Clear();
// assign values
cmd.Parameters.Add("", newValue); cmd.Parameters.Add("", oldValue);

4. Execute the statement.

int rowsUpdated = cmd.ExecuteNonQuery();

5. If you are using explicit transactions, commit the change.

myTransaction.Commit();

606 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

Results

Row entries from MyTable are updated where the MyColumn1 value is an empty string. In this scenario, the
MyColumn2 value is also set to an empty string.

2.4.1.3 Deleting a Row in a Table in UltraLite.NET

Placeholders for parameters in SQL statements are indicated by the ? character. For any INSERT, UPDATE, or
DELETE, each ? is referenced according to its ordinal position in the command's parameters collection. For
example, the first ? is referred to as 0, and the second as 1.

Procedure

1. Declare a ULCommand.

ULCommand cmd;

2. Assign a statement to the ULCommand object.

cmd = conn.CreateCommand(); cmd.CommandText = "DELETE FROM MyTable WHERE MyColumn = ?";

3. Assign input parameter values for the statement.

String deleteValue; cmd.Parameters.Clear();
// assign value cmd.Parameters.Add("", deleteValue);

4. Execute the statement.

int rowsDeleted = cmd.ExecuteNonQuery();

5. If you are using explicit transactions, commit the change.

myTransaction.Commit();

Results

Row entries from MyTable are deleted where the MyColumn value in the table is an empty string.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 607

2.4.2 Retrieving Data in UltraLite.NET Using SELECT

Execute a SELECT statement to retrieve information from an UltraLite database and handle the result set that
is returned.

Procedure

1. Declare a ULCommand object to holds the query.

ULCommand cmd;

2. Assign a statement to the object.

cmd = conn.CreateCommand(); cmd.CommandText = "SELECT MyColumn FROM MyTable";

3. Execute the statement.

Query results can be returned as one of several types of objects. In this example, a ULDataReader object is
used.

ULDataReader customerNames = cmd.ExecuteReader(); int fc = customerNames.FieldCount();
while(customerNames.MoveNext()) {
 for (int i = 0; i < fc; i++) {
 System.Console.Write(customerNames.GetString(i) + " ");
 }
 System.Console.WriteLine(); }

Results

The result of the SELECT statement contains a string, which is then output to the command prompt.

608 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

2.4.3 Result Set Schema Description

The ULDataReader.GetSchemaTable method and ULDataReader.Schema property allow you to retrieve
information about a result set, such as column names, total number of columns, column scales, column sizes,
and column SQL types.

Example

The following example demonstrates how to use the ULDataReader.Schema and ResultSet.Schema properties
to display schema information in a command prompt.

for (int i = 0; i < MyResultSet.Schema.GetColumnCount(); i++) { System.Console.WriteLine(MyResultSet.Schema.GetColumnName(i)
 + " "
 + MyResultSet.Schema.GetColumnSQLType(i)); }

2.4.4 SQL Result Set Navigation in UltraLite.NET

You can navigate through a result set using methods associated with the ULDataReader object.

The result set object provides you with the following methods to navigate a result set:

MoveAfterLast

moves to a position after the last row.
MoveBeforeFirst

moves to a position before the first row.
MoveFirst

moves to the first row.
MoveLast

moves to the last row.
MoveNext

moves to the next row.
MovePrevious

moves to the previous row.
MoveRelative(offset)

moves a certain number of rows relative to the current row, as specified by the offset. Positive offset values
move forward in the result set, relative to the current position of the cursor in the result set, and negative
offset values move backward in the result set. An offset value of zero does not move the cursor, but allows
you to repopulate the row buffer.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 609

2.5 Data creation and modification in UltraLite.NET using
the ULTable Class

UltraLite applications can access table data using SQL statements or by using the ULTable class.

The following tasks can be performed using the Table API:

• Scroll through the rows of a table.
• Access the values of the current row.
• Use find and lookup methods to locate rows in a table.
• Insert, delete, and update rows.

In this section:

Row Navigation in UltraLite.NET [page 611]
UltraLite.NET provides you with several methods to navigate a table to perform a wide range of
navigation tasks.

UltraLite Modes [page 612]
An UltraLite mode determines the purpose for which the values in the buffer are used. UltraLite has the
following four modes of operation, in addition to a default mode.

Row Insertion in UltraLite.NET [page 612]
The steps to insert a row are very similar to those for updating rows, except that there is no need to
locate a row in the table before carrying out the insert operation.

Row Updates [page 613]
By default, UltraLite.NET operates in AutoCommit mode, so that the update is immediately applied to
the row in permanent storage. If you have disabled AutoCommit mode, the update is not applied until
you execute a commit operation.

Row Searches [page 614]
UltraLite has several modes of operation for working with data. Two of these modes, the find and
lookup modes, are used for searching. The Table object has methods corresponding to these modes for
locating particular rows in a table.

Row Retrieval [page 616]
Row operations can be managed using various methods in the ULTable class.

Row Deletions in UltraLite.NET [page 617]
The steps to delete a row are simpler than to insert or update rows. There is no delete mode
corresponding to the insert or update modes.

Related Information

Data Creation and Modification in UltraLite.NET Using SQL Statements [page 604]

610 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

2.5.1 Row Navigation in UltraLite.NET

UltraLite.NET provides you with several methods to navigate a table to perform a wide range of navigation
tasks.

The table object provides you with the following methods to navigate a table.

MoveAfterLast

moves to a position after the last row.
MoveBeforeFirst

moves to a position before the first row.
MoveFirst

moves to the first row.
MoveLast

moves to the last row.
MoveNext

moves to the next row.
MovePrevious

moves to the previous row.
MoveRelative(offset)

moves a certain number of rows relative to the current row, as specified by the offset. Positive offset values
move forward in the table, relative to the current position of the cursor in the table, and negative offset
values move backward in the table. An offset value of zero does not move the cursor, but allows you to
repopulate the row buffer.

Example

The following code opens the MyTable table and displays the value of the MyColumn column for each row.

ULTable t = conn.ExecuteTable("MyTable"); int colID = t.GetOrdinal("MyColumn");
while (t.MoveNext()){
 System.Console.WriteLine(t.GetString(colID)); }

You expose the rows of the table to the application when you open the table object. By default, the rows are
ordered by primary key value, but you can specify an index when opening a table to access the rows in a
particular order.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 611

Example

The following code moves to the first row of the MyTable table as ordered by the ix_col index.

ULTable t = conn.ExecuteTable("MyTable", "ix_col"); t.MoveFirst();

2.5.2 UltraLite Modes

An UltraLite mode determines the purpose for which the values in the buffer are used. UltraLite has the
following four modes of operation, in addition to a default mode.

Insert mode

The data in the buffer is added to the table as a new row when the insert method is called.
Update mode

The data in the buffer replaces the current row when the update method is called.
Find mode

Used to locate a row whose value exactly matches the data in the buffer when one of the find methods is
called.
Lookup mode

Used to locate a row whose value matches or is greater than the data in the buffer when one of the lookup
methods is called.

2.5.3 Row Insertion in UltraLite.NET

The steps to insert a row are very similar to those for updating rows, except that there is no need to locate a row
in the table before carrying out the insert operation.

The order of row insertion into the table has no significance.

Example

The following code inserts a new row.

t.InsertBegin(); t.SetInt(id, 3);
t.SetString(lname, "Carlo"); t.Insert();

612 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

If you do not set a value for one of the columns, and that column has a default, the default value is used. If the
column has no default, one of the following entries is used:

• For nullable columns, NULL.
• For numeric columns that disallow NULL, zero.
• For character columns that disallow NULL, an empty string.
• To explicitly set a value to NULL, use the SetDBNull method.

For update operations, an insert is applied to the database in permanent storage when a commit is carried out.
In AutoCommit mode, a commit is carried out as part of the insert method.

2.5.4 Row Updates

By default, UltraLite.NET operates in AutoCommit mode, so that the update is immediately applied to the row
in permanent storage. If you have disabled AutoCommit mode, the update is not applied until you execute a
commit operation.

 Caution
You cannot update the primary key value of a row. Delete the row and add a new row instead.

In this section:

Updating a Row in a Table Using UltraLite.NET [page 613]
Use the Update method to update a row in a table.

Related Information

Transaction Management in UltraLite.NET [page 618]

2.5.4.1 Updating a Row in a Table Using UltraLite.NET

Use the Update method to update a row in a table.

Procedure

1. Move to the row you want to update.

You can move to a row by scrolling through the table or by searching the table using find or lookup
methods.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 613

2. Enter update mode.

For example, the following instruction enters update mode on a table.

t.UpdateBegin();

3. Set the new values for the row to be updated.

For example, the following instruction sets the id column in the buffer to 3.

t.SetInt(id , 3);

4. Execute the Update.

t.Update();

Results

The current row is updated. If you changed the value of a column in the index specified when the Table object
was opened, the current row is undefined.

2.5.5 Row Searches

UltraLite has several modes of operation for working with data. Two of these modes, the find and lookup
modes, are used for searching. The Table object has methods corresponding to these modes for locating
particular rows in a table.

 Note
The columns searched using Find and Lookup methods must be in the index used to open the table.

Find methods

move to the first row that exactly matches specified search values, under the sort order specified when the
Table object was opened. If the search values cannot be found, the application is positioned before the first
or after the last row.
Lookup methods

move to the first row that matches or is greater than a specified search value, under the sort order
specified when the Table object was opened.

In this section:

Searching for a Row with the Find and Lookup Methods [page 615]
Use the find and lookup methods to search for a row in a ULTable object.

614 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

2.5.5.1 Searching for a Row with the Find and Lookup
Methods

Use the find and lookup methods to search for a row in a ULTable object.

Procedure

1. Enter find or lookup mode.

The mode is entered by calling a method on the table object. For example, the following code enters find
mode.

t.FindBegin();

2. Set the search values.

You do this by setting values in the current row. Setting these values affects the buffer holding the current
row only, not the database. For example, the following code sets the value in the buffer to Kaminski.

int lname = t.GetOrdinal("lname"); t.SetString(lname, "Kaminski");

3. Search for the row.

Use the appropriate method to perform the search. For example, the following instruction looks for the first
row that exactly matches the specified value in the current index.

For multi-column indexes, a value for the first column is always used, but you can omit the other columns.

t.FindFirst();

4. Search for the next instance of the row.

Use the appropriate method to perform the search. For a find operation, FindNext locates the next instance
of the parameters in the index. For a lookup, MoveNext locates the next instance.

Results

The cursor points to the desired row.

Next Steps

Perform operations on the row, such as delete, or modify data that pertains to the row.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 615

2.5.6 Row Retrieval

Row operations can be managed using various methods in the ULTable class.

A Table object is always located at one of the following positions:

• Before the first row of the table.
• On a row of the table.
• After the last row of the table.

If the Table object is positioned on a row, you can use one of a set of methods appropriate for the data type to
retrieve or modify the value of each column.

Retrieving Column Values

The Table object provides a set of methods for retrieving column values. These methods take the column ID as
argument.

Example

The following code retrieves the value of the lname column, which is a character string.

int lname = t.GetOrdinal("lname"); string lastname = t.GetString(lname);

The following code retrieves the value of the cust_id column, which is an integer.

int cust_id = t.GetOrdinal("cust_id"); int id = t.GetInt(cust_id);

Modifying Column Values

In addition to the methods for retrieving values, there are methods for setting values. These methods take the
column ID and the value as arguments.

Example

For example, the following code sets the value of the lname column to Kaminski.

t.SetString(lname, "Kaminski");

By assigning values to these properties you do not alter the value of the data in the database. You can assign
values to the properties even if you are before the first row or after the last row of the table, but it is an error to

616 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

try to access data when the current row is at one of these positions, for example, by assigning the property to a
variable.

// This code is incorrect t.MoveBeforeFirst(); id = t.GetInt(cust_id);

Casting Values

The method you choose must match the data type you want to assign. UltraLite automatically casts database
data types where they are compatible, so that you could use the getString method to fetch an integer value into
a string variable, and so on.

Related Information

CAST Function [Data Type Conversion] [page 358]
CONVERT Function [Data Type Conversion] [page 367]

2.5.7 Row Deletions in UltraLite.NET

The steps to delete a row are simpler than to insert or update rows. There is no delete mode corresponding to
the insert or update modes.

You delete a row by moving the cursor to the row you want to delete and then executing the Table.Delete
method.

Example

The following code illustrates how to delete the first row in a table:

t.MoveFirst(); t.Delete();

UltraLite Administration
UltraLite.NET Application Development PUBLIC 617

2.6 Transaction Management in UltraLite.NET

UltraLite provides transaction processing to ensure the integrity of the data in your database. A transaction is a
logical unit of work. Either an entire transaction is executed, or none of the statements in the transaction are
executed.

By default, UltraLite.NET operates in AutoCommit mode, so that each insert, update, or delete is executed as a
separate transaction. Once the operation is complete, the change is made to the database.

To use multi-statement transactions, you must create a ULTransaction class object by calling
ULConnection.BeginTransaction. For example, if your application transfers money between two accounts, both
the deduction from the source account and the addition to the destination account must be completed as a
distinct operation, otherwise both statements must not be completed.

If the connection has performed a valid transaction, you must execute ULTransaction.Commit statement to
complete the transaction and commit the changes to your database. If the set of updates is to be abandoned,
execute ULTransaction.Rollback statement to cancel and roll back all the operations of the transaction. Once a
transaction has been committed or rolled back, the connection will revert to AutoCommit mode until a
subsequent call to ULConnection.BeginTransaction.

For example, the following code fragment shows how to set up a transaction that involves multiple operations
(avoiding the default autocommit behavior):

// Assuming an already open connection named conn ULTransaction txn = conn.BeginTransaction(IsolationLevel.ReadUncommitted);
// Perform transaction operations here txn.Commit();

 Note
UltraLite supports only the ReadCommitted and ReadUncommitted members of the IsolationLevel
enumeration.

Some SQL statements, especially statements that alter the structure of the database, cause any pending
transactions to be committed. Examples of SQL statements that automatically commit transactions in
progress are: CREATE TABLE and ALTER TABLE.

2.7 Schema Information in UltraLite.NET

The objects in the table API represent tables, columns, indexes, and synchronization publications. Each object
has a Schema property that provides access to information about the structure of that object.

You cannot modify the schema through the API. You can only retrieve information about the schema.

You can access the following schema objects and information:

ULDatabaseSchema

Exposes the number and names of the tables in the database, and the global properties such as the format
of dates and times.

618 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

Call ULConnection.Schema to obtain a ULDatabaseSchema object.
ULTableSchema

The number and names of the columns and indexes for this table.

Call ULTable.Schema to obtain a ULTableSchema object.
ULIndexSchema

Information about the column in the index. As an index has no data directly associated with it there is no
separate Index class, just a ULIndexSchema class.

Call the ULTableSchema.GetIndex, ULTableSchema.GetOptimalIndex, or ULTableSchema.GetPrimaryKey
method to obtain a ULIndexSchema object.

2.8 Error Handling in UltraLite.NET

You can use the standard .NET error-handling features to handle errors. Most UltraLite methods throw
ULException errors.

You can use ULException.NativeError to retrieve the ULSQLCode value assigned to this error. ULException has
a Message property, which you can use to obtain a descriptive text of the error. ULSQLCode errors are negative
numbers indicating the error type.

After synchronization, you can use the SyncResult property of the connection to obtain more detailed error
information. For example, the following sample illustrates a possible technique for reporting errors that occur
during synchronization:

public void Sync() { try {
 _conn.Synchronize(this);
 _inSync = false;
 }
 catch(ULException uEx) {
 if(uEx.NativeError == ULSQLCode.SQLE_MOBILINK_COMMUNICATIONS_ERROR) {
 MessageBox.Show(
 "StreamErrorCode = " +
 _conn.SyncResult.StreamErrorCode.ToString() + "\r\n"
 + "StreamErrorParameters = " +
 _conn.SyncResult.StreamErrorParameters + "\r\n"
 + "StreamErrorSystem = " +
 _conn.SyncResult.StreamErrorSystem + "\r\n"
);
 }
 else {
 MessageBox.Show(uEx.Message);
 }
 }
 catch(System.Exception ex) {
 MessageBox.Show(ex.Message);
 } }

UltraLite Administration
UltraLite.NET Application Development PUBLIC 619

2.9 MobiLink Data Synchronization in UltraLite.NET

You synchronize an UltraLite database with a central consolidated database. Synchronization requires the
MobiLink synchronization software included with SQL Anywhere.

You can find a working example of synchronization in the CustDB sample application. For more information,
see the Samples\UltraLite.NET\CustDB subdirectory of your SQL Anywhere 17 installation.

UltraLite.NET supports TCP/IP, HTTP, HTTPS, and TLS (transport layer security) synchronization.
Synchronization is initiated by the UltraLite application. Always use properties of the SyncParms object to
control synchronization.

In this section:

Synchronization Initiation in a C# Application [page 620]
Use the SyncParms object to initiate synchronization in a C# application.

Microsoft ActiveSync Synchronization Setup in UltraLite.NET [page 621]
Microsoft ActiveSync synchronization can be added to an UltraLite.NET application, and your
application can be registered for use with Microsoft ActiveSync on your end users' computers.

Related Information

UltraLite Clients [page 73]

2.9.1 Synchronization Initiation in a C# Application

Use the SyncParms object to initiate synchronization in a C# application.

private void Sync(ULConnection conn) {
 // Sync
 try
 {
 // setup to synchronize a publication named "high_priority"
 conn.SyncParms.Publications = "high_priority";

 // Set the synchronization parameters
 conn.SyncParms.Version = "Version1";
 conn.SyncParms.StreamParms = "";
 conn.SyncParms.Stream = ULStreamType.TCPIP;
 conn.SyncParms.UserName = "51";
 conn.Synchronize();
 }
 catch (System.Exception t)
 {
 MessageBox.Show("Exception: " + t.Message);
 } }

620 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

2.9.2 Microsoft ActiveSync Synchronization Setup in
UltraLite.NET

Microsoft ActiveSync synchronization can be added to an UltraLite.NET application, and your application can
be registered for use with Microsoft ActiveSync on your end users' computers.

Microsoft ActiveSync synchronization can only be initiated by Microsoft ActiveSync. Microsoft ActiveSync
initiates synchronization when the device is placed in the cradle or when Synchronize is selected from the
Microsoft ActiveSync window.

When Microsoft ActiveSync initiates synchronization, the MobiLink provider for Microsoft ActiveSync starts the
UltraLite application, if it is not already running, and sends a message to it. Your application must implement a
ULActiveSyncListener object to receive and process messages from the MobiLink provider. Your application
must specify the listener object using the SetActiveSyncListener method, where MyAppClassName is a unique
Microsoft Windows class name for the application.

dbMgr.SetActiveSyncListener("MyAppClassName", listener);

When UltraLite receives a Microsoft ActiveSync message, it invokes the specified listener's ActiveSyncInvoked
method on a different thread. To avoid multithreading issues, your ActiveSyncInvoked method should post an
event to the user interface.

If your application is multithreaded, use a separate connection and use the lock keyword in Microsoft C# or
SyncLock keyword in Microsoft Visual Basic .NET to access any objects shared with the rest of the application.
The ActiveSyncInvoked method should specify a ULStreamType.ACTIVE_SYNC for its connection's
SyncParms.Stream and then call ULConnection.Synchronize.

When registering your application, set the following parameter:

Class Name

The same class name the application used with the Connection.SetActiveSyncListener method.

2.10 How to Deploy UltraLite.NET Applications

UltraLite.NET applications can be deployed to Microsoft Windows Mobile and Microsoft Windows. If you are
deploying to Microsoft Windows Mobile, UltraLite.NET requires the Microsoft .NET Compact Framework. If you
are deploying to Microsoft Windows, it requires the Microsoft .NET Framework. UltraLite.NET also supports
Microsoft ActiveSync synchronization.

In this section:

Deploying an UltraLite.NET Application for Microsoft Windows Mobile [page 622]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, references, and deployment files to ensure that your UltraLite.NET application runs
successfully.

Deploying an UltraLite.NET Application for Windows Mobile (UltraLite Engine) [page 623]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, references, and deployment files to ensure that your UltraLite.NET application runs
successfully.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 621

Related Information

UltraLite Application Build and Deployment Specifications [page 124]

2.10.1 Deploying an UltraLite.NET Application for Microsoft
Windows Mobile

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, references, and deployment files to ensure that your UltraLite.NET application runs successfully.

Procedure

1. Specify the following parameters:

• When using obfuscation, set the creation parameter obfuscate=1 while creating the database.
• When using AES encryption, set the connection parameter DBKEY= encryption-key while creating

or connecting to the database.
2. Set the appropriate parameter settings when using synchronization in your UltraLite application:

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to tcpip.

HTTP Set the Stream synchronization parameter to http.

RSA TLS Set the Stream synchronization parameter to tls.

RSA HTTPS Set the Stream synchronization parameter to https.

3. When using RSA end-to-end encryption, set the protocol option e2ee_public_key= key-file.

4. When using ZLIB compression, set the protocol option compression=zlib.
5. Add references to:

• Sap.Data.UltraLite
• Sap.Data.UltraLite.resources

6. Deploy the following files:

• %SQLANY17%\UltraLite\UltraLite.NET\Assembly\V2\Sap.Data.UltraLite.dll.
• %SQLANY17%\UltraLite\UltraLite.NET\Assembly\V2\en

\Sap.Data.UltraLite.resources.dll.
• ulnet17.dll, located in %SQLANY17%\UltraLite\UltraLite.NET\CE\Arm50 for Microsoft

Windows Mobile. For Microsoft Windows, it is located in %SQLANY17%\UltraLite\UltraLite.NET
\x64 or %SQLANY17%\UltraLite\UltraLite.NET\win32.

7. Deploy the files appropriate for your application:

622 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

• When using ZLIB compression, mlczlib17.dll.
• When using RSA TLS, RSA HTTPS, or RSA E2EE, mlcrsa17.dll.

For Microsoft Windows Mobile, the files are located in %SQLANY17%\UltraLite\CE\Arm.50. For
Microsoft Windows, the files are located in %SQLANY17%\UltraLite\Windows\x64 or %SQLANY17%
\UltraLite\Windows\x86.

Results

The UltraLite.NET application runs successfully on the Microsoft Windows desktop or Microsoft Windows
Mobile device that it is deployed to.

Next Steps

Deploy an UltraLite database to the Microsoft Windows desktop or Microsoft Windows Mobile device that the
application was deployed to, or create a new database with the deployed application.

Related Information

UltraLite Database Deployment Techniques [page 130]
UltraLite Application Build and Deployment Specifications [page 124]

2.10.2 Deploying an UltraLite.NET Application for Windows
Mobile (UltraLite Engine)

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, references, and deployment files to ensure that your UltraLite.NET application runs successfully.

Procedure

1. Specify the following parameters:

• When using obfuscation, set the creation parameter obfuscate=1 while creating the database.
• When using AES encryption, set the connection parameter DBKEY= encryption-key while creating

or connecting to the database.
2. Set the appropriate parameter settings when using synchronization in your UltraLite application:

UltraLite Administration
UltraLite.NET Application Development PUBLIC 623

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to tcpip.

HTTP Set the Stream synchronization parameter to http.

RSA TLS Set the Stream synchronization parameter to tls.

RSA HTTPS Set the Stream synchronization parameter to https.

3. When using RSA end-to-end encryption, set the protocol option e2ee_public_key= key-file.

4. When using ZLIB compression, set the protocol option compression=zlib.
5. Add references to:

• Sap.Data.UltraLite
• Sap.Data.UltraLite.resources

6. Deploy the following files:

• %SQLANY17%\UltraLite\UltraLite.NET\Assembly\V2\Sap.Data.UltraLite.dll.
• %SQLANY17%\UltraLite\UltraLite.NET\Assembly\V2\en

\Sap.Data.UltraLite.resources.dll.
• ulnetclient17.dll, located in %SQLANY17%\UltraLite\UltraLite.NET\CE\Arm50 for

Windows Mobile. For Windows, it is located in %SQLANY17%\UltraLite\UltraLite.NET\x64 or
%SQLANY17%\UltraLite\UltraLite.NET\win32.

7. Deploy the files appropriate for your application:

• uleng17.exe.
• When using ZLIB compression, mlczlib17.dll.
• When using RSA TLS, RSA HTTPS, or RSA E2EE, mlcrsa17.dll.

For Windows Mobile, the files are located in %SQLANY17%\UltraLite\CE\Arm.50. For Windows, the
files are located in %SQLANY17%\UltraLite\Windows\x64 or %SQLANY17%\UltraLite\Windows
\x86.

Results

The UltraLite.NET application, which uses the UltraLite engine, runs successfully on the Windows desktop or
Windows Mobile device that it is deployed to.

Next Steps

Deploy an UltraLite database to the Windows desktop or Windows Mobile device that the application was
deployed to, or create a new database with the deployed application.

624 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

Related Information

UltraLite Database Deployment Techniques [page 130]
UltraLite Application Build and Deployment Specifications [page 124]

2.11 Tutorial: Building a Microsoft Windows Mobile
Application Using UltraLite.NET

This tutorial guides you through the process of building an UltraLite application for Microsoft Windows Mobile
using Microsoft Visual Studio. It uses the Microsoft ADO.NET interface provided by the Sap.Data.UltraLite
namespace and runs on the Microsoft .NET 3.5 Compact Framework.

Prerequisites

This tutorial assumes the following:

• You are familiar with the C# programming language or the Microsoft Visual Basic programming language.
• You know how to create an UltraLite database using the UltraLite plug-in for SQL Central.
• You have Microsoft Visual Studio installed on your computer and you are familiar with using Microsoft

Visual Studio. This tutorial is tested using Microsoft Visual Studio 2008 and may refer to Microsoft Visual
Studio actions or procedures that may be slightly different in other versions of Microsoft Visual Studio.

• You have installed the Microsoft Windows Mobile 5.0 SDK or later from Microsoft
• You have installed the Microsoft .NET 3.5 Compact Framework to your mobile device

Context

The goal for the tutorial is to gain competence and familiarity with the process of developing UltraLite
applications in the Microsoft Visual Studio environment.

This tutorial contains code for a Microsoft Visual Basic application and a Microsoft Visual C# application.

If you install UltraLite software on a Microsoft Windows computer that already has Microsoft Visual Studio
installed, the UltraLite installation process detects the presence of Microsoft Visual Studio and performs the
necessary integration steps. If you install Microsoft Visual Studio after installing UltraLite, or install a new
version of Microsoft Visual Studio, the process to integrate UltraLite with Microsoft Visual Studio must be
performed manually at a command prompt as follows:

• Ensure Microsoft Visual Studio is not running.
• For Microsoft Visual Studio 2005 or later, run installULNet.exe from the folder named %SQLANY17%

\UltraLite\UltraLite.NET\Assembly\v2\. This task may require administrator privileges.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 625

1. Lesson 1: Creating a Microsoft Visual Studio Project [page 626]
In this lesson, you create and configure a new Microsoft Visual Studio application. You can choose
whether to use Microsoft Visual Basic or C# as your programming language.

2. Lesson 2: Creating an UltraLite Database [page 629]
In this lesson, you create an UltraLite database using SQL Central on a desktop PC.

3. Lesson 3: Adding Database Connection Controls to the Application [page 631]
In this lesson, you add a control to your UltraLite.NET application that establishes a connection to an
UltraLite database.

4. Lesson 4: Inserting, Updating, and Deleting Data [page 633]
In this lesson, you add code to your application that uses Dynamic SQL to modify the data in your
database.

5. Lesson 5: Building and Deploying the Application [page 637]
In this lesson, you build your application and deploy it to a remote device or emulator.

6. Code Listing for C# Tutorial [page 639]
Following is the complete code for the tutorial program described in the preceding sections.

7. Code Listing for Microsoft Visual Basic Tutorial [page 641]
Following is the complete code for the tutorial program described in the preceding sections.

Related Information

Creating an UltraLite Database with the Create Database Wizard [page 28]

2.11.1 Lesson 1: Creating a Microsoft Visual Studio Project

In this lesson, you create and configure a new Microsoft Visual Studio application. You can choose whether to
use Microsoft Visual Basic or C# as your programming language.

Prerequisites

This lesson assumes that you have installed the required software.

Context

This tutorial assumes that if you are designing a C# application, your files are in the directory C:\tutorial
\uldotnet\CSApp and that if you are designing a Microsoft Visual Basic application, your files are in the
directory C:\tutorial\uldotnet\VBApp. If you choose to use a directory with a different name, use that
directory throughout the tutorial.

626 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

Procedure

1. Create a Microsoft Visual Studio project.

• In the Microsoft Visual Studio File menu, click New Project .
• The New Project window appears. In the left pane, expand either the Visual Basic folder or the Visual

C# folder. Click Smart Device for the project type.
In the right pane, click a Smart Device Project and name your project VBApp or CSApp, depending on
whether you are using Microsoft Visual Basic or C# for the programming language.

• Enter a Location of C:\tutorial\uldotnet and click OK.
• Click Windows Mobile 5.0 Pocket PC SDK as the target platform and .NET Compact Framework Version

3.5 as the target Microsoft .NET Compact Framework version. Click OK.
2. Add references to your project.

• Add the Sap.Data.UltraLite assembly and the associated resources to your project.
1. From the Project menu, click Add Reference.
2. Click Sap.Data.UltraLite and Sap.Data.UltraLite EN (for English) in the list of available references.

Click OK to add them to the list of selected components.
If your desired language is not English, click Browse and locateSap.Data.UltraLite xx in the
UltraLite\UltraLite.NET\ce\Assembly\v2\xx subdirectory of your SQL Anywhere
installation, where xx is a two-letter abbreviation for your desired language (for example, use en for
English). Click Sap.Data.UltraLite.resources.dll and click Open.

• Link the UltraLite component to your project.
In this step, ensure that you add a link to the component, and that you do not open the component.
1. From the Project menu, click Add Existing Item and browse to the UltraLite\UltraLite.NET

\ce subdirectory of your SQL Anywhere installation.
2. In the Objects of Type list, click Executable Files.
3. Open the folder corresponding to the processor of the Microsoft Windows Mobile device you are

using. For Microsoft Visual Studio 2005 and later, open the arm.50 folder. Click ulnet17.dll;
Click the arrow on the Add button and click Add as Link.

3. Create a form for your application.

If the Microsoft Visual Studio toolbox panel is not currently displayed, from the main menu click View
Toolbox . Add the following visual components to the form by selecting the object from the toolbox and
dragging it onto the form in the desired location.

Type Design - name

Button btnInsert

Button btnUpdate

Button btnDelete

TextBox txtName

ListBox lbNames

Label laName

UltraLite Administration
UltraLite.NET Application Development PUBLIC 627

Your form should look like the following figure:

4. Build and deploy your solution.

Building and deploying the solution confirms that you have configured your Microsoft Visual Studio project
properly.

a. From the Build menu, click Build Solution. Confirm that the project builds successfully. If you are
building a Microsoft Visual Basic application, you can ignore the following warning that may appear:

Referenced assembly 'Sap.Data.UltraLite.resources' is a localized
satellite assembly

b. From the Debug menu, click Start Debugging.

This action deploys your application to the mobile device or emulator, and starts it. The application is
deployed to the emulator or device location: \Program Files\VBApp or \Program Files\CSApp
depending on your project name.

The deployment may take some time.
c. Confirm that the application deploys to the emulator or your target device and the form (Form1) you

have designed is displayed correctly.
d. Shutdown the emulator or the application on your target device.

628 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

Results

The UltraLite.NET API is functional in the new Microsoft Windows Mobile application.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET [page 625]

Next task: Lesson 2: Creating an UltraLite Database [page 629]

2.11.2 Lesson 2: Creating an UltraLite Database

In this lesson, you create an UltraLite database using SQL Central on a desktop PC.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Click Start Programs SQL Anywhere 17 Administration Tools SQL Central .
2. Use the UltraLite plug-in for SQL Central to create a database in the same directory as your application.

From the Tools menu, click UltraLite 17 Create Database .

In general, the default database characteristics provided by SQL Central are suitable. Note the following
characteristics:

Database file name

c:\tutorial\uldotnet\VBApp\VBApp.udb or c:\tutorial\uldotnet\CSApp\CSApp.udb,
depending on your application type.
DBA user ID and password

Set to DBA and sql, respectively, for the purposes of examples in this documentation.
Collation sequence

Use the default collation.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 629

Use case-sensitive string comparisons

This option should not be on.

Click Finish and connect to the UltraLite database.
3. Create a new UltraLite table by highlighting the Tables folder icon in the SQL Central tree view and then

click File New Table . Note the following characteristics:

Table name

Type Names.
Columns

Create columns in the Names table with the following attributes:

Column Name Data Type (Size) Nulls Unique Default value

ID Integer No Yes (primary key) Global autoincre
ment

Name Varchar(30) No No None

Primary key

Specify the ID column as primary key.

4. Exit SQL Central and verify the database file is created in the required directory.
5. Link the initialized (empty) database file to your Microsoft Visual Studio project so that the database file is

deployed to the device along with the application code:

• From the Visual Studio menu, click Project Add Existing Item .
• Ensure that Objects of Type is set to All Files. Browse to the directory where you created the database

file and click the file VBApp.udb or CSApp.udb depending on your application type.
• Click the arrow in the Add button and click Add As Link.
• In the Solution Explorer frame, right click the database file name that has just been added to the

project and click Properties.
In the properties panel, set the Build Action property to Content; set the Copy to Output Directory
property to Copy always.

Results

An UltraLite database is created.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET [page 625]

630 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

Previous task: Lesson 1: Creating a Microsoft Visual Studio Project [page 626]

Next task: Lesson 3: Adding Database Connection Controls to the Application [page 631]

Related Information

Creating an UltraLite Database with the Create Database Wizard [page 28]

2.11.3 Lesson 3: Adding Database Connection Controls to the
Application

In this lesson, you add a control to your UltraLite.NET application that establishes a connection to an UltraLite
database.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Double-click the form to open the source file (Form1.cs or Form1.vb).

2. Add code to import the Sap.Data.UltraLite namespace.

Add the following statement as the very first line of the file.

//Microsoft Visual C# using Sap.Data.UltraLite;

'Microsoft Visual Basic Imports Sap.Data.UltraLite

3. Add global variables to the form declaration.

For Microsoft Visual C#, add the following code after the code describing the form components and before
the first method declaration.

//Microsoft Visual C# private ULConnection Conn; private int[] ids;

UltraLite Administration
UltraLite.NET Application Development PUBLIC 631

For Microsoft Visual Basic, add the following code at the beginning of the Form1 class.

'Microsoft Visual Basic Dim Conn As ULConnection Dim ids() As Integer

These variables are used as follows:

ULConnection

A Connection object is the root object for all actions executed on a connection to a database.
ids

The ids array is used to hold the ID column values returned after executing a query.

Although the ListBox control itself allows you access to sequential numbers, those numbers differ from
the value of the ID column once a row has been deleted. For this reason, the ID column values must be
stored separately.

4. Double-click a blank area of your form to create a Form1_Load method.

This method performs the following tasks:

• Open a connection to the database using the connection parameters set in the ulConnectionParms1
control.

• Call the RefreshListBox method (defined later in this tutorial).
• Print (display) and error message if an error occurs. For SQL Anywhere errors, the code also prints the

error code.

For C#, add the following code to the Form1_Load method.

//Microsoft Visual C# try {
 String ConnString = "dbf=\\Program Files\\CSApp\\CSApp.udb";
 Conn = new ULConnection(ConnString);
 Conn.Open();
 Conn.DatabaseID = 1;
 RefreshListBox();
}
catch (System.Exception t) {
 MessageBox.Show("Exception: " + t.Message); }

For Microsoft Visual Basic, add the following code to the Form1_Load method.

'Microsoft Visual Basic Try
 Dim ConnString as String = "dbf=\Program Files\VBApp\VBApp.udb"
 Conn = New ULConnection(ConnString)
 Conn.Open()
 Conn.DatabaseID = 1
 RefreshListBox()
Catch
 MsgBox("Exception: " + err.Description) End Try

5. Build the project.

From the Build menu, click Build Solution. At this stage, you may receive a single error reported; for
example in C#: error CS0103: The name 'RefreshListBox' does not exist in the current
context. because RefreshListBox is not yet declared. The next lesson adds that function.

632 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

If you get other errors, you must correct them before proceeding. Check for common errors, such as case
inconsistencies in C#. For example, UltraLite and ULConnection must match case exactly. In Microsoft
Visual Basic you must include the Imports Sap.Data.UltraLite statement described in Lesson 3.

Results

The application is set up to connect to an UltraLite database.

Task overview: Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET [page 625]

Previous task: Lesson 2: Creating an UltraLite Database [page 629]

Next task: Lesson 4: Inserting, Updating, and Deleting Data [page 633]

2.11.4 Lesson 4: Inserting, Updating, and Deleting Data

In this lesson, you add code to your application that uses Dynamic SQL to modify the data in your database.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Context

In this lesson, you create a supporting method to maintain the listbox. This approach is required for the data
manipulation methods used in the remaining procedures.

Procedure

1. Right-click the form and click View Code.
2. Add a method of the Form1 class to update and populate the listbox. This method carries out the following

tasks:

• Clears the listbox.
• Instantiates a ULCommand object and assigns it a SELECT query that returns data from the Names

table in the database.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 633

• Executes the query, returning a result set as a ULDataReader.
• Instantiates an integer array with length equal to the number of rows in the result set.
• Populates the listbox with the names returned in the ULDataReader and populates the integer array

with the ids returned in the ULDataReader.
• Closes the ULDataReader.
• If an error occurs, prints the error message. For SQL errors, the code also prints the error code.

For C#, add the following code to your application as a method of the Form1 class.

//Microsoft Visual C# private void RefreshListBox(){
 try{
 long NumRows;
 int I = 0;
 lbNames.Items.Clear();
 using(ULCommand cmd = Conn.CreateCommand()){
 cmd.CommandText = "SELECT ID, Name FROM Names";
 using(ULDataReader dr = cmd.ExecuteReader()){
 dr.MoveBeforeFirst();
 NumRows = dr.RowCount;
 ids = new int[NumRows];
 while (dr.MoveNext())
 {
 lbNames.Items.Add(
 dr.GetString(1));
 ids[I] = dr.GetInt32(0);
 I++;
 }
 }
 txtName.Text = " ";
 }
 }
 catch(Exception err){
 MessageBox.Show(
 "Exception in RefreshListBox: " + err.Message);
 } }

For Microsoft Visual Basic, add the following code to your application as a method of the Form1 class.

'Microsoft Visual Basic Private Sub RefreshListBox()
 Try
 Dim cmd As ULCommand = Conn.CreateCommand()
 Dim I As Integer = 0
 lbNames.Items.Clear()
 cmd.CommandText = "SELECT ID, Name FROM Names"
 Dim dr As ULDataReader = cmd.ExecuteReader()
 ReDim ids(dr.RowCount)
 While (dr.MoveNext)
 lbNames.Items.Add(dr.GetString(1))
 ids(I) = dr.GetInt32(0)
 I = I + 1
 End While
 dr.Close()
 txtName.Text = " "
 Catch ex As Exception
 MsgBox(ex.ToString)
 End Try End Sub

3. Build the project.

634 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

Building the project should result in no errors.
4. On the form design tab, double-click Insert to create a btnInsert_Click method. This method carries out the

following tasks:

• Instantiates a ULCommand object and assigns it an INSERT statement that inserts the value in the text
box into the database.

• Executes the statement.
• Disposes of the ULCommand object.
• Refreshes the listbox.
• If an error occurs, prints the error message. For SQL errors, the code also prints the error code.

For Microsoft C#, add the following code to the btnInsert_Click method.

//Microsoft Visual C# try {
 long RowsInserted;
 using(ULCommand cmd = Conn.CreateCommand()) {
 cmd.CommandText =
 "INSERT INTO Names(name) VALUES (?)";
 cmd.Parameters.Add("", txtName.Text);
 RowsInserted = cmd.ExecuteNonQuery();
 }
 RefreshListBox();
}
catch(Exception err) {
 MessageBox.Show("Exception: " + err.Message); }

For Microsoft Visual Basic, add the following code to the btnInsert_Click method.

'Microsoft Visual Basic Try
 Dim RowsInserted As Long
 Dim cmd As ULCommand = Conn.CreateCommand()
 cmd.CommandText = "INSERT INTO Names(name) VALUES (?)"
 cmd.Parameters.Add("", txtName.Text)
 RowsInserted = cmd.ExecuteNonQuery()
 cmd.Dispose()
 RefreshListBox()
Catch
 MsgBox("Exception: " + Err.Description) End Try

5. On the form design tab, double-click Update to create a btnUpdate_Click method. This method carries out
the following tasks:

• Instantiates a ULCommand object and assigns it an UPDATE statement that inserts the value in the
text box into the database based on the associated ID.

• Executes the statement.
• Disposes of the ULCommand object.
• Refreshes the listbox.
• If an error occurs, prints the error message. For SQL errors, the code also prints the error code.

For Microsoft C#, add the following code to the btnUpdate_Click method.

//Microsoft Visual C# try {
 long RowsUpdated;
 int updateID = ids[lbNames.SelectedIndex];
 using(ULCommand cmd = Conn.CreateCommand()){

UltraLite Administration
UltraLite.NET Application Development PUBLIC 635

 cmd.CommandText =
 "UPDATE Names SET name = ? WHERE id = ?" ;
 cmd.Parameters.Add("", txtName.Text);
 cmd.Parameters.Add("", updateID);
 RowsUpdated = cmd.ExecuteNonQuery();
 }
 RefreshListBox();
}
catch(Exception err) {
 MessageBox.Show(
 "Exception: " + err.Message); }

For Microsoft Visual Basic, add the following code to the btnUpdate_Click method.

'Microsoft Visual Basic Try
 Dim RowsUpdated As Long
 Dim updateID As Integer = ids(lbNames.SelectedIndex)
 Dim cmd As ULCommand = Conn.CreateCommand()
 cmd.CommandText = "UPDATE Names SET name = ? WHERE id = ?"
 cmd.Parameters.Add("", txtName.Text)
 cmd.Parameters.Add("", updateID)
 RowsUpdated = cmd.ExecuteNonQuery()
 cmd.Dispose()
 RefreshListBox()
Catch
 MsgBox("Exception: " + Err.Description) End Try

6. On the form design tab, double-click Delete to create a btnDelete_Click method. Add code to perform the
following tasks:

• Instantiates a ULCommand object and assigns it a DELETE statement. The DELETE statement deletes
the selected row from the database, based on the associated ID from the integer array ids.

• Executes the statement.
• Disposes of the ULCommand object.
• Refreshes the listbox.
• If an error occurs, displays the error message. For SQL errors, the code also displays the error code.

For Microsoft C#, add the following code to the btnDelete_Click method.

//Microsoft Visual C# try{
 long RowsDeleted;
 int deleteID = ids[lbNames.SelectedIndex];
 using(ULCommand cmd = Conn.CreateCommand()){
 cmd.CommandText =
 "DELETE From Names WHERE id = ?" ;
 cmd.Parameters.Add("", deleteID);
 RowsDeleted = cmd.ExecuteNonQuery ();
 }
 RefreshListBox();
}
catch(Exception err) {
 MessageBox.Show("Exception: " + err.Message); }

For Microsoft Visual Basic, add the following code to the btnDelete_Click method.

'Microsoft Visual Basic Try
 Dim RowsDeleted As Long

636 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

 Dim deleteID As Integer = ids(lbNames.SelectedIndex)
 Dim cmd As ULCommand = Conn.CreateCommand()
 cmd.CommandText = "DELETE From Names WHERE id = ?"
 cmd.Parameters.Add("", deleteID)
 RowsDeleted = cmd.ExecuteNonQuery()
 cmd.Dispose()
 RefreshListBox()
Catch
 MsgBox("Exception: " + Err.Description) End Try

7. Build your application to confirm that it compiles properly.

Results

The Microsoft Windows Mobile application is set up to perform data operations on the UltraLite database.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET [page 625]

Previous task: Lesson 3: Adding Database Connection Controls to the Application [page 631]

Next task: Lesson 5: Building and Deploying the Application [page 637]

Related Information

Data creation and modification in UltraLite.NET using the ULTable Class [page 610]

2.11.5 Lesson 5: Building and Deploying the Application

In this lesson, you build your application and deploy it to a remote device or emulator.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

UltraLite Administration
UltraLite.NET Application Development PUBLIC 637

Procedure

1. Build the solution.

Ensure that your application builds without errors.
2. Choose the deployment target.

The deployment target must match the version of ulnet17.dll that you included in your application.

3. Click Debug Start .

This builds an executable file containing your application and deploys it to the emulator. The process may
take some time, especially if it must deploy the Microsoft .NET Compact Framework before running the
application.

4. If errors are reported, use the following checklist to ensure that your deployment was completed
successfully:

• Confirm that the application is deployed into \Program Files\appname, where appname is the
name you gave your application in Lesson 1 (CSApp or VBApp).

• Confirm that the path to the database file in your application code is correct.
• Confirm that you chose Link File when adding the database file to the project and you set the Build

Action to Content Only and Copy to Output Directory is set to Copy Always. If you did not set these
options correctly, the files will not be deployed to the device.

• Ensure that you added a reference to the correct version of ulnet17.dll for your target platform, or
ran the Microsoft Windows Mobile installer. For versions of Microsoft Windows Mobile earlier than
Microsoft Windows Mobile 5.0, if you switch between the emulator and a real device, you must change
the version of the library that you use.

• You may want to exit the emulator without saving the emulator state. Redeploying the application
copies all required files to the emulator, and ensures there are no version problems.

5. Test your application:
a. Insert data into the database.

Enter a name in the text box and click Insert. The name should now appear in the listbox.
b. Update data in the database.

Click a name in the listbox. Enter a new name in the text box. Click Update.

The new name should now appear in place of the old name in the listbox.
c. Delete data from the database.

Click a name in the list. Click Delete.

The name no longer appears in the list.

Results

The application is tested and can be deployed.

Task overview: Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET [page 625]

638 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

Previous task: Lesson 4: Inserting, Updating, and Deleting Data [page 633]

Next: Code Listing for C# Tutorial [page 639]

2.11.6 Code Listing for C# Tutorial

Following is the complete code for the tutorial program described in the preceding sections.

using Sap.Data.UltraLite; using System;
using System.Linq;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
namespace CSApp
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }
 private ULConnection Conn;
 private int[] ids;
 private void Form1_Load(object sender, EventArgs e)
 {
 try
 {
 String ConnString = "dbf=\\Program Files\\CSApp\\CSApp.udb";
 Conn = new ULConnection(ConnString);
 Conn.Open();
 Conn.DatabaseID = 1;
 RefreshListBox();
 }
 catch (System.Exception t)
 {
 MessageBox.Show("Exception: " + t.Message);
 }
 }
 private void RefreshListBox()
 {
 try
 {
 long NumRows;
 int I = 0;
 lbNames.Items.Clear();
 using (ULCommand cmd = Conn.CreateCommand())
 {
 cmd.CommandText = "SELECT ID, Name FROM Names";
 using (ULDataReader dr = cmd.ExecuteReader())
 {
 dr.MoveBeforeFirst();
 NumRows = dr.RowCount;
 ids = new int[NumRows];
 while (dr.MoveNext())
 {
 lbNames.Items.Add(
 dr.GetString(1));
 ids[i] = dr.GetInt32(0);

UltraLite Administration
UltraLite.NET Application Development PUBLIC 639

 I++;
 }
 }
 txtName.Text = " ";
 }
 }
 catch (Exception err)
 {
 MessageBox.Show(
 "Exception in RefreshListBox: " + err.Message);
 }
 }
 private void btnInsert_Click(object sender, EventArgs e)
 {
 try
 {
 long RowsInserted;
 using (ULCommand cmd = Conn.CreateCommand())
 {
 cmd.CommandText =
 "INSERT INTO Names(name) VALUES (?)";
 cmd.Parameters.Add("", txtName.Text);
 RowsInserted = cmd.ExecuteNonQuery();
 }
 RefreshListBox();
 }
 catch (Exception err)
 {
 MessageBox.Show("Exception: " + err.Message);
 }
 }
 private void btnUpdate_Click(object sender, EventArgs e)
 {
 try
 {
 long RowsUpdated;
 int updateID = ids[lbNames.SelectedIndex];
 using (ULCommand cmd = Conn.CreateCommand())
 {
 cmd.CommandText =
 "UPDATE Names SET name = ? WHERE id = ?";
 cmd.Parameters.Add("", txtName.Text);
 cmd.Parameters.Add("", updateID);
 RowsUpdated = cmd.ExecuteNonQuery();
 }
 RefreshListBox();
 }
 catch (Exception err)
 {
 MessageBox.Show(
 "Exception: " + err.Message);
 }
 }
 private void btnDelete_Click(object sender, EventArgs e)
 {
 try
 {
 long RowsDeleted;
 int deleteID = ids[lbNames.SelectedIndex];
 using (ULCommand cmd = Conn.CreateCommand())
 {
 cmd.CommandText =
 "DELETE From Names WHERE id = ?";
 cmd.Parameters.Add("", deleteID);
 RowsDeleted = cmd.ExecuteNonQuery();
 }
 RefreshListBox();
 }

640 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

 catch (Exception err)
 {
 MessageBox.Show("Exception: " + err.Message);
 }
 }
 } }

Parent topic: Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET [page 625]

Previous task: Lesson 5: Building and Deploying the Application [page 637]

Next: Code Listing for Microsoft Visual Basic Tutorial [page 641]

2.11.7 Code Listing for Microsoft Visual Basic Tutorial

Following is the complete code for the tutorial program described in the preceding sections.

Imports Sap.Data.UltraLite Public Class Form1
 Dim Conn As ULConnection
 Dim ids() As Integer
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles MyBase.Load
 Try
 Dim ConnString As String = "dbf=\Program Files\VBApp\VBApp.udb"
 Conn = New ULConnection(ConnString)
 Conn.Open()
 Conn.DatabaseID = 1
 RefreshListBox()
 Catch
 MsgBox("Exception: " + Err.Description)
 End Try
 End Sub
 Private Sub RefreshListBox()
 Try
 Dim cmd As ULCommand = Conn.CreateCommand()
 Dim I As Integer = 0
 lbNames.Items.Clear()
 cmd.CommandText = "SELECT ID, Name FROM Names"
 Dim dr As ULDataReader = cmd.ExecuteReader()
 ReDim ids(dr.RowCount)
 While (dr.MoveNext)
 lbNames.Items.Add(dr.GetString(1))
 ids(I) = dr.GetInt32(0)
 I = I + 1
 End While
 dr.Close()
 txtName.Text = " "
 Catch ex As Exception
 MsgBox(ex.ToString)
 End Try
 End Sub
 Private Sub btnInsert_Click(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles btnInsert.Click
 Try
 Dim RowsInserted As Long
 Dim cmd As ULCommand = Conn.CreateCommand()
 cmd.CommandText = "INSERT INTO Names(name) VALUES (?)"

UltraLite Administration
UltraLite.NET Application Development PUBLIC 641

 cmd.Parameters.Add("", txtName.Text)
 RowsInserted = cmd.ExecuteNonQuery()
 cmd.Dispose()
 RefreshListBox()
 Catch
 MsgBox("Exception: " + Err.Description)
 End Try
 End Sub
 Private Sub btnUpdate_Click(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles btnUpdate.Click
 Try
 Dim RowsUpdated As Long
 Dim updateID As Integer = ids(lbNames.SelectedIndex)
 Dim cmd As ULCommand = Conn.CreateCommand()
 cmd.CommandText = "UPDATE Names SET name = ? WHERE id = ?"
 cmd.Parameters.Add("", txtName.Text)
 cmd.Parameters.Add("", updateID)
 RowsUpdated = cmd.ExecuteNonQuery()
 cmd.Dispose()
 RefreshListBox()
 Catch
 MsgBox("Exception: " + Err.Description)
 End Try
 End Sub
 Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles btnDelete.Click
 Try
 Dim RowsDeleted As Long
 Dim deleteID As Integer = ids(lbNames.SelectedIndex)
 Dim cmd As ULCommand = Conn.CreateCommand()
 cmd.CommandText = "DELETE From Names WHERE id = ?"
 cmd.Parameters.Add("", deleteID)
 RowsDeleted = cmd.ExecuteNonQuery()
 cmd.Dispose()
 RefreshListBox()
 Catch
 MsgBox("Exception: " + Err.Description)
 End Try
 End Sub End Class

Parent topic: Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET [page 625]

Previous: Code Listing for C# Tutorial [page 639]

642 PUBLIC
UltraLite Administration

UltraLite.NET Application Development

3 UltraLite - C++ Programming

This book describes UltraLite C++ programming interface. With UltraLite, you can develop and deploy
database applications to handheld, or mobile devices, including Apple iPhone and iPad, Google Android, and
embedded devices.

In this section:

System Requirements and Supported Platforms [page 643]
UltraLite C++ supports Microsoft Windows Mobile, Linux, Apple iOS, and various other platforms.
Third-party software is required for UltraLite database development.

UltraLite Application Development Using C++ [page 644]
The C++ interfaces provide the following benefits for UltraLite developers:

Tutorial: Building a Windows Application using the C++ API [page 717]
This tutorial guides you through the process of building an UltraLite C++ application. The application is
built for Windows desktop operating systems, and runs at a command prompt.

API Reference [page 728]
Use the UltraLite C++ API to develop mobile applications.

3.1 System Requirements and Supported Platforms

UltraLite C++ supports Microsoft Windows Mobile, Linux, Apple iOS, and various other platforms. Third-party
software is required for UltraLite database development.

Development Platforms

To develop applications using UltraLite C++, you must have the following:

• A Microsoft Windows, Linux, or Mac desktop as a development platform.
• A supported Microsoft or GNU C++ compiler.

Target Platforms

UltraLite C++ supports the following target platforms:

• Apple iOS
• Apple macOS

UltraLite Administration
UltraLite - C++ Programming PUBLIC 643

• Linux
• Embedded Linux
• Microsoft Windows
• Microsoft Windows Mobile

For the most up-to-date platform version information, go to http://scn.sap.com/docs/DOC-35654#UL .

3.2 UltraLite Application Development Using C++

The C++ interfaces provide the following benefits for UltraLite developers:

• A small, high-performance database store with native synchronization.
• The power, efficiency, and flexibility of the C++ language.
• The ability to deploy applications on Microsoft Windows Mobile, Microsoft Windows desktop platforms,

Linux, and Apple iOS.

All UltraLite C++ interfaces utilize the same UltraLite runtime engine. The APIs each provide access to the
same underlying functionality.

In this section:

UltraLite C++ Application Development [page 644]
UltraLite C++ provides database functionality and synchronization to Microsoft Windows Mobile
devices, Microsoft Windows desktop platforms, Linux desktop, embedded Linux, Apple macOS desktop
platforms, and Apple iOS devices.

UltraLite C++ Application Development Using Embedded SQL [page 676]
You can write database access codes for Embedded SQL UltraLite applications.

UltraLite Application Development for Microsoft Windows Mobile [page 708]
Microsoft Visual Studio 2005 and later can be used to develop applications for the Microsoft Windows
Mobile environment.

3.2.1 UltraLite C++ Application Development

UltraLite C++ provides database functionality and synchronization to Microsoft Windows Mobile devices,
Microsoft Windows desktop platforms, Linux desktop, embedded Linux, Apple macOS desktop platforms, and
Apple iOS devices.

In this section:

Quick Start Guide to UltraLite C++ Application Development [page 645]
UltraLite C++ development involves use of a ULDatabaseManager object in your application.

Apple iOS and macOS Considerations [page 646]
Several design and development decisions need to be made when developing for Apple iOS or macOS
platforms.

644 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-35654%23UL

UltraLite Database Connections [page 647]
UltraLite applications must connect to the database before performing operations on its data.

Data Creation and Modification in UltraLite C++ Using SQL Statements [page 649]
UltraLite applications can access table data by executing SQL statements or using the ULTable class.

Data Creation and Modification in UltraLite C++ Using the ULTable Class [page 657]
UltraLite applications can access table data by executing SQL statements or using the ULTable class.

Transaction Management in UltraLite C++ [page 664]
Transactions are started implicitly by the first statement to modify the database, and must be explicitly
committed or rolled back.

Schema Information in UltraLite C++ [page 664]
You can programmatically retrieve result set or database structure descriptions. These descriptions are
known as schema information, and this information is available through the UltraLite C API schema
classes.

Error Handling [page 665]
The UltraLite C++ API includes a ULError object that should be used to retrieve error information.
Several methods in the API return a boolean value, indicating whether the method call was successful.
In some instances, null is returned when an error occurs.

MobiLink Data Synchronization in UltraLite C++ [page 666]
UltraLite applications can synchronize data with a central database. Synchronization requires the
MobiLink synchronization software included with SQL Anywhere.

Closing the UltraLite Database Connection [page 666]
Release software resources when they are no longer being used to prevent the UltraLite database file
from remaining in use for as long as the application has a connection to the database.

How to Build and Deploy UltraLite C++ Applications [page 667]
When building a C++ application that does not use the UltraLite engine, you can either link to a static
UltraLite runtime library or, on Windows and Windows Mobile, you can link to an import library and load
the UltraLite runtime code dynamically when the application starts.

3.2.1.1 Quick Start Guide to UltraLite C++ Application
Development

UltraLite C++ development involves use of a ULDatabaseManager object in your application.

The following procedure is generally used when creating an application using the UltraLite C++ API:

1. Initialize a ULDatabaseManager object.
2. (Optional) Enable features in the UltraLite runtime library.
3. Use an UltraLite database. You can open a connection to an existing database, create a new one, drop an

existing database, or validate that an existing database has no file corruption.
4. Finalize the ULDatabaseManager object.

The ULDatabaseManager object should only be initialized once in your application and then finalized when your
application is terminating. All methods on the ULDatabaseManager class are static. Use the ULError class to
get error information throughout your UltraLite application.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 645

Related Information

How to Build and Deploy UltraLite C++ Applications [page 667]

3.2.1.2 Apple iOS and macOS Considerations

Several design and development decisions need to be made when developing for Apple iOS or macOS
platforms.

Development Environment

The development environment for Apple iOS and macOS is Xcode.

Build Settings

To reference the UltraLite header files and library it is convenient to create a user-defined build setting set to
the location of the SQL Anywhere installation directory. For example, set SQLANY_ROOT to /Applications/
SQLAnywhere17. To create this setting, open the project editor's Build pane and click Add User-Defined Setting
and enter the name and value.

Include Files

To find the UltraLite include files, add $(SQLANY_ROOT)/sdk/include to the User Header Search Paths
(USER_HEADER_SEARCH_PATHS) build setting.

Unsupported MobiLink Client Network Protocol Options

UltraLite for Apple iOS and/or macOS does not support the following MobiLink client network protocol options:

• certificate_company
• certificate_unit
• client_port
• identity
• identity_password
• network_leave_open
• network_name

646 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Encryption

FIPS-certified encryption standards are not supported.

To use end-to-end encryption when synchronizing Apple iOS and macOS UltraLite clients with a MobiLink
server, you must encapsulate your public keys in a the PEM encoded X509 certificate (as opposed to a PEM
public key file). To create a PEM encoded X509 certificate with an E2EE private key use the certificate creation
utility, createcert.

When developing UltraLite applications for the iPhone, you must include the certificate in the Resources folder
in your Xcode project. UltraLite synchronization logic searches for the certificate file in the Main Resource
Bundle (mainBundle) of the iPhone development package if the trusted_certificates or e2ee_public_key
options are assigned.

Debugging iPhone Applications

The Xcode debugger (GDB) has support for stepping through and breaking on longjmp() calls. Applications
typically do not use longjmp, but the UltraLite runtime library does internally (sometimes, when an error is
signaled, for instance). This may cause problems when tracing through application code and stepping over
UltraLite calls. If you step over an UltraLite call and get an error from the debugger: Restart the program, set a
breakpoint after the problematic line and, instead of stepping over the problematic line, use the Continue
command - this will have the same effect because the debugger will stop at the following breakpoint, but
should avoid problems related to longjmp calls. The most likely place to encounter this is when using
OpenConnection to open an existing database or determine that the database doesn't exist (an error is
signaled when the database doesn't exist).

3.2.1.3 UltraLite Database Connections

UltraLite applications must connect to the database before performing operations on its data.

The ULDatabaseManager class is used to open a connection to a database. The ULDatabaseManager class
returns a non-null ULConnection object when a connection is established. Use the ULConnection object to
perform the following tasks:

• Commit or roll back transactions.
• Synchronize data with a MobiLink server.
• Access tables in the database.
• Work with SQL statements.
• Handle errors in your application.

Ensure you specify a writable path for the database file. Use the NSSearchPathForDirectoriesInDomains
method to query the NSDocumentDirectory, for example.

 Note
You can find sample code in the %SQLANYSAMP17%\UltraLite\CustDB\ directory.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 647

Multithreaded Applications

Each connection and all objects created from it should be used by a single thread. If an application requires
multiple threads accessing the UltraLite database, each thread requires a separate connection.

In this section:

Connecting to an UltraLite Database Using UltraLite C++ [page 648]
Use the ULDatabaseManager object to create or connect to an UltraLite database named
sample.udb.

3.2.1.3.1 Connecting to an UltraLite Database Using
UltraLite C++

Use the ULDatabaseManager object to create or connect to an UltraLite database named sample.udb.

Procedure

1. Initialize the ULDatabaseManager object and enable features in UltraLite using the following code:

if(!ULDatabaseManager::Init()) { return 0;
}
ULDatabaseManager::EnableAesDBEncryption();
 // Use ULDatabaseManager.Fini() when terminating the app.

2. Open a connection to an existing database or create a new database if the specified database file does not
exist using the following code:

ULConnection * conn; ULError ulerr;

conn = ULDatabaseManager::OpenConnection("dbf=sample.udb;dbkey=aBcD1234",
&ulerr);
if(conn == NULL) {
 if(ulerr.GetSQLCode() == SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
 conn =
ULDatabaseManager::CreateDatabase("dbf=sample.udb;dbkey=aBcD1234", &ulerr);
 if(conn == NULL) {
 // write code that uses ulerr to determine what happened
 return 0;
 }
 // add code to create the schema for your database
 } else {
 // write code that uses ulerr to determine what happened
 return 0;
 }
} assert(conn != NULL);

648 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

In this step, you declare a ULError object that contains error information in case the connection is not
successful.

Results

A connection to the sample.udb database is established.

3.2.1.4 Data Creation and Modification in UltraLite C++
Using SQL Statements

UltraLite applications can access table data by executing SQL statements or using the ULTable class.

The following tasks can be performed using SQL statements:

• Inserting, deleting, and updating rows.
• Retrieving rows to a result set.
• Scrolling through the rows of a result set.

In this section:

Data Modification in UltraLite C++ Using INSERT, UPDATE, and DELETE [page 650]
With UltraLite, you can perform SQL data manipulation by using the ExecuteStatement method, a
member of the ULPreparedStatement class.

Retrieving Data in UltraLite C++ Using SELECT [page 655]
Execute a SELECT statement to retrieve information from an UltraLite database and handle the result
set that is returned.

Schema Description Creation and Retrieval [page 656]
The GetResultSetSchema method allows you to retrieve schema information about a result set, such
as column names, total number of columns, column scales, column sizes, and column SQL types.

SQL Result Set Navigation in UltraLite C++ [page 656]
You can navigate through a result set using methods associated with the ULResultSet class.

Related Information

Data Creation and Modification in UltraLite C++ Using the ULTable Class [page 657]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 649

3.2.1.4.1 Data Modification in UltraLite C++ Using INSERT,
UPDATE, and DELETE

With UltraLite, you can perform SQL data manipulation by using the ExecuteStatement method, a member of
the ULPreparedStatement class.

In this section:

Inserting a Row in a Table Using UltraLite C++ [page 650]
UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE
statement, each ? is referenced according to its ordinal position in the prepared statement. For
example, the first ? is referred to as parameter 1, and the second as parameter 2.

Deleting a Row in a Table in UltraLite C++ [page 652]
UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE
statement, each ? is referenced according to its ordinal position in the prepared statement. For
example, the first ? is referred to as parameter 1, and the second as parameter 2.

Updating a Row in a Table [page 653]
UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE
statement, each ? is referenced according to its ordinal position in the prepared statement. For
example, the first ? is referred to as parameter 1, and the second as parameter 2.

3.2.1.4.1.1 Inserting a Row in a Table Using UltraLite C++

UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE statement,
each ? is referenced according to its ordinal position in the prepared statement. For example, the first ? is
referred to as parameter 1, and the second as parameter 2.

Procedure

1. Declare a ULPreparedStatement using the following code:

ULPreparedStatement * prepStmt;

2. Prepare a SQL statement for execution.

The following code prepares an INSERT statement for execution:

prepStmt = conn->PrepareStatement("INSERT INTO MyTable(MyColumn1) VALUES
(?)");

3. Check for errors when preparing the statement.

For example, the following code is useful when checking for SQL syntax errors:

if(prepStmt == NULL) { const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error

650 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

 return; }

4. Set values to replace ? characters in the prepared statement.

The following code sets ? characters to "some value" while error checking. For example, an error is caught
when the parameter ordinal is out of range for the number of parameters in the prepared statement.

if(!prepStmt->SetParameterString(1, "some value")) { const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return; }

5. Execute the prepared statement, inserting the data into the database.

The following code checks for errors that could occur after executing the statement. For example, an error
is returned if a duplicate index value is found in a unique index.

bool success; success = prepStmt->ExecuteStatement();
if(!success) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
} else {
 // Use the following line if you are interested in the number of rows
inserted ...
 ul_u_long rowsInserted = prepStmt->GetRowsAffectedCount(); }

6. Clean up the prepared statement resources.

The following code releases the resources used by the prepared statement object. This object should no
longer be accessed after the Close method is called.

prepStmt->Close();

7. Commit the data to the database.

The following code saves the data to the database and prevents data loss. The data from step 5 is lost if the
device application terminates unexpectedly before the application completes a commit call.

conn->Commit();

Results

A new row is added to MyTable where the MyColumn1 value is set to a string "some value".

UltraLite Administration
UltraLite - C++ Programming PUBLIC 651

3.2.1.4.1.2 Deleting a Row in a Table in UltraLite C++

UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE statement,
each ? is referenced according to its ordinal position in the prepared statement. For example, the first ? is
referred to as parameter 1, and the second as parameter 2.

Procedure

1. Declare a ULPreparedStatement using the following code:

ULPreparedStatement * prepStmt;

2. Prepare a SQL statement for execution.

The following code prepares a DELETE statement for execution:

prepStmt = conn->PrepareStatement("DELETE FROM MyTable(MyColumn1) VALUES
(?)");

3. Check for errors when preparing the statement.

For example, the following code is useful when checking for SQL syntax errors:

if(prepStmt == NULL) { const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return; }

4. Set values to replace ? characters in the prepared statement.

The following code sets ? characters to 7 while error checking. For example, an error is caught when the
parameter ordinal is out of range for the number of parameters in the prepared statement.

ul_s_long value_to_delete = 7; if(!prepStmt->SetParameterInt(1, value_to_delete)) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error.
 return; }

5. Execute the prepared statement, deleting the data from the database.

The following code checks for errors that could occur after executing the statement. For example, an error
is returned if you try deleting a row that has a foreign key referenced to it.

bool success; success = prepStmt->ExecuteStatement();
if(!success) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
} else {
 // Use the following line if you are interested in the number of rows
deleted ...
 ul_u_long rowsDeleted = prepStmt->GetRowsAffectedCount();

652 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

 }

6. Clean up the prepared statement resources.

The following code releases the resources used by the prepared statement object. This object should no
longer be accessed after the Close method is called.

prepStmt->Close();

7. Commit the data to the database.

The following code saves the data to the database and prevents data loss. The data from step 5 is lost if the
device application terminates unexpectedly before the application completes a commit call.

conn->Commit();

Results

Row entries from MyTable are deleted where the MyColumn value in the table is equal to 7.

3.2.1.4.1.3 Updating a Row in a Table

UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE statement,
each ? is referenced according to its ordinal position in the prepared statement. For example, the first ? is
referred to as parameter 1, and the second as parameter 2.

Procedure

1. Declare a ULPreparedStatement using the following code:

ULPreparedStatement * prepStmt;

2. Prepare a SQL statement for execution.

The following code prepares an UPDATE statement for execution:

prepStmt = conn->PrepareStatement("UPDATE MyTable SET MyColumn = ? WHERE
MyColumn = ?");

3. Check for errors when preparing the statement.

For example, the following code is useful when checking for SQL syntax errors:

if(prepStmt == NULL) { const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return; }

UltraLite Administration
UltraLite - C++ Programming PUBLIC 653

4. Set values to replace ? characters in the prepared statement.

The following code sets ? characters to integer values while error checking. For example, an error is caught
when the parameter ordinal is out of range for the number of parameters in the prepared statement.

bool success; success = prepStmt->SetParameterInt(1, 25);
if(success) {
 success = prepStmt->SetParameterInt(2, -1);
}
if(!success) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return; }

5. Execute the prepared statement, updating the data in the database.

The following code checks for errors that could occur after executing the statement. For example, an error
is returned if a duplicate index value is found in a unique index.

success = prepStmt->ExecuteStatement(); if(!success) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
} else {
 // if you are interested in the number of rows updated ...
 ul_u_long rowsUpdated = prepStmt->GetRowsAffectedCount(); }

6. Clean up the prepared statement resources.

The following code releases the resources used by the prepared statement object. This object should no
longer be accessed after the Close method is called.

prepStmt->Close();

7. Commit the data to the database.

The following code saves the data to the database and prevents data loss. The data from step 5 is lost if the
device application terminates unexpectedly before the application completes a commit call.

conn->Commit();

Results

In this scenario, row entries from MyTable are updated where the MyColumn value is equal to -1. The value is
updated to 25.

654 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.2.1.4.2 Retrieving Data in UltraLite C++ Using SELECT

Execute a SELECT statement to retrieve information from an UltraLite database and handle the result set that
is returned.

Procedure

1. Declare the required variables using the following code:

ULPreparedStatement * prepStmt; ULResultSet * resultSet;

2. Prepare a SQL statement for execution.

The following code prepares a SELECT statement for execution:

prepStmt = conn->PrepareStatement("SELECT MyColumn1 FROM MyTable");

3. Check for errors when preparing the statement.

For example, the following code is useful when checking for SQL syntax errors:

if(prepStmt == NULL) { const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return; }

4. Execute the SQL and return a result set object that can be used to move the results of the query.

resultSet = prepStmt->ExecuteQuery(); if(resultSet == NULL) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 prepStmt->Close();
 return; }

5. Traverse the rows by calling the Next method. Store the result as a string and store them in a buffer.

The Next method moves to the next row of the result set. The ULResultSet object is positioned on a row if
the call returns true; otherwise, if the call returns false, all the rows have been traversed.

while(resultSet->Next()) { char buffer[100];
 resultSet->GetString(1, buffer, 100);
 printf("MyColumn = %s\n", buffer); }

6. Clean up the prepared statement and result set object resources.

The prepared statement object should not accessed after the Close method is called.

resultSet->Close(); prepStmt->Close();

UltraLite Administration
UltraLite - C++ Programming PUBLIC 655

Results

The result of the SELECT statement contains a string, which is then output to the command prompt.

3.2.1.4.3 Schema Description Creation and Retrieval

The GetResultSetSchema method allows you to retrieve schema information about a result set, such as
column names, total number of columns, column scales, column sizes, and column SQL types.

Example

The following example demonstrates how to use the GetResultSetSchema method to display schema
information in a command prompt:

const char * name; int column_count;
const ULResultSetSchema & rss = prepStmt->GetResultSetSchema();
int column_count = rss.GetColumnCount();
for(int i = 1; i < column_count; i++) {
 name = rss.GetColumnName(i);
 printf("id = %d, name = %s\n", i, name); }

In this example, required variables are declared and the ULResultSetSchema object is assigned. It is possible to
get a ULResultSetSchema object from the result set object itself, but this example demonstrates how the
schema is available after the statement is prepared and before the query is executed. The number of rows in
the result set are counted, and the name of each column is displayed.

3.2.1.4.4 SQL Result Set Navigation in UltraLite C++

You can navigate through a result set using methods associated with the ULResultSet class.

The result set class provides you with the following methods to navigate a result set:

AfterLast

Position immediately after the last row.
BeforeFirst

Position immediately before the first row.
First

Move to the first row.
Last

Move to the last row.
Next

656 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Move to the next row.
Previous

Move to the previous row.
Relative(offset)

Move a specified number of rows relative to the current row, as specified by the signed offset value. Positive
offset values move forward in the result set, relative to the current pointer position in the result set.
Negative offset values move backward in the result set. An offset value of zero does not move the current
location, but allows you to repopulate the row buffer.

3.2.1.5 Data Creation and Modification in UltraLite C++
Using the ULTable Class

UltraLite applications can access table data by executing SQL statements or using the ULTable class.

The following tasks can be performed using the ULTable class:

• Scrolling through the rows of a table.
• Accessing the values of the current row.
• Using find and lookup methods to locate rows in a table.
• Inserting, deleting, and updating rows.

 Caution
Do not update the primary key of a row. Delete the row and add a new row instead.

In this section:

Row Navigation in UltraLite C++ [page 658]
The UltraLite C++ API provides you with several methods to navigate a table to perform a wide range of
navigation tasks.

UltraLite Modes [page 659]
The UltraLite mode determines how values in the buffer are used.

Row Insertions in UltraLite C++ [page 660]
The steps to insert a row are very similar to those for updating rows, except that there is no need to
locate a row in the table before carrying out the insert operation.

Updating Rows [page 660]
Use the Update method to update a row in a table.

Find and Lookup Modes for Searching Rows [page 661]
UltraLite has different modes of operation for working with data. You can use two of these modes, find
and lookup, for searching. The ULTable object has methods corresponding to these modes for locating
particular rows in a table.

Access to Values in the Current Row [page 662]
Use the ULTable object to manage the column values in a row.

Row Deletions in UltraLite C++ [page 664]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 657

The steps to delete a row are simpler than to insert or update rows. There is no delete mode
corresponding to the insert or update modes.

Related Information

Data Creation and Modification in UltraLite C++ Using SQL Statements [page 649]

3.2.1.5.1 Row Navigation in UltraLite C++

The UltraLite C++ API provides you with several methods to navigate a table to perform a wide range of
navigation tasks.

The ULTable object provides you with the following methods to navigate a table:

AfterLast

Position immediately after the last row.
BeforeFirst

Position immediately before the first row.
First

Move to the first row.
Last

Move to the last row.
Next

Move to the next row.
Previous

Move to the previous row.
Relative(offset)

Move a specified number of rows relative to the current row, as specified by the signed offset value. Positive
offset values move forward in the result set, relative to the current pointer position in the result set.
Negative offset values move backward in the result set. An offset value of zero does not move the current
location, but allows you to repopulate the row buffer.

Example

The following example opens the table named MyTable and displays the value of the column named MyColumn
for each row:

char buffer[100]; ul_column_num column_id;
ULTable * tbl = conn->OpenTable("MyTable");

658 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

if(tbl == NULL) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return;
}
column_id = tbl->GetTableSchema().GetColumnID("MyColumn");
if(column_id == 0) {
 // the column "MyColumn" likely does not exist. Handle the error.
 tbl->Close();
 return;
}
while(tbl->Next()) {
 tbl->GetString(column_id, buffer, 100);
 printf("%s\n", buffer);
} tbl->Close();

You expose the rows of the table to the application when you open the ULTable object. By default, the rows are
ordered by primary key value but you can specify an index when opening a table to access the rows in a
particular order.

Example

The following example moves to the first row of the MyTable table as ordered by the ix_col index:

ULTable * tbl = conn->OpenTable("MyTable", "ix_col");

3.2.1.5.2 UltraLite Modes

The UltraLite mode determines how values in the buffer are used.

You can set the UltraLite mode to one of the following:

Insert mode

Data in the buffer is added to the table as a new row when the insert method is called.
Update mode

Data in the buffer replaces the current row when the update method is called.
Find mode

Locates a row whose value exactly matches the data in the buffer when one of the find methods is called.
Lookup mode

Locates a row whose value matches or is greater than the data in the buffer when one of the lookup
methods is called.

The mode is set by calling the corresponding method to set the mode. For example, InsertBegin, UpdateBegin,
FindBegin, and so on.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 659

3.2.1.5.3 Row Insertions in UltraLite C++

The steps to insert a row are very similar to those for updating rows, except that there is no need to locate a row
in the table before carrying out the insert operation.

If you do not set a value for one of the columns, and that column has a default, the default value is used. If the
column has no default, one of the following entries is used:

• For nullable columns, NULL.
• For numeric columns that disallow NULL, zero.
• For character columns that disallow NULL, an empty string.
• To explicitly set a value to NULL, use the SetNull method.

Example

The following code demonstrates new row insertion:

ULTable * tbl = conn->OpenTable("MyTable"); bool success;
tbl->InsertBegin(); // enter "Insert mode"
tbl->SetInt("id", 3);
tbl->SetString("lname", "Smith");
tbl->SetString("fname", "Mary");
success = tbl->Insert();
conn->Commit();
tbl->Close();

In this example, the tbl variable is set to open MyTable. The values for each column are set in the current row
buffer; columns can be referenced name or ID. The Insert method causes the temporary row buffer values to be
inserted into the database. The results are then committed and displayed. Resources are freed with the Close
method.

3.2.1.5.4 Updating Rows

Use the Update method to update a row in a table.

Procedure

1. Move to the row you want to update.

You can move to a row by scrolling through the table or by searching the table using find and lookup
methods.

2. Enter update mode.

660 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

For example, the following instruction enters update mode on table tbl.

tbl->UpdateBegin();

3. Set the new values for the row to be updated. For example, the following instruction sets the id column in
the buffer to 3.

tbl->SetInt("id", 3);

4. Execute the Update.

tbl->Update();

 Caution
When using the Find and Update methods, your pointer may not be in the expected position after
updating a column that is involved in the search criteria. In some instances, a SQL statement can be
used to update rows.

Results

After the update operation, the current row is the row that has been updated.

Next Steps

Perform additional SQL operations on the database and then execute the Commit method to commit changes
to the database. executed.

Related Information

Transaction Management in UltraLite C++ [page 664]

3.2.1.5.5 Find and Lookup Modes for Searching Rows

UltraLite has different modes of operation for working with data. You can use two of these modes, find and
lookup, for searching. The ULTable object has methods corresponding to these modes for locating particular
rows in a table.

 Note
The columns you search with Find and Lookup methods must be in the index that is used to open the table.

Find methods

UltraLite Administration
UltraLite - C++ Programming PUBLIC 661

Move to the first row that exactly matches specified search values, under the sort order specified when the
ULTable object was opened. If the search values cannot be found, the application is positioned before the
first or after the last row.
Lookup methods

Move to the first row that matches or is greater than a specified search value, under the sort order
specified when the ULTable object was opened.

Example

This example uses a table named MyTable that was created using the following SQL statements:

CREATE TABLE MyTable(id int primary key, lname char(100), fname char(100)) CREATE INDEX ix_lname ON MyTable (lname)

The following code displays all the fname column contents where lname column is "Smith":

ULTable * tbl = conn->OpenTable("MyTable", "ix_lname"); char buffer[100];
bool found;
tbl->FindBegin(); // enter "Find mode"
tbl->SetString("lname", "Smith"); // set pointer row buffer to "Smith"
found = tbl->FindFirst();
while(found) {
 tbl->GetString(3, buffer, 100);
 printf("%s\n", buffer);
 found = tbl->FindNext();
} tbl->Close();

In this example, the tbl variable is set to open MyTable using the ix_lname index so that rows are returned in
same order as the lname column. ULTable objects use the values in the row buffer when they execute a find.
This buffer is specified as "Smith", as defined by the SetString method. The FindFirst method indicates that
traversal should begin at the first row that has lname set to "Smith"; the pointer is positioned after the last row
of the table if there are no rows where lname is set to "Smith". The fname is retrieved by the GetString method
because The fname has a column ID of 3. The results are then displayed, and the resources are freed.

3.2.1.5.6 Access to Values in the Current Row

Use the ULTable object to manage the column values in a row.

A ULTable object is always located at one of the following positions:

• Before the first row of the table.
• On a row of the table.
• After the last row of the table.

If the ULTable object is positioned on a row, you can use one of a set of methods appropriate for the data type
to retrieve or modify the value of the columns in that row.

662 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Retrieving Column Values

The ULTable object provides a set of methods for retrieving column values. These methods take the column
name or ID as the argument.

The following example demonstrates two ways to get an age value out of an open table, assuming that age is
the first column of the table:

ul_s_long age1 = tbl->GetInt(1); ul_s_long age2 = tbl->GetInt("age"); assert(age1 == age2);

Using the column ID version of value retrieval has performance benefits when values are retrieved in a loop.

Modifying Column Values

In addition to the methods for retrieving values, there are methods for setting values. These methods take the
column name or ID and the value as arguments.

For example, the following code demonstrates two ways to set a string value for a row with string columns of
lname and fname, assuming that lname is the first column in the table.

tbl->SetString(1, last_name); tbl->SetString("fname", first_name);

By setting column values, you do not directly alter the data in the database. You can assign values to the
columns, even if you are before the first row or after the last row of the table. Do not attempt to access data
when the current row is undefined. For example, attempting to fetch the column value in the following example
is incorrect:

// This code is incorrect tbl->BeforeFirst(); tbl = tbl.GetInt(cust_id);

Casting Values

The method you choose should match the data type you want to assign. UltraLite automatically casts database
data types where they are compatible, so that you can use the GetString method to fetch an integer value into a
string variable, and so on.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 663

3.2.1.5.7 Row Deletions in UltraLite C++

The steps to delete a row are simpler than to insert or update rows. There is no delete mode corresponding to
the insert or update modes.

You delete a row by moving the cursor to the row you want to delete and then executing the ULTable.Delete
method.

Example

The following code illustrates how to delete the first row in a table:

tbl->First(); tbl->Delete();

3.2.1.6 Transaction Management in UltraLite C++

Transactions are started implicitly by the first statement to modify the database, and must be explicitly
committed or rolled back.

To commit a transaction, use the ULConnection.Commit method.

To rollback a transaction, use the ULConnection.Rollback method.

3.2.1.7 Schema Information in UltraLite C++

You can programmatically retrieve result set or database structure descriptions. These descriptions are known
as schema information, and this information is available through the UltraLite C API schema classes.

 Note
You cannot modify the schema using the UltraLite C API. You can only retrieve the schema information.

You can access the following schema objects and information:

ULResultSetSchema

Describes a query or data in a table. It exposes the identifier, name, and type information of each column,
and the number of columns in the table. ULResultSetSchema classes can be retrieved from the following
classes:

• ULPreparedStatement
• ULResultSet
• ULTable

ULDatabaseSchema

664 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Exposes the number and names of the tables and publications in the database, and the global properties
such as the format of dates and times. ULDatabaseSchema classes can be retrieved from ULConnection
classes.
ULTableSchema

Exposes information about the column and index configurations. The column information in the
ULTableSchema class complements the information available from the ULResultSetSchema class. For
example, you can determine whether columns have default values or permit null values. ULTableSchema
classes can be retrieved from ULTable classes.
ULIndexSchema

Returns information about the column in the index. ULIndexSchema classes can be retrieved from
ULTableSchema classes.

The ULResultSetSchema class is returned as a constant reference unlike the ULDatabaseSchema,
ULTableSchema and ULIndexSchema classes, which are returned as pointers. You cannot close a class that
returns a constant reference but you must close classes that are returned as pointers.

The following code demonstrates proper and improper use of schema class closure:

// This code demonstrates proper use of the ULResultSetSchema class: const ULResultSetSchema & rss = prepStmt->GetResultSetSchema();
c_count = prepStmt->GetSchema().GetColumnCount();

// This code demonstrates proper use of the ULDatabaseSchema class:
ULDatabaseSchema * dbs = conn->GetResultSetSchema();
t_count = dbs->GetTableCount();
dbs->Close(); // This line is required.
// This code demonstrates improper use of the ULDatabaseSchema class
// because the object needs to be closed using the Close method: t_count = conn->GetResultSetSchema()->GetTableCount();

3.2.1.8 Error Handling

The UltraLite C++ API includes a ULError object that should be used to retrieve error information. Several
methods in the API return a boolean value, indicating whether the method call was successful. In some
instances, null is returned when an error occurs.

The ULConnection object contains a GetLastError method, which returns a ULError object.

Use SQLCode to diagnose an error. In addition to the SQLCode, you can use the GetParameterCount and
GetParameter methods to determine whether additional parameters exist to provide additional information
about the error.

In addition to explicit error handling, UltraLite supports an error callback function. If you register a callback
function, UltraLite calls the function whenever an UltraLite error occurs. The callback function does not control
application flow, but does enable you to be notified of all errors. Use of a callback function is particularly helpful
during application development and debugging.

Related Information

Tutorial: Building a Windows Application using the C++ API [page 717]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 665

3.2.1.9 MobiLink Data Synchronization in UltraLite C++

UltraLite applications can synchronize data with a central database. Synchronization requires the MobiLink
synchronization software included with SQL Anywhere.

The UltraLite C++ API supports TCP/IP, TLS, HTTP, and HTTPS synchronization. Synchronization is initiated by
the UltraLite application. The methods and properties of the connection object can be used to control
synchronization.

3.2.1.10 Closing the UltraLite Database Connection

Release software resources when they are no longer being used to prevent the UltraLite database file from
remaining in use for as long as the application has a connection to the database.

Procedure

1. Call the Close method to release resources.

Use the following code when the application no longer requires a connection to the database:

if(conn != NULL) { conn->Close(&ulerr); }

2. Call the Fini method to finalize the ULDatabaseManager object.

Use the following code when closing the application.

ULDatabaseManager.Fini();

Results

The database connection is closed and resources are released.

666 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.2.1.11 How to Build and Deploy UltraLite C++ Applications

When building a C++ application that does not use the UltraLite engine, you can either link to a static UltraLite
runtime library or, on Windows and Windows Mobile, you can link to an import library and load the UltraLite
runtime code dynamically when the application starts.

Linker/compiler options to build and link runtimes for Linux deployment

The 32-bit linker/compiler options for libulrt.a are:

-L$SQLANY17/ultralite/linux/x86/lib -lulrt -lulbase

The 64-bit linker/compiler options for libulrt.a are:

-L$SQLANY17/ultralite/linux/x64/lib -lulrt -lulbase

The headers command-line option is:

-I$SQLANY17/sdk/include

In this section:

Deploying an UltraLite Application for Microsoft Windows Mobile (Static Linkage) [page 668]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, link libraries, method calls, and deployment files to ensure that your UltraLite C++
application runs successfully on Microsoft Windows and Microsoft Windows Mobile devices.

Deploying an UltraLite Application for Microsoft Windows Mobile (Dynamic Linkage) [page 669]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, link libraries, method calls, and deployment files to ensure that your UltraLite C++
application runs successfully.

Deploying an UltraLite Application for Microsoft Windows Mobile (UltraLite Engine) [page 671]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, link libraries, method calls, and deployment files to ensure that your UltraLite C++
application runs successfully on Microsoft Windows and Microsoft Windows Mobile devices.

Deploying an UltraLite Application for macOS or iOS [page 673]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, method calls, and deployment files to ensure that your UltraLite application runs
successfully on Mac computers, iPhones or iPads.

Deploying an UltraLite Application for Linux [page 675]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, method calls, and deployment files to ensure that your UltraLite application runs
successfully on Linux.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 667

3.2.1.11.1 Deploying an UltraLite Application for Microsoft
Windows Mobile (Static Linkage)

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, link libraries, method calls, and deployment files to ensure that your UltraLite C++ application runs
successfully on Microsoft Windows and Microsoft Windows Mobile devices.

Procedure

1. Specify the following parameters:

• When using AES encryption, set the connection parameter DBKEY= encryption-key while creating
or connecting to the database.

2. Set the appropriate parameter settings when using synchronization in your UltraLite application:

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to tcpip.

HTTP Set the Stream synchronization parameter to http.

RSA TLS Set the Stream synchronization parameter to tls.

RSA HTTPS Set the Stream synchronization parameter to https.

3. When using RSA end-to-end encryption, set the protocol option e2ee_public_key= key-file.

4. When using ZLIB compression, set the protocol option compression=zlib.
5. Link against the following files:

• ulrt.lib.
• ulbase.lib.
• When using RSA TLS, or RSA HTTPS synchronization, ulrsa.lib.

For Microsoft Windows Mobile, these files are located in %SQLANY17%\UltraLite\CE\Arm.50\Lib. For
Microsoft Windows, they are located in %SQLANY17%\UltraLite\Windows\x64\Lib\VS9 or
%SQLANY17%\UltraLite\Windows\x86\Lib\VS9.

6. Call the following methods in your UltraLite application:

• When using AES encryption, the ULDatabaseManager.EnableAesDBEncryption method.
7. Ensure that the following methods are called for the synchronization type used in your UltraLite

application:

Synchronization type Parameter settings

TCP/IP Call the EnableTcpipSynchronization method.

HTTP Call the EnableHttpSynchronization method.

668 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Synchronization type Parameter settings

RSA TLS Call the EnableTlsSynchronization and EnableRsaSyncEn
cryption methods.

RSA HTTPS Call the EnableHttpsSynchronization and EnableRsaSyn
cEncryption methods.

Results

The UltraLite C++ application, which uses static linkage, runs successfully on the Microsoft Windows desktop
or Microsoft Windows Mobile device that it is deployed to.

Next Steps

Deploy an UltraLite database to the Microsoft Windows desktop or Microsoft Windows Mobile device that the
application was deployed to, or create a new database with the deployed application.

3.2.1.11.2 Deploying an UltraLite Application for Microsoft
Windows Mobile (Dynamic Linkage)

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, link libraries, method calls, and deployment files to ensure that your UltraLite C++ application runs
successfully.

Procedure

1. Specify the following parameters:

• When using AES encryption, set the connection parameter DBKEY= encryption-key while creating
or connecting to the database.

2. Set the appropriate parameter settings when using synchronization in your UltraLite application:

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to tcpip.

HTTP Set the Stream synchronization parameter to http.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 669

Synchronization type Parameter settings

RSA TLS Set the Stream synchronization parameter to tls.

RSA HTTPS Set the Stream synchronization parameter to https.

3. When using RSA end-to-end encryption, set the protocol option e2ee_public_key= key-file.

4. When using ZLIB compression, set the protocol option compression=zlib.
5. Link against the following files:

• ulbase.lib
• ulimp.lib

For Microsoft Windows Mobile, these files are located in %SQLANY17%\UltraLite\CE\Arm.50\Lib. For
Microsoft Windows, they are located in %SQLANY17%\UltraLite\Windows\x64\Lib\VS9 or
%SQLANY17%\UltraLite\Windows\x86\Lib\VS9.

6. When linking against the ulimp.lib library, define the UL_USE_DLL preprocessor macro when compiling.
For example, specify the following:

-DUL_USE_DLL

7. Call the following methods in your UltraLite application:

• When using AES encryption, the ULDatabaseManager.EnableAesDBEncryption method.
8. Ensure that the following methods are called for the synchronization type used in your UltraLite

application:

Synchronization type Parameter settings

TCP/IP Call the EnableTcpipSynchronization method.

HTTP Call the EnableHttpSynchronization method.

RSA TLS Call the EnableTlsSynchronization and EnableRsaSyncEn
cryption methods.

RSA HTTPS Call the EnableHttpsSynchronization and EnableRsaSyn
cEncryption methods.

9. Deploy the following files:

• ulrt17.dll.
• When using ZLIB compression, mlczlib17.dll.
• When using RSA TLS, RSA HTTPS, or RSA E2EE, mlcrsa17.dll.

For Microsoft Windows Mobile, the files are located in %SQLANY17%\UltraLite\CE\Arm.50. For
Microsoft Windows, the files are located in %SQLANY17%\UltraLite\Windows\x64 or %SQLANY17%
\UltraLite\Windows\x86.

670 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Results

The UltraLite C++ application, which uses dynamic linkage, runs successfully on the Microsoft Windows
desktop or Microsoft Windows Mobile device that it is deployed to.

Next Steps

Deploy an UltraLite database to the Microsoft Windows desktop or Microsoft Windows Mobile device that the
application was deployed to, or create a new database with the deployed application.

3.2.1.11.3 Deploying an UltraLite Application for Microsoft
Windows Mobile (UltraLite Engine)

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, link libraries, method calls, and deployment files to ensure that your UltraLite C++ application runs
successfully on Microsoft Windows and Microsoft Windows Mobile devices.

Procedure

1. Specify the following parameters:

• When using AES encryption, set the connection parameter DBKEY= encryption-key while creating
or connecting to the database.

2. Set the appropriate parameter settings when using synchronization in your UltraLite application:

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to tcpip.

HTTP Set the Stream synchronization parameter to http.

RSA TLS Set the Stream synchronization parameter to tls.

RSA HTTPS Set the Stream synchronization parameter to https.

3. When using RSA end-to-end encryption, set the protocol option e2ee_public_key= key-file.

4. When using ZLIB compression, set the protocol option compression=zlib.
5. Link against the following files:

• ulrtc.lib
• ulbase.lib

UltraLite Administration
UltraLite - C++ Programming PUBLIC 671

For Microsoft Windows Mobile, these files are located in %SQLANY17%\UltraLite\CE\Arm.50\Lib. For
Microsoft Windows, they are located in %SQLANY17%\UltraLite\Windows\x64\Lib\VS9 or
%SQLANY17%\UltraLite\Windows\x86\Lib\VS9.

6. Ensure that the following methods are called for the synchronization type used in your UltraLite
application:

Synchronization type Parameter settings

TCP/IP Call the EnableTcpipSynchronization method.

HTTP Call the EnableHttpSynchronization method.

RSA TLS Call the EnableTlsSynchronization and EnableRsaSyncEn
cryption methods.

RSA HTTPS Call the EnableHttpsSynchronization and EnableRsaSyn
cEncryption methods.

7. Deploy the following files:

• uleng17.exe.
• When using ZLIB compression, mlczlib17.dll.
• When using RSA TLS, RSA HTTPS, or RSA E2EE mlcrsa17.dll.

For Microsoft Windows Mobile, the files are located in %SQLANY17%\UltraLite\CE\Arm.50. For
Microsoft Windows, the files are located in %SQLANY17%\UltraLite\Windows\x64 or %SQLANY17%
\UltraLite\Windows\x86.

Results

The UltraLite C++ application, which uses the UltraLite engine, runs successfully on the Microsoft Windows
desktop or Microsoft Windows Mobile device that it is deployed to.

Next Steps

Deploy an UltraLite database to the Microsoft Windows desktop or Microsoft Windows Mobile device that the
application was deployed to, or create a new database with the deployed application.

672 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.2.1.11.4 Deploying an UltraLite Application for macOS or
iOS

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, method calls, and deployment files to ensure that your UltraLite application runs successfully on Mac
computers, iPhones or iPads.

Procedure

1. For macOS, add the following runtime library files to your Xcode project:

• /Applications/SQLAnywhere17/System/ultralite/macosx/x86_64/libulrt.a
• /Applications/SQLAnywhere17/System/ultralite/macosx/x86_64/libulbase.a

2. For iOS, to link to the UltraLite runtime library, either:

Add install-dir/ultralite/iphone/libulrt.a to the Frameworks group in Xcode.

OR

Add the following to the Other Linker Flags (OTHER_LDFLAGS) build setting:

-L$(SQLANY_ROOT)/ultralite/iphone -lulrt

where SQLANY_ROOT is a custom build setting set to the SQL Anywhere installation directory.

UltraLite runtimes must be built after installation. Follow the instructions provided in install-dir/
ultralite/iphone/readme.txt.

3. Add the appropriate frameworks to your Xcode project:

• For macOS, CoreFoundation.framework, CoreServices.framework, and
Security.framework.

• For iOS, CFNetwork.framework and Security.framework.

4. Specify the following parameters:

• When using AES encryption, set the connection parameter DBKEY= encryption-key while creating
or connecting to the database.

5. Set the appropriate parameter settings when using synchronization in your UltraLite application:

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to tcpip.

HTTP Set the Stream synchronization parameter to http.

RSA TLS Set the Stream synchronization parameter to tls.

RSA HTTPS Set the Stream synchronization parameter to https.

6. When using RSA E2EE encryption, set the protocol option e2ee_public_key= key-file.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 673

7. When using ZLIB compression, set the protocol option compression=zlib.
8. When using AES encryption, call the ULDatabaseManager.EnableAesDBEncryption method.
9. Ensure that the following methods are called for the synchronization type used in your UltraLite

application:

Synchronization type Parameter settings

TCP/IP Call the EnableTcpipSynchronization method.

HTTP Call the EnableHttpSynchronization method.

RSA TLS Call the EnableTlsSynchronization and EnableRsaSyncEn
cryption methods.

RSA HTTPS Call the EnableHttpsSynchronization and EnableRsaSyn
cEncryption methods.

Results

The UltraLite application runs successfully on the macOS desktop or iOS device that it is deployed to.

Next Steps

Deploy an UltraLite database to the Mac desktop, iPhone, or iPad that the application was deployed to, or
create a new database with the deployed application.

Related Information

Apple iOS and macOS Considerations [page 646]

674 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.2.1.11.5 Deploying an UltraLite Application for Linux

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, method calls, and deployment files to ensure that your UltraLite application runs successfully on
Linux.

Procedure

1. Specify the following parameters:

• When using AES encryption, set the connection parameter DBKEY= encryption-key while creating
or connecting to the database.

2. Set the appropriate parameter settings when using synchronization in your UltraLite application:

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to tcpip.

HTTP Set the Stream synchronization parameter to http.

RSA TLS Set the Stream synchronization parameter to tls.

RSA HTTPS Set the Stream synchronization parameter to https.

3. When using RSA or FIPS 140-2 RSA end-to-end encryption, set the protocol option e2ee_public_key= key-
file.

4. When using ZLIB compression, set the protocol option compression=zlib.
5. Link against the following files:

• libulrt.a.
• libulbase.a.
• When using RSA TLS, RSA HTTPS, or RSA E2EE, libulrsa.a.

These files are located in /opt/sqlanywhere17/ultralite/linux/x86/586/lib.

6. When using AES encryption, call the ULDatabaseManager.EnableAesDBEncryption method.
7. Ensure that the following methods are called for the synchronization type used in your UltraLite

application:

Synchronization type Parameter settings

TCP/IP Call the EnableTcpipSynchronization method.

HTTP Call the EnableHttpSynchronization method.

RSA TLS Call the EnableTlsSynchronization and EnableRsaSyncEn
cryption methods.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 675

Synchronization type Parameter settings

RSA HTTPS Call the EnableHttpsSynchronization and EnableRsaSyn
cEncryption methods.

Results

The UltraLite application runs successfully on the Linux computer that it is deployed to.

Next Steps

Deploy an UltraLite database to the Linux computer that the application was deployed to, or create a new
database with the deployed application.

3.2.2 UltraLite C++ Application Development Using
Embedded SQL

You can write database access codes for Embedded SQL UltraLite applications.

In this section:

Quick Start Guide to UltraLite Embedded SQL Application Development [page 677]
When developing Embedded SQL applications, you mix SQL statements with standard C or C++ source
code. To develop Embedded SQL applications you should be familiar with the C or C++ programming
language.

Example of Embedded SQL [page 678]
Embedded SQL is an environment that is a combination of C/C++ program code and pseudo-code.

SQL Communications Area Initialization [page 680]
The SQL Communications Area (SQLCA) is an area of memory that is used for communicating
statistics and errors from the application to the database and back to the application. The SQLCA is
used as a handle for the application-to-database communication link.

UltraLite Database Connection Using Embedded SQL [page 682]
To connect to an UltraLite database from an Embedded SQL application, include the EXEC SQL
CONNECT statement in your code after initializing the SQLCA.

Host Variables [page 683]
Embedded SQL applications use host variables to communicate values to and from the database. Host
variables are C variables that are identified to the SQL preprocessor in a declaration section.

Data Fetching [page 694]
Fetching data in Embedded SQL is done using the SELECT statement.

User Authentication [page 697]

676 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

User authentication can be controlled using the ULGrantConnectTo and ULRevokeConnectFrom
methods.

Data Encryption with UltraLite Embedded SQL [page 698]
You can encrypt or obfuscate your UltraLite database using UltraLite Embedded SQL.

Synchronization Setup for an Embedded SQL Application [page 699]
Synchronization is a key feature of many UltraLite applications. Members of the structures in the
Embedded SQL API are similar to the UltraLite C++ API.

Embedded SQL Application Building [page 706]
Building an Embedded SQL application requires knowledge of several configuration settings.

Related Information

UltraLite Embedded SQL API Reference [page 731]

3.2.2.1 Quick Start Guide to UltraLite Embedded SQL
Application Development

When developing Embedded SQL applications, you mix SQL statements with standard C or C++ source code.
To develop Embedded SQL applications you should be familiar with the C or C++ programming language.

The development process for Embedded SQL applications is as follows:

1. Design your UltraLite database.
2. Write your source code in an Embedded SQL source file, which typically has extension .sqc.

When you need data access in your source code, use the SQL statement you want to execute, prefixed by
the EXEC SQL keywords. For example:

 EXEC SQL BEGIN DECLARE SECTION
 int cost
 char pname[31];
EXEC SQL END DECLARE SECTION
EXEC SQL SELECT price, prod_name
 INTO :cost, :pname
 FROM ULProduct WHERE prod_id= :pid;

3. Preprocess the .sqc files.
SQL Anywhere includes a SQL preprocessor (sqlpp), which reads the .sqc files and generates .cpp files.
These files hold function calls to the UltraLite runtime library.

4. Compile your .cpp files.
5. Link the .cpp files.

You must link the files with the UltraLite runtime library.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 677

Related Information

Embedded SQL Application Building [page 706]

3.2.2.2 Example of Embedded SQL

Embedded SQL is an environment that is a combination of C/C++ program code and pseudo-code.

The pseudo-code that can be interspersed with traditional C/C++ code is a subset of SQL statements. A
preprocessor converts the Embedded SQL statements into function calls that are part of the actual code that is
compiled to create the application.

Following is a very simple example of an Embedded SQL program. It illustrates updating an UltraLite database
record by changing the surname of employee 195.

#include <stdio.h> EXEC SQL INCLUDE SQLCA;
main()
{
 db_init(&sqlca);
 EXEC SQL WHENEVER SQLERROR GOTO error;
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "sql";
 EXEC SQL UPDATE employee
 SET emp_lname = 'Johnson'
 WHERE emp_id = 195;
 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT;
 db_fini(&sqlca);
 return(0);
 error:
 printf("update unsuccessful: sqlcode = %ld\n",
 sqlca.sqlcode);
 return(-1); }

Although this example is too simplistic to be useful, it illustrates the following aspects common to all
Embedded SQL applications:

• Each SQL statement is prefixed with the keywords EXEC SQL.
• Each SQL statement ends with a semicolon.
• Some Embedded SQL statements are not part of standard SQL. The INCLUDE SQLCA statement is one

example.
• In addition to SQL statements, Embedded SQL also provides library functions to perform some specific

tasks. The functions db_init and db_fini are two examples of library function calls.

678 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Initialization

The above sample code illustrates initialization statements that must be included before working with the data
in an UltraLite database:

1. Define the SQL Communications Area (SQLCA), using the following command:

EXEC SQL INCLUDE SQLCA;

This definition must be the first Embedded SQL statement, so a natural place for it is the end of the include
list.
If you have multiple .sqc files in your application, each file must have this line.

2. The first database action must be a call to an Embedded SQL library function named db_init. This function
initializes the UltraLite runtime library. Only Embedded SQL definition statements can be executed before
this call.

3. You must use the SQL CONNECT statement to connect to the UltraLite database.

Preparing to Exit

The above sample code demonstrates the sequence of calls required when preparing to exit:

1. Commit or rollback any outstanding changes.
2. Disconnect from the database.
3. End your SQL work with a call to a library method named db_fini.

When you exit, any uncommitted database changes are automatically rolled back.

Error Handling

There is virtually no interaction between the SQL and C code in this example. The C code only controls the flow
of the program. The WHENEVER statement is used for error checking. The error action, GOTO in this example,
is executed whenever any SQL statement causes an error.

In this section:

Embedded SQL Program Structure [page 680]
All Embedded SQL statements start with the words EXEC SQL and end with a semicolon.

Related Information

db_init Method [page 733]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 679

3.2.2.2.1 Embedded SQL Program Structure

All Embedded SQL statements start with the words EXEC SQL and end with a semicolon.

Normal C-language comments are allowed in the middle of Embedded SQL statements.

Every C program using Embedded SQL must contain the following statement before any other Embedded SQL
statements in the source file.

EXEC SQL INCLUDE SQLCA;

The first Embedded SQL executable statement in the program must be a SQL CONNECT statement. The
CONNECT statement supplies connection parameters that are used to establish a connection to the UltraLite
database.

Some Embedded SQL commands do not generate any executable C code, or do not involve communication
with the database. Only these commands are allowed before the CONNECT statement. Most notable are the
INCLUDE statement and the WHENEVER statement for specifying error processing.

3.2.2.3 SQL Communications Area Initialization

The SQL Communications Area (SQLCA) is an area of memory that is used for communicating statistics and
errors from the application to the database and back to the application. The SQLCA is used as a handle for the
application-to-database communication link.

The SQLCA is passed explicitly to all database library functions that communicate with the database. It is
implicitly passed in all Embedded SQL statements.

UltraLite defines a SQLCA global variable for you in the generated code. The preprocessor generates an
external reference for the global SQLCA variable. The external reference is named sqlca and is of type SQLCA.
The actual global variable is declared in the import library.

The SQLCA type is defined in the header file %SQLANY17%\SDK\Include\sqlca.h.

After declaring the SQLCA (EXEC SQL INCLUDE SQLCA;), but before your application can perform any
operations on a database, you must initialize the communications area by calling db_init and passing it the
SQLCA:

db_init(&sqlca);

SQLCA Provides Error Codes

You reference the SQLCA to test for a particular error code. The sqlcode field contains an error code when a
database request causes an error. Macros are defined for referencing the sqlcode field and some other fields in
the sqlca.

In this section:

SQLCA Fields Used in UltraLite C++ [page 681]

680 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

The SQLCA contains the several fields that describe the SQLCA structure.

3.2.2.3.1 SQLCA Fields Used in UltraLite C++

The SQLCA contains the several fields that describe the SQLCA structure.

sqlcaid

An 8-byte character field that contains the string SQLCA as an identification of the SQLCA structure. This
field helps in debugging when you are looking at memory contents.
sqlcabc

A long integer that contains the length in bytes of the SQLCA structure.
sqlcode

A long integer that contains an error code when the database detects an error on a request. Definitions for
the error codes are in the header file %SQLANY17%\SDK\Include\sqlerr.h. The error code is 0 (zero)
for a successful operation, a positive value for a warning, and a negative value for an error.

You can access this field directly using the SQLCODE macro.
sqlerrml

The length of the information in the sqlerrmc field.

UltraLite applications do not use this field.
sqlerrmc

May contain one or more character strings to be inserted into an error message. Some error messages
contain a placeholder string (%1) which is replaced with the text in this field.

UltraLite applications do not use this field.
sqlerrp

Reserved.
sqlerrd

A utility array of long integers.
sqlwarn

Reserved.

UltraLite applications do not use this field.
sqlstate

The SQLSTATE status value.

UltraLite applications do not use this field.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 681

3.2.2.4 UltraLite Database Connection Using Embedded
SQL

To connect to an UltraLite database from an Embedded SQL application, include the EXEC SQL CONNECT
statement in your code after initializing the SQLCA.

The CONNECT statement has the following form:

EXEC SQL CONNECT USING 'uid=user-name;pwd=password;dbf=database-filename';

The connection string (enclosed in single quotes) may include additional database connection parameters.

If you want more than one database connection in your application, you can either use multiple SQLCAs or you
can use a single SQLCA to manage the connections.

Use a Single SQLCA

You can use a single SQLCA to manage multiple connections to a database.

Each SQLCA has a single active or current connection, but that connection can be changed. Before executing a
command, use the SET CONNECTION statement to specify the connection on which the command should be
executed.

In this section:

Using Multiple SQLCAs to Manage Multiple Database Connections [page 682]
Use the SET SQLCA Embedded SQL statement to tell the SQL preprocessor to use a specific SQLCA for
database requests.

3.2.2.4.1 Using Multiple SQLCAs to Manage Multiple
Database Connections

Use the SET SQLCA Embedded SQL statement to tell the SQL preprocessor to use a specific SQLCA for
database requests.

Procedure

1. Initialize Each SQLCA used in your program with a call to db_init.
2. At the top of your program or in a header file, set the SQLCA reference to point at task specific data:

EXEC SQL SET SQLCA 'task_data->sqlca';

This statement does not generate any code and does not affect performance.

682 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Results

The state within the preprocessor changes so that any reference to the SQLCA uses the given string.

Next Steps

Clean up resources when closing your application with a call to the db_fini method.

Related Information

db_init Method [page 733]

3.2.2.5 Host Variables

Embedded SQL applications use host variables to communicate values to and from the database. Host
variables are C variables that are identified to the SQL preprocessor in a declaration section.

In this section:

Host Variable Declaration [page 684]
Define host variables by placing them within a declaration section. Host variables are declared by
surrounding the normal C variable declarations with BEGIN DECLARE SECTION and END DECLARE
SECTION statements.

Data Types [page 684]
To transfer information between a program and the database server, every data item must have a data
type. You can create a host variable with any one of the supported types.

Host Variable Usage in UltraLite C++ [page 687]
Host variables can be used in the several specific circumstances.

Host Variable Scope [page 688]
A host-variable declaration section can appear anywhere that C variables can normally be declared,
including the parameter declaration section of a C function.

Expressions as Host Variables [page 689]
Host variables must be simple names because the SQL preprocessor does not recognize pointer or
reference expressions.

Host Variables in C++ [page 690]
It is convenient to frequently declare your class in a separate header file.

Indicator Variables [page 692]
Indicator variables are C variables that hold supplementary information about a particular host
variable. You can use a host variable when fetching or putting data. Use indicator variables to handle
NULL values.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 683

3.2.2.5.1 Host Variable Declaration

Define host variables by placing them within a declaration section. Host variables are declared by surrounding
the normal C variable declarations with BEGIN DECLARE SECTION and END DECLARE SECTION statements.

Whenever you use a host variable in a SQL statement, you must prefix the variable name with a colon (:) so the
SQL preprocessor knows you are referring to a (declared) host variable and distinguish it from other identifiers
allowed in the statement.

You can use host variables in place of value constants in any SQL statement. When the database server
executes the command, the value of the host variable is read from or written to each host variable. Host
variables cannot be used in place of table or column names.

The SQL preprocessor does not scan C language code except inside a declaration section. Initializers for
variables are allowed inside a declaration section, while typedef types and structures are not permitted.

The following sample code illustrates the use of host variables with an INSERT command. The variables are
filled in by the program and then inserted into the database:

/* Declare fields for personal data. */ EXEC SQL BEGIN DECLARE SECTION;
 long employee_number = 0;
 char employee_name[50];
 char employee_initials[8];
 char employee_phone[15];
EXEC SQL END DECLARE SECTION;
/* Fill variables with appropriate values. */
/* Insert a row in the database. */
EXEC SQL INSERT INTO Employee
 VALUES (:employee_number, :employee_name, :employee_initials, :employee_phone);

3.2.2.5.2 Data Types

To transfer information between a program and the database server, every data item must have a data type.
You can create a host variable with any one of the supported types.

Only a limited number of C data types are supported as host variables. Also, certain host variable types do not
have a corresponding C type.

Macros defined in the sqlca.h header file can be used to declare a host variable of type VARCHAR, FIXCHAR,
BINARY, DECIMAL, or SQLDATETIME. These macros are used as follows:

EXEC SQL BEGIN DECLARE SECTION; DECL_VARCHAR(10) v_varchar;
 DECL_FIXCHAR(10) v_fixchar;
 DECL_BINARY(4000) v_binary;
 DECL_DECIMAL(10, 2) v_packed_decimal;
 DECL_DATETIME v_datetime; EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and treats the variable as the
appropriate type.

684 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

The following data types are supported by the Embedded SQL programming interface:

16-bit signed integer

short int I; unsigned short int I;

32-bit signed integer

long int l; unsigned long int l;

4-byte floating-point number

float f;

8-byte floating-point number

double d;

Packed decimal number

DECL_DECIMAL(p,s) typedef struct TYPE_DECIMAL {
 char array[1]; } TYPE_DECIMAL;

Null terminated, blank-padded character string

char a[n]; /* n > 1 */ char *a; /* n = 2049 */

Because the C-language array must also hold the NULL terminator, a char a[n] data type maps to a
CHAR(n - 1) SQL data type, which can hold -1 characters.

 Note
The SQL preprocessor assumes that a pointer to char points to a character array of size 2049 bytes
and that this array can safely hold 2048 characters, plus the NULL terminator. In other words, a char*
data type maps to a CHAR(2048) SQL type. If that is not the case, your application may corrupt
memory.

If you are using a 16-bit compiler, requiring 2049 bytes can make the program stack overflow. Instead,
use a declared array, even as a parameter to a function, to let the SQL preprocessor know the size of
the array. WCHAR and TCHAR behave similarly to char.

NULL terminated UNICODE or wide character string

Each character occupies two bytes of space and so may contain UNICODE characters.

WCHAR a[n]; /* n > 1 */

NULL terminated system-dependent character string

A TCHAR is equivalent to a WCHAR for systems that use UNICODE (for example, Microsoft Windows
Mobile) for their character set; otherwise, a TCHAR is equivalent to a char. The TCHAR data type is
designed to support character strings in either kind of system automatically.

TCHAR a[n]; /* n > 1 */

UltraLite Administration
UltraLite - C++ Programming PUBLIC 685

Fixed-length blank padded character string

char a; /* n = 1 */ DECL_FIXCHAR(n) a; /* n >= 1 */

Variable-length character string with a two-byte length field

When supplying information to the database server, you must set the length field. When fetching
information from the database server, the server sets the length field (not padded).

DECL_VARCHAR(n) a; /* n >= 1 */ typedef struct VARCHAR {
 a_sql_ulen len;
 TCHAR array[1]; } VARCHAR;

Variable-length binary data with a two-byte length field

When supplying information to the database server, you must set the length field. When fetching
information from the database server, the server sets the length field.

DECL_BINARY(n) a; /* n >= 1 */ typedef struct BINARY {
 a_sql_ulen len;
 unsigned char array[1]; } BINARY;

SQLDATETIME structure with fields for each part of a timestamp

DECL_DATETIME a; typedef struct SQLDATETIME {
 unsigned short year; /* for example: 1999 */
 unsigned char month; /* 0-11 */
 unsigned char day_of_week; /* 0-6, 0 = Sunday */
 unsigned short day_of_year; /* 0-365 */
 unsigned char day; /* 1-31 */
 unsigned char hour; /* 0-23 */
 unsigned char minute; /* 0-59 */
 unsigned char second; /* 0-59 */
 unsigned long microsecond; /* 0-999999 */ } SQLDATETIME;

The SQLDATETIME structure is used to retrieve fields of the DATE, TIME, and TIMESTAMP type (or
anything that can be converted to one of these). Often, applications have their own formats and date
manipulation code. Fetching data in this structure makes it easier for you to manipulate this data. DATE,
TIME, and TIMESTAMP fields can also be fetched and updated with any character type.

If you use a SQLDATETIME structure to enter a date, time, or timestamp into the database, the day_of_year
and day_of_week members are ignored.
DT_LONGVARCHAR

Long varying length character data. The macro defines a structure, as follows:

#define DECL_LONGVARCHAR(size) \ struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\ }

686 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

The DECL_LONGVARCHAR struct can be used with more than 32KB of data. Data can be fetched all at
once, or in pieces using the GET DATA statement. Data can be supplied to the server all at once, or in
pieces by appending to a database variable using the SET statement. The data is not null terminated.
DT_LONGBINARY

Long binary data. The macro defines a structure, as follows:

#define DECL_LONGBINARY(size) \ struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size]; \ }

The DECL_LONGBINARY struct can be used with more than 32KB of data. Data can be fetched all at once,
or in pieces using the GET DATA statement. Data can be supplied to the server all at once, or in pieces by
appending to a database variable using the SET statement.

The structures are defined in the %SQLANY17%\SDK\Include\sqlca.h file. The VARCHAR, BINARY, and
TYPE_DECIMAL types contain a one-character array and are not useful for declaring host variables. However,
they are useful for allocating variables dynamically or typecasting other variables.

DATE and TIME Database Types

There are no corresponding Embedded SQL interface data types for the various DATE and TIME database
types. These database types are fetched and updated either using the SQLDATETIME structure or using
character strings.

There are no Embedded SQL interface data types for LONG VARCHAR and LONG BINARY database types.

3.2.2.5.3 Host Variable Usage in UltraLite C++

Host variables can be used in the several specific circumstances.

• In a SELECT, INSERT, UPDATE, or DELETE statement in any place where a number or string constant is
allowed.

• In the INTO clause of a SELECT or FETCH statement.
• In CONNECT, DISCONNECT, and SET CONNECT statements, a host variable can be used in place of a user

ID, password, connection name, or database name.

Host variables can never be used in place of a table name or a column name.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 687

3.2.2.5.4 Host Variable Scope

A host-variable declaration section can appear anywhere that C variables can normally be declared, including
the parameter declaration section of a C function.

The C variables have their normal scope (available within the block in which they are defined). However, since
the SQL preprocessor does not scan C code, it does not respect C blocks.

Preprocessor Assumes All Host Variables Are Global

As far as the SQL preprocessor is concerned, host variables are globally known in the source module following
their declaration. Two host variables cannot have the same name. The only exception to this rule is that two
host variables can have the same name if they have identical types (including any necessary lengths).

The best practice is to give each host variable a unique name.

Example

Because the SQL preprocessor cannot parse C code, it assumes all host variables, no matter where they are
declared, are known globally following their declaration.

// Example demonstrating poor coding EXEC SQL BEGIN DECLARE SECTION;
 long emp_id;
EXEC SQL END DECLARE SECTION;
long getManagerID(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 long manager_id = 0;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL SELECT manager_id
 INTO :manager_id
 FROM employee
 WHERE emp_number = :emp_id;
 return(manager_number);
}
void setManagerID(long manager_id)
{
 EXEC SQL UPDATE employee
 SET manager_number = :manager_id
 WHERE emp_number = :emp_id; }

Although the above code works, it is confusing because the SQL preprocessor relies on the declaration inside
getManagerID when processing the statement within setManagerID. Rewrite this code as follows:

// Rewritten example #if 0
 // Declarations for the SQL preprocessor
 EXEC SQL BEGIN DECLARE SECTION;
 long emp_id;
 long manager_id;
 EXEC SQL END DECLARE SECTION;

688 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

#endif
long getManagerID(long emp_id)
{
 long manager_id = 0;
 EXEC SQL SELECT manager_id
 INTO :manager_id
 FROM employee
 WHERE emp_number = :emp_id;
 return(manager_number);
}
void setManagerID(long emp_id, long manager_id)
{
 EXEC SQL UPDATE employee
 SET manager_number = :manager_id
 WHERE emp_number = :emp_id; }

The SQL preprocessor sees the declaration of the host variables contained within the #if directive because it
ignores these directives. However, it ignores the declarations within the procedures because they are not inside
a DECLARE SECTION. Conversely, the C compiler ignores the declarations within the #if directive and uses
those within the procedures.

These declarations work only because variables having the same name are declared to have exactly the same
type.

3.2.2.5.5 Expressions as Host Variables

Host variables must be simple names because the SQL preprocessor does not recognize pointer or reference
expressions.

For example, the following statement does not work because the SQL preprocessor does not understand the
dot operator. The same syntax has a different meaning in SQL.

// Incorrect statement: EXEC SQL SELECT LAST sales_id INTO :mystruct.mymember;

Although the above syntax is not allowed, you can still use an expression with the following technique:

• Wrap the SQL declaration section in an #if 0 preprocessor directive. The SQL preprocessor will read the
declarations and use them for the rest of the module because it ignores preprocessor directives.

• Define a macro with the same name as the host variable. Since the SQL declaration section is not seen by
the C compiler because of the #if directive, no conflict will arise. Ensure that the macro evaluates to the
same type host variable.

The following code demonstrates this technique to hide the host_value expression from the SQL
preprocessor.

#include <sqlerr.h> #include <stdio.h>
EXEC SQL INCLUDE SQLCA;
typedef struct my_struct {
 long host_field;
} my_struct;
#if 0
 // Because it ignores #if preprocessing directives,
 // SQLPP reads the following declaration.
 EXEC SQL BEGIN DECLARE SECTION;

UltraLite Administration
UltraLite - C++ Programming PUBLIC 689

 long host_value;
 EXEC SQL END DECLARE SECTION;
#endif
// Make C/C++ recognize the 'host_value' identifier
// as a macro that expands to a struct field. #define host_value my_s.host_field

Since the SQLPP processor ignores directives for conditional compilation, host_value is treated as a long
host variable and will emit that name when it is subsequently used as a host variable. The C/C++ compiler
processes the emitted file and will substitute my_s.host_field for all such uses of that name.

With the above declarations in place, you can proceed to access host_field as follows.

void main(void) {
 my_struct my_s;
 db_init(&sqlca);
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
 EXEC SQL DECLARE my_table_cursor CURSOR FOR
 SELECT int_col FROM my_table order by int_col;
 EXEC SQL OPEN my_table_cursor;
 for(; ;) {
 // :host_value references my_s.host_field
 EXEC SQL FETCH NEXT AllRows INTO :host_value;
 if(SQLCODE == SQLE_NOTFOUND) {
 break;
 }
 printf("%ld\n", my_s.host_field);
 }
 EXEC SQL CLOSE my_table_cursor;
 EXEC SQL DISCONNECT;
 db_fini(&sqlca); }

You can use the same technique to use other lvalues as host variables:

• pointer indirections

*ptr p_struct->ptr (*pp_struct)->ptr

• array references

my_array[I]

• arbitrarily complex lvalues

3.2.2.5.6 Host Variables in C++

It is convenient to frequently declare your class in a separate header file.

This header file might contain, for example, the following declaration of my_class.

typedef short a_bool; #define TRUE ((a_bool)(1==1))
#define FALSE ((a_bool)(0==1))
public class {
 long host_member;
 my_class(); // Constructor

690 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

 ~my_class(); // Destructor
 a_bool FetchNextRow(void);
 // Fetch the next row into host_member } my_class;

In this example, each method is implemented in an Embedded SQL source file. Only simple variables can be
used as host variables. The technique introduced in the preceding section can be used to access a data
member of a class.

EXEC SQL INCLUDE SQLCA; #include "my_class.hpp"
#if 0
 // Because it ignores #if preprocessing directives,
 // SQLPP reads the following declaration.
 EXEC SQL BEGIN DECLARE SECTION;
 long this_host_member;
 EXEC SQL END DECLARE SECTION;
#endif
// Macro used by the C++ compiler only.
#define this_host_member this->host_member
my_class::my_class()
{
 EXEC SQL DECLARE my_table_cursor CURSOR FOR
 SELECT int_col FROM my_table order by int_col;
 EXEC SQL OPEN my_table_cursor;
}
my_class::~my_class()
{
 EXEC SQL CLOSE my_table_cursor;
}
a_bool my_class::FetchNextRow(void)
{
 // :this_host_member references this->host_member
 EXEC SQL FETCH NEXT AllRows INTO :this_host_member;
 return(SQLCODE != SQLE_NOTFOUND);
}
void main(void)
{
 db_init(&sqlca);
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
 {
 my_class mc; // Created after connecting.
 while(mc.FetchNextRow()) {
 printf("%ld\n", mc.host_member);
 }
 }
 EXEC SQL DISCONNECT;
 db_fini(&sqlca); }

The above example declares this_host_member for the SQL preprocessor, but the macro causes C++ to
convert it to this->host_member. The preprocessor would otherwise not know the type of this variable. Many
C/C++ compilers do not tolerate duplicate declarations. The #if directive hides the second declaration from
the compiler, but leaves it visible to the SQL preprocessor.

While multiple declarations can be useful, you must ensure that each declaration assigns the same variable
name to the same type. The preprocessor assumes that each host variable is globally known following its
declaration because it cannot fully parse the C language.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 691

3.2.2.5.7 Indicator Variables

Indicator variables are C variables that hold supplementary information about a particular host variable. You
can use a host variable when fetching or putting data. Use indicator variables to handle NULL values.

An indicator variable is a host variable of type a_sql_len that is placed immediately following a regular host
variable in a SQL statement. To detect or specify a NULL value, place the indicator variable immediately
following a regular host variable in a SQL statement.

Example

For example, in the following INSERT statement, :ind_phone is an indicator variable.

EXEC SQL INSERT INTO Employee VALUES (:employee_number, :employee_name, :employee_initials, :employee_phone:ind_phone);

On a fetch or execute where no rows are received from the database server (such as when an error or end of
result set occurs), then indicator values are unchanged.

 Note
To allow for the future use of 32 and 64-bit lengths and indicators, the use of short int for Embedded SQL
indicator variables is deprecated. Use a_sql_len instead.

Indicator Variable Values

The following table provides a summary of indicator variable usage:

Indicator value Supplying value to database Receiving value from database

0 Host variable value Fetched a non-NULL value.

-1 NULL value Fetched a NULL value

In this section:

Indicator Variables to Handle NULL [page 693]
Do not confuse the SQL concept of NULL with the C-language constant of the same name. In the SQL
language, NULL represents either an unknown attribute or inapplicable information. The C-language
constant represents a pointer value that does not point to a memory location.

692 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.2.2.5.7.1 Indicator Variables to Handle NULL

Do not confuse the SQL concept of NULL with the C-language constant of the same name. In the SQL
language, NULL represents either an unknown attribute or inapplicable information. The C-language constant
represents a pointer value that does not point to a memory location.

When NULL is used in the SQL Anywhere documentation, it refers to the SQL database meaning given above.
The C language constant is referred to as the null pointer (lowercase).

NULL is not the same as any value of the column's defined type. Indicator variables are needed to pass NULL
values to the database or receive NULL results back.

Using Indicator Variables When Inserting NULL

An INSERT statement can include an indicator variable as follows:

EXEC SQL BEGIN DECLARE SECTION; short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
a_sql_len ind_phone;
EXEC SQL END DECLARE SECTION;
/* set values of employee number, name,
 initials, and phone number */
if(/* phone number is known */) {
 ind_phone = 0;
} else {
 ind_phone = -1; /* NULL */
}
EXEC SQL INSERT INTO Employee
 VALUES (:employee_number, :employee_name, :employee_initials, :employee_phone:ind_phone);

If the indicator variable has a value of -1, a NULL is written. If it has a value of 0, the actual value of
employee_phone is written.

Using Indicator Variables When Fetching NULL

Indicator variables are also used when receiving data from the database. They are used to indicate that a NULL
value was fetched (indicator is negative). If a NULL value is fetched from the database and an indicator variable
is not supplied, the SQLE_NO_INDICATOR error is generated.

Related Information

SQL Communications Area Initialization [page 680]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 693

3.2.2.6 Data Fetching

Fetching data in Embedded SQL is done using the SELECT statement.

There are two cases that can be returned:

1. The SELECT statement returns no rows or returns exactly one row.
2. The SELECT statement returns multiple rows.

In this section:

Single Row Fetching [page 694]
A single row query retrieves at most one row from the database.

Multiple Row Fetching [page 695]
You use a cursor to retrieve rows from a query that has multiple rows in the result set. A cursor is a
handle or an identifier for the SQL query result set and a position within that result set.

3.2.2.6.1 Single Row Fetching

A single row query retrieves at most one row from the database.

A single row query SELECT statement may have an INTO clause following the select list and before the FROM
clause. The INTO clause contains a list of host variables to receive the value for each select list item. There
must be the same number of host variables as there are select list items. The host variables may be
accompanied by indicator variables to indicate NULL results.

When the SELECT statement is executed, the database server retrieves the results and places them in the host
variables.

• If the query returns more than one row, the database server returns the SQLE_TOO_MANY_RECORDS
error.

• If the query returns no rows, the SQLE_NOTFOUND warning is returned.

Example

For example, the following code fragment returns 1 if a row from the employee table is successfully fetched, 0 if
the row doesn't exist, and -1 if an error occurs.

EXEC SQL BEGIN DECLARE SECTION; long int emp_id;
 char name[41];
 char sex;
 char birthdate[15];
 a_sql_len ind_birthdate;
EXEC SQL END DECLARE SECTION;
int find_employee(long employee)
{
 emp_id = employee;
 EXEC SQL SELECT emp_fname || ' ' || emp_lname,
 sex, birth_date

694 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

 INTO :name, :sex, birthdate:ind_birthdate
 FROM "DBA".employee
 WHERE emp_id = :emp_id;
 if(SQLCODE == SQLE_NOTFOUND) {
 return(0); /* employee not found */
 } else if(SQLCODE < 0) {
 return(-1); /* error */
 } else {
 return(1); /* found */
 } }

Related Information

SQL Communications Area Initialization [page 680]

3.2.2.6.2 Multiple Row Fetching

You use a cursor to retrieve rows from a query that has multiple rows in the result set. A cursor is a handle or an
identifier for the SQL query result set and a position within that result set.

Cursors in UltraLite applications are always opened using the WITH HOLD option. They are never closed
automatically. You must explicitly close each cursor using the CLOSE statement.

A cursor can be managed using the following steps:

1. Declare a cursor for a particular SELECT statement, using the DECLARE statement.
2. Open the cursor using the OPEN statement.
3. Retrieve rows from the cursor one at a time using the FETCH statement.
4. Fetch rows until the SQLE_NOTFOUND warning is returned. Error and warning codes are returned in the

variable SQLCODE, defined in the SQL communications area structure.
5. Close the cursor, using the CLOSE statement.

The following is a simple example of cursor usage:

void print_employees(void) {
 int status;
 EXEC SQL BEGIN DECLARE SECTION;
 char name[50];
 char sex;
 char birthdate[15];
 a_sql_len ind_birthdate;
 EXEC SQL END DECLARE SECTION;
 /* 1. Declare the cursor. */
 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT emp_fname || ' ' || emp_lname,
 sex, birth_date
 FROM "DBA".employee
 ORDER BY emp_fname, emp_lname;
 /* 2. Open the cursor. */
 EXEC SQL OPEN C1;
 /* 3. Fetch each row from the cursor. */
 for(;;) {
 EXEC SQL FETCH C1 INTO :name, :sex,

UltraLite Administration
UltraLite - C++ Programming PUBLIC 695

 :birthdate:ind_birthdate;
 if(SQLCODE == SQLE_NOTFOUND) {
 break; /* no more rows */
 } else if(SQLCODE < 0) {
 break; /* the FETCH caused an error */
 }
 if(ind_birthdate < 0) {
 strcpy(birthdate, "UNKNOWN");
 }
 printf("Name: %s Sex: %c Birthdate:
 %s\n",name, sex, birthdate);
 }
 /* 4. Close the cursor. */
 EXEC SQL CLOSE C1; }

Cursor Positioning

A cursor is positioned in one of three places:

• On a row
• Before the first row
• After the last row

Order of Rows in a Cursor

You control the order of rows in a cursor by including an ORDER BY clause in the SELECT statements that
defines that cursor. If you omit this clause, the order of the rows is unpredictable.

696 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

If you don't explicitly define an order, the only guarantee is that fetching repeatedly will return each row in the
result set once and only once before SQLE_NOTFOUND is returned.

Repositioning a Cursor

When you open a cursor, it is positioned before the first row. The FETCH statement automatically advances the
cursor position. An attempt to FETCH beyond the last row results in a SQLE_NOTFOUND error, which can be
used as a convenient signal to complete sequential processing of the rows.

You can also reposition the cursor to an absolute position relative to the start or end of the query results, or you
can move the cursor relative to the current position. There are special positioned versions of the UPDATE and
DELETE statements that can be used to update or delete the row at the current position of the cursor. If the
cursor is positioned before the first row or after the last row, a SQLE_NOTFOUND error is returned.

To avoid unpredictable results when using explicit positioning, you can include an ORDER BY clause in the
SELECT statement that defines the cursor.

You can use the PUT statement to insert a row into a cursor.

Cursor Positioning After Updates

After updating any information that is being accessed by an open cursor, it is best to fetch and display the rows
again. If the cursor is being used to display a single row, FETCH RELATIVE 0 will re-fetch the current row. When
the current row has been deleted, the next row is fetched from the cursor (or SQLE_NOTFOUND is returned if
there are no more rows).

When a temporary table is used for the cursor, inserted rows in the underlying tables do not appear at all until
that cursor is closed and reopened. It can be difficult to detect whether a temporary table is involved in a
SELECT statement without examining the code generated by the SQL preprocessor or by becoming
knowledgeable about the conditions under which temporary tables are used. Temporary tables can usually be
avoided by having an index on the columns used in the ORDER BY clause.

Inserts, updates, and deletes to non-temporary tables may affect the cursor positioning. Because UltraLite
materializes cursor rows one at a time (when temporary tables are not used), the data from a freshly inserted
row (or the absence of data from a freshly deleted row) may affect subsequent FETCH operations. In the simple
case where (parts of) rows are being selected from a single table, an inserted or updated row will appear in the
result set for the cursor when it satisfies the selection criteria of the SELECT statement. Similarly, a freshly
deleted row that previously contributed to the result set will no longer be within it.

3.2.2.7 User Authentication

User authentication can be controlled using the ULGrantConnectTo and ULRevokeConnectFrom methods.

The code below illustrates how to control user authentication:

//Embedded SQL

UltraLite Administration
UltraLite - C++ Programming PUBLIC 697

app() {
 ...
/* Declare fields */
 EXEC SQL BEGIN DECLARE SECTION;
 char uid[31];
 char pwd[31];
 EXEC SQL END DECLARE SECTION;
 db_init(&sqlca);
 ...
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "sql";
 if(SQLCODE == SQLE_NOERROR) {
 printf("Enter new user ID and password\n");
 scanf("%s %s", uid, pwd);
 ULGrantConnectTo(&sqlca,
 UL_TEXT(uid), UL_TEXT(pwd));
 if(SQLCODE == SQLE_NOERROR) {
 // new user added: remove DBA
 ULRevokeConnectFrom(&sqlca, UL_TEXT("DBA"));
 }
 EXEC SQL DISCONNECT;
 }
 // Prompt for password
 printf("Enter user ID and password\n");
 scanf("%s %s", uid, pwd); EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

The code carries out the following tasks:

1. Initiate database functionality by calling db_init.
2. Attempt to connect using the default user ID and password.
3. If the connection attempt is successful, add a new user.
4. If the new user is successfully added, delete the DBA user from the UltraLite database.
5. Disconnect. An updated user ID and password is now added to the database.
6. Connect using the updated user ID and password.

3.2.2.8 Data Encryption with UltraLite Embedded SQL

You can encrypt or obfuscate your UltraLite database using UltraLite Embedded SQL.

Encryption

When an UltraLite database is created (using SQL Central for example), an optional encryption key may be
specified. The encryption key is used to encrypt the database. Once the database is encrypted, all subsequent
connection attempts must supply the encryption key. The supplied key is checked against the original
encryption key and the connection fails unless the key matches.

Choose an encryption key value that cannot easily be guessed. The key can be of arbitrary length, but generally
a longer key is better, because a shorter key is easier to guess. Including a combination of numbers, letters, and
special characters decreases the chances of someone guessing the key.

Do not include semicolons in your key. Do not put the key itself in quotes, otherwise the quotes are considered
part of the key.

698 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

The following procedure is generally used to connect to an encrypted UltraLite database:

1. Specify the encryption key in the connection string used in the EXEC SQL CONNECT statement.
2. The encryption key is specified with the key= connection string parameter.

You must supply this key each time you want to connect to the database. Lost or forgotten keys result in
completely inaccessible databases.

3. Handle attempts to open an encrypted database with the wrong key.
If an attempt is made to open an encrypted database and the wrong key is supplied, db_init returns
ul_false and SQLCODE -840 is set.

Change the Encryption Key

You can change the encryption key for a database. The application must already be connected to the database
using the existing key before the change can be made.

Supply the new key as an argument of the ULChangeEncryptionKey method.

Obfuscation

Obfuscation is an option for encoding the database that is an alternative to database encryption. Obfuscation
is a simple masking of the data in the database that is intended to prevent browsing the data in the database
with a low level file examination utility. However, obfuscation is not secure against skilled and determined
attempts to gain access to the data. Obfuscation is a database creation option and must be specified when the
database is created.

3.2.2.9 Synchronization Setup for an Embedded SQL
Application

Synchronization is a key feature of many UltraLite applications. Members of the structures in the Embedded
SQL API are similar to the UltraLite C++ API.

The synchronization logic that keeps UltraLite applications up to date with the consolidated database is not
held in the application itself. Synchronization scripts stored in the consolidated database, together with the
MobiLink server and the UltraLite runtime library, control how changes are processed when they are uploaded
and determines which changes are to be downloaded.

The specifics of each synchronization are controlled by a set of synchronization parameters. These parameters
are gathered into a structure, which is then supplied as an argument in a method call to synchronize. The
outline of the method is the same in each development model.

The following procedure is generally used to add synchronization to your application:

1. Initialize the structure that holds the synchronization parameters.
2. Assign the parameter values for your application.
3. Call the synchronization method, supplying the structure or object as argument.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 699

Ensure that there are no uncommitted changes when you synchronize.

In this section:

Synchronization Parameter Initialization [page 700]
The synchronization parameters are stored in a ul_sync_info structure.

Synchronization Invocation [page 701]
The details of how to invoke synchronization depends on your target platform and on the
synchronization stream.

Committed Changes and Synchronization [page 701]
An UltraLite database cannot have uncommitted changes when it is synchronized.

Initial Data for Your Application [page 701]
Many UltraLite applications need data to start working. You can download data into your application by
synchronizing.

Synchronization Communications Errors [page 702]
SQLCODE can be used to report MobiLink synchronization errors.

Synchronization Monitoring and Canceling [page 702]
You can monitor and cancel synchronization from UltraLite applications.

3.2.2.9.1 Synchronization Parameter Initialization

The synchronization parameters are stored in a ul_sync_info structure.

The members of the ul_sync_info structure are undefined on initialization. You must set your parameters to
their initial values with a call to a special method. The synchronization parameters are defined in a structure
declared in the UltraLite header file %SQLANY17%\SDK\Include\ulglobal.h.

Example

The following example illustrates how to initialize synchronization parameters with the ULInitSyncInfo method:

ul_sync_info synch_info; ULInitSyncInfo(&synch_info);

Example

The following code initiates TCP/IP synchronization. The MobiLink user name is Betty Best, with password
TwentyFour, the script version is default, and the MobiLink server is running on the host computer
test.internal, on port 2439:

ul_sync_info synch_info; ULInitSyncInfo(&synch_info);

700 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

synch_info.user_name = UL_TEXT("Betty Best");
synch_info.password = UL_TEXT("TwentyFour");
synch_info.version = UL_TEXT("default");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =
 UL_TEXT("host=test.internal;port=2439"); ULSynchronize(&sqlca, &synch_info);

3.2.2.9.2 Synchronization Invocation

The details of how to invoke synchronization depends on your target platform and on the synchronization
stream.

The synchronization process can only work if the device running the UltraLite application is able to
communicate with the MobiLink server. For some platforms, the device needs to be physically connected by
placing it in its cradle or by attaching it to a server computer using the appropriate cable. If the synchronization
cannot be completed, add error handling code to your application.

To invoke synchronization, call the ULInitSyncInfo method to initialize the synchronization parameters, and
then call the ULSynchronize method to synchronize.

The synchronization call requires a structure that holds a set of parameters describing the specifics of the
synchronization. The particular parameters used depend on the stream.

3.2.2.9.3 Committed Changes and Synchronization

An UltraLite database cannot have uncommitted changes when it is synchronized.

If you attempt to synchronize an UltraLite database when any connection has an uncommitted transaction, the
synchronization fails, an exception is thrown and the SQLE_UNCOMMITTED_TRANSACTIONS error is set. This
error code also appears in the MobiLink server log.

3.2.2.9.4 Initial Data for Your Application

Many UltraLite applications need data to start working. You can download data into your application by
synchronizing.

Add logic to your application to ensure that, the first time it is run, it downloads all necessary data before any
other actions are carried out.

 Note
It is easier to locate errors if you develop an application in stages. When developing a prototype,
temporarily use INSERT statements in your application to provide data for testing and demonstration
purposes. Once your prototype is working correctly, replace the temporary INSERT statements with the
code to perform the synchronization.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 701

3.2.2.9.5 Synchronization Communications Errors

SQLCODE can be used to report MobiLink synchronization errors.

The following code illustrates how to handle communications errors from Embedded SQL applications:

if(psqlca->sqlcode == SQLE_MOBILINK_COMMUNICATIONS_ERROR) { printf(" Stream error information:\n"
 " stream_error_code = %ld\t(ss_error_code)\n"
 " error_string = \"%s\"\n"
 " system_error_code = %ld\n",
 (long)info.stream_error.stream_error_code,
 info.stream_error.error_string,
 (long)info.stream_error.system_error_code); }

SQLE_MOBILINK_COMMUNICATIONS_ERROR is the general error code for communications errors.

To keep UltraLite small, the runtime reports numbers rather than messages.

3.2.2.9.6 Synchronization Monitoring and Canceling

You can monitor and cancel synchronization from UltraLite applications.

Monitoring Synchronization

• Specify the name of your callback function in the observer member of the synchronization structure
(ul_synch_info).

• Call the synchronization function or method to start synchronization.
• UltraLite calls your callback function whenever the synchronization state changes.

The following code shows how this sequence of tasks can be implemented in an Embedded SQL application:

ULInitSyncInfo(&info); info.user_name = m_EmpIDStr;
...
//The info parameter of ULSynchronize() contains
// a pointer to the observer function
info.observer = ObserverFunc; ULSynchronize(&sqlca, &info);

In this section:

Synchronization Status Information [page 703]
The callback function that monitors synchronization takes a ul_sync_status structure as a parameter.

702 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.2.2.9.6.1 Synchronization Status Information
The callback function that monitors synchronization takes a ul_sync_status structure as a parameter.

sent.inserts

The number of inserted rows that have been uploaded so far.
sent.updates

The number of updated rows that have been uploaded so far.
sent.deletes

The number of deleted rows that have been uploaded so far.
sent.bytes

The number of bytes that have been uploaded so far.
received.inserts

The number of inserted rows that have been downloaded so far.
received.updates

The number of updated rows that have been downloaded so far.
received.deletes

The number of deleted rows that have been downloaded so far.
received.bytes

The number of bytes that have been downloaded so far.
info

Returns a pointer to the ul_sync_info structure.
db_table_count

Returns the number of tables in the database.
table_id

Returns the current table number (relative to 1) that is being uploaded or downloaded. This number may
skip values when not all tables are being synchronized and is not necessarily increasing.
table_name[]

Returns the name of the current table.
table_name_w2[]

Returns the name of the current table (wide character version). This field is only populated in the Windows
(desktop and Mobile) environment.
sync_table_count

Returns the number of tables being synchronized.
sync_table_index

Returns the number of the table that is being uploaded or downloaded, starting at 1 and ending at the
sync_table_count value. This number may skip values when not all tables are being synchronized.
state

One of the following states:

UL_SYNC_STATE_STARTING

UltraLite Administration
UltraLite - C++ Programming PUBLIC 703

No synchronization actions have been taken.
UL_SYNC_STATE_CONNECTING

The synchronization stream has been built, but not opened.
UL_SYNC_STATE_RESUMING_DOWNLOAD

An optional state denoting an attempt to resume a partial download. When successful, the
synchronization proceeds to the UL_SYNC_STATE_RECEIVING_TABLE state.
UL_SYNC_STATE_SENDING_HEADER

The synchronization stream has been opened, and the header is about to be sent.
UL_SYNC_STATE_SENDING_CHECK_SYNC_REQUEST

The state of the last upload is unknown, so a request to check its status is being sent.
UL_SYNC_STATE_WAITING_CHECK_SYNC_REQUEST

The client is waiting for the server to respond to the check synchronization request.
UL_SYNC_STATE_PROCESSING_CHECK_SYNC_REQUEST

The response to the check synchronization request has been received and is being processed.
UL_SYNC_STATE_SENDING_TABLE

A table is being sent.
UL_SYNC_STATE_SENDING_DATA

Schema information or data is being sent.
UL_SYNC_STATE_FINISHING_UPLOAD

The upload stage has completed and a commit is being carried out.
UL_SYNC_STATE_WAITING_UPLOAD_ACK

The client is waiting for the server to acknowledge receiving the upload.
UL_SYNC_STATE_PROCESSING_UPLOAD_ACK

The server has acknowledged receiving the upload.
UL_SYNC_STATE_WAITING_FOR_DOWNLOAD

The client is waiting for the server to start sending the download.
UL_SYNC_STATE_RECEIVING_TABLE

A table is being received.
UL_SYNC_STATE_RECEIVING_DATA

Schema information or data is being received.
UL_SYNC_STATE_COMMITTING_DOWNLOAD

The download stage is completed and a commit is being carried out.
UL_SYNC_STATE_SENDING_DOWNLOAD_ACK

An acknowledgement that the download is complete is being sent.
UL_SYNC_STATE_DISCONNECTING

The synchronization stream is about to be closed.
UL_SYNC_STATE_DONE

Synchronization has completed successfully.

704 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

UL_SYNC_STATE_ERROR

Synchronization has completed, but with an error.
UL_SYNC_STATE_ROLLING_BACK_DOWNLOAD

An error occurred during download, and the download is being rolled back.
stop

Set this member to true to interrupt the synchronization. The SQL exception SQLE_INTERRUPTED is set,
and the synchronization stops as if a communications error had occurred. The observer is always called
with either the DONE or ERROR state so that it can do proper cleanup.
flags

Returns the current synchronization flags indicating additional information related to the current state.
user_data

Returns the user data object that is passed as an argument to the ULSetSynchronizationCallback function.
sqlca

Returns the pointer to the connection's active SQLCA.
current_download_row_count

Returns the number of rows that have been downloaded so far. This number includes duplicate rows that
aren't included in received.inserts, received.updates, or received.deletes.
total_download_row_count

Returns the total number of rows to be received in the download. This number includes duplicate rows that
aren't included in received.inserts, received.updates, or received.deletes.

Example

The following code illustrates a simple observer function:

extern void __stdcall ObserverFunc(p_ul_sync_status status)
{
 switch(status->state) {
 case UL_SYNC_STATE_STARTING:
 printf("Starting\n");
 break;
 case UL_SYNC_STATE_CONNECTING:
 printf("Connecting\n");
 break;
 case UL_SYNC_STATE_SENDING_HEADER:
 printf("Sending Header\n");
 break;
 case UL_SYNC_STATE_SENDING_TABLE:
 printf("Sending Table %d of %d\n",
 status->tableIndex + 1,
 status->tableCount);
 break;
 case UL_SYNC_STATE_RECEIVING_TABLE:
 printf("Receiving Table %d of %d\n",
 status->tableIndex + 1,
 status->tableCount);
 break;
 case UL_SYNC_STATE_SENDING_DOWNLOAD_ACK:
 printf("Sending Download Ack\n");

UltraLite Administration
UltraLite - C++ Programming PUBLIC 705

 break;
 case UL_SYNC_STATE_DISCONNECTING:
 printf("Disconnecting\n");
 break;
 case UL_SYNC_STATE_DONE:
 printf("Done\n");
 break; ...

This observer produces the following output when you synchronize two tables:

Starting Connecting
Sending Header
Sending Table 1 of 2
Sending Table 2 of 2
Receiving Upload Ack
Receiving Table 1 of 2
Receiving Table 2 of 2
Sending Download Ack
Disconnecting Done

CustDB example

An example of an observer function is included in the CustDB sample application. The implementation in
CustDB provides a window that displays synchronization progress and allows the user to cancel
synchronization. The user-interface component makes the observer function platform specific.

The CustDB sample code is in the %SQLANYSAMP17%\UltraLite\CustDB directory. The observer function
is contained in platform-specific subdirectories of the CustDB directory.

3.2.2.10 Embedded SQL Application Building

Building an Embedded SQL application requires knowledge of several configuration settings.

In this section:

General Build Procedures [page 707]
Building an UltraLite Embedded SQL application consists of running the SQL preprocessor, compiling
source code, and then linking to object files.

Development Tool Configuration for Embedded SQL Development [page 707]
Many development tools use a dependency model, sometimes expressed as a makefile, in which the
timestamp on each source file is compared with that on the target file (usually the object file) to decide
whether the target file needs to be regenerated.

706 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.2.2.10.1 General Build Procedures

Building an UltraLite Embedded SQL application consists of running the SQL preprocessor, compiling source
code, and then linking to object files.

1. Run the SQL preprocessor on each Embedded SQL source file.
The SQL preprocessor is the sqlpp command line utility. It preprocesses the Embedded SQL source files,
producing C++ source files to be compiled into your application.

 Caution
sqlpp overwrites the output file without regard to its contents. Ensure that the output file name does
not match the name of any of your source files. By default, sqlpp constructs the output file name by
changing the suffix of your source file to .cpp. When in doubt, specify the output file name explicitly,
following the name of the source file.

2. Compile each C++ source file for the target platform of your choice. Include:
• each C++ file generated by the SQL preprocessor
• any additional C or C++ source files required by your application

3. Link all these object files, together with the UltraLite runtime library.

3.2.2.10.2 Development Tool Configuration for Embedded
SQL Development

Many development tools use a dependency model, sometimes expressed as a makefile, in which the
timestamp on each source file is compared with that on the target file (usually the object file) to decide
whether the target file needs to be regenerated.

With UltraLite development, a change to any SQL statement in a development project means that the
generated code needs to be regenerated. Changes are not reflected in the timestamp on any individual source
file because the SQL statements are stored in the reference database.

In this section:

Running the SQL Preprocessor [page 708]
Incorporate the SQL preprocessor into a dependency-based build environment by adding instructions
to run the it for Microsoft Visual C++.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 707

3.2.2.10.2.1 Running the SQL Preprocessor

Incorporate the SQL preprocessor into a dependency-based build environment by adding instructions to run
the it for Microsoft Visual C++.

Procedure

1. Add the .sqc files to your development project.

The development project is defined in your development tool.
2. Add a custom build rule for each .sqc file.

• The custom build rule should run the SQL preprocessor. In Microsoft Visual C++, the build rule should
have the following command (entered on a single line):

"%SQLANY17%\Bin32\sqlpp.exe" -q -u $(InputPath) $(InputName).cpp

where SQLANY17 is an environment variable that points to your SQL Anywhere installation directory.
• Set the output for the command to $(InputName).cpp.

3. Compile the .sqc files, and add the generated .cpp files to your development project.

You must add the generated files to your project even though they are not source files, so that you can set
up dependencies and build options.

4. For each generated .cpp file, set the preprocessor definitions.

• Under General or Preprocessor, add UL_USE_DLL to the Preprocessor definitions.
• Under Preprocessor, add $(SQLANY17)\SDK\Include and any other desired include folders to your

include path as a comma-separated list.

Results

The SQL preprocessor is configured for Microsoft Visual C++ development.

3.2.3 UltraLite Application Development for Microsoft
Windows Mobile

Microsoft Visual Studio 2005 and later can be used to develop applications for the Microsoft Windows Mobile
environment.

Applications targeting Microsoft Windows Mobile should use the default setting for wchar_t and link against the
UltraLite runtime libraries in \Program Files\SQLAny17\ultralite\ce\arm.50\lib\.

You can test your applications under an emulator on most Microsoft Windows Mobile target platforms.

708 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

In this section:

CustDB Sample Application [page 709]
CustDB is a simple sales-status application that is provided as a Microsoft Visual Studio solution. It is
located in the %SQLANYSAMP17%\UltraLite\ directory of your SQL Anywhere installation.

Persistent Data [page 710]
The UltraLite database is stored in the Microsoft Windows Mobile file system.

Assigning Class Names for Applications [page 711]
Assign a distinct class name for your application if you are using MFC. When registering applications for
use with ActiveSync you must supply a window class name.

Microsoft Windows Mobile Synchronization [page 712]
UltraLite applications on Microsoft Windows Mobile can synchronize through the Microsoft ActiveSync,
TCP/IP, and HTTP stream types.

3.2.3.1 CustDB Sample Application

CustDB is a simple sales-status application that is provided as a Microsoft Visual Studio solution. It is located in
the %SQLANYSAMP17%\UltraLite\ directory of your SQL Anywhere installation.

 Note
The sample project uses environment variables wherever possible. It may be necessary to adjust the
project for the application to build properly. If you experience problems, try searching for missing files in
the Microsoft Visual C++ folder(s) and adding the appropriate directory settings.

In this section:

Building the CustDB Sample Application [page 710]
Build the CustDB sample application to see how an application interfaces with an UltraLite database.

Related Information

Embedded SQL Application Building [page 706]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 709

3.2.3.1.1 Building the CustDB Sample Application

Build the CustDB sample application to see how an application interfaces with an UltraLite database.

Procedure

1. Start Microsoft Visual Studio.
2. Open the project file located in the %SQLANYSAMP17%\UltraLite\CustDB directory.

3. Click Build Set Configuration Manager to set the target platform.

Set an active solution platform of your choice.
4. Build the application:

• Click Build Deploy Solution to build and deploy CustDB.

When the application is built it will be uploaded automatically to the remote device.
5. Start the MobiLink server:

• To start the MobiLink server, click Start Programs SQL Anywhere 17 MobiLink
Synchronization Server Sample .

6. Run the CustDB application:

Before running the CustDB application, the custdb database must be copied to the root folder of the
device. Copy the database file named %SQLANYSAMP17%\UltraLite\CustDB\custdb.udb to the root
of the device.

On the device or simulator, execute CustDB.exe, which is located in the project folder under \Program
Files.

Results

The CustDB application loads.

3.2.3.2 Persistent Data

The UltraLite database is stored in the Microsoft Windows Mobile file system.

The default file is \UltraLiteDB\ul_store.udb. You can override this choice using the file_name
connection parameter which specifies the full path name of the file-based persistent store.

The UltraLite runtime carries out no substitutions on the file_name parameter. If a directory has to be created
for the file name to be valid, the application must ensure that any directories are created before calling db_init.

710 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

As an example, you could make use of a flash memory storage card by scanning for storage cards and prefixing
a name by the appropriate directory name for the storage card. For example:

file_name = "\\Storage Card\\My Documents\\flash.udb"

3.2.3.3 Assigning Class Names for Applications

Assign a distinct class name for your application if you are using MFC. When registering applications for use
with ActiveSync you must supply a window class name.

Prerequisites

Assigning class names is carried out at development time and your application development tool
documentation is the primary source of information about the topic.

Procedure

1. Create and register a custom window class for dialog boxes, based on the default class.

Add the following code to your application's startup code. The code must be executed before any dialogs
get created.

WNDCLASS wc; if(! GetClassInfo(NULL, L"Dialog", &wc)) {
 AfxMessageBox(L"Error getting class info");
}
wc.lpszClassName = L"MY_APP_CLASS";
if(! AfxRegisterClass(&wc)) {
 AfxMessageBox(L"Error registering class"); }

where MY_APP_CLASS is the unique class name for your application.

2. Determine which dialog is the main dialog for your application.

If your project was created with the MFC Application Wizard, this is likely to be a dialog named MyAppDlg.
3. Find and record the resource ID for the main dialog.

The resource ID is a constant of the same general form as IDD_MYAPP_DIALOG.
4. Ensure that the main dialog remains open any time your application is running.

Add the following code to your application's InitInstance method.

m_pMainWnd = &dlg;

The code ensures that if the dlg main dialog is closed, the application also closes. For more information,
see the Microsoft documentation for CWinThread::m_pMainWnd.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 711

If the dialog does not remain open for the duration of your application, you must change the window class
of other dialogs as well.

5. Save your changes.
6. Modify the resource file for your project.

Open your resource file (which has an extension of .rc) in a text editor such as Notepad.

7. Locate the resource ID of your main dialog.

Change the main dialog's definition to use the new window class as in the following example. The only
change that you should make is the addition of the CLASS line:

IDD_MYAPP_DIALOG DIALOG DISCARDABLE 0, 0, 139, 103 STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION
EXSTYLE WS_EX_APPWINDOW | WS_EX_CAPTIONOKBTN
CAPTION "MyApp"
FONT 8, "System"
CLASS "MY_APP_CLASS"
BEGIN
 LTEXT "TODO: Place dialog controls here.",IDC_STATIC,13,33,112,17 END

where MY_APP_CLASS is the name of the window class you used earlier.

8. Save the .rc file.

9. Add code to catch the synchronization message.

Results

A distinct class name for your application is created.

Related Information

Adding ActiveSync Synchronization in the Main Dialog Class [page 714]

3.2.3.4 Microsoft Windows Mobile Synchronization

UltraLite applications on Microsoft Windows Mobile can synchronize through the Microsoft ActiveSync, TCP/IP,
and HTTP stream types.

The user_name and stream_parms parameters must be surrounded by the UL_TEXT() macro for Microsoft
Windows Mobile when initializing, since the compilation environment is Unicode wide characters.

In this section:

Microsoft ActiveSync Synchronization in UltraLite C++ [page 713]

712 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Microsoft ActiveSync handles data synchronization between a desktop computer running Microsoft
Windows and a connected Microsoft Windows Mobile handheld device. UltraLite supports Microsoft
ActiveSync versions 3.5 and later.

Microsoft ActiveSync Synchronization in UltraLite C++ (Windows API) [page 714]
If you are programming directly to the Windows API, you must handle the message from the MobiLink
provider in your application's WindowProc function, using the ULIsSynchronizeMessage function to
determine if it has received the message.

Adding ActiveSync Synchronization in the Main Dialog Class [page 714]
Catch synchronization messages in your main dialog class.

Adding ActiveSync Synchronization in the Application Class [page 716]
Catch synchronization messages in your application class.

TCP/IP, HTTP, or HTTPS Synchronization from Microsoft Windows Mobile [page 717]
For TCP/IP, HTTP, or HTTPS synchronization, the application controls when synchronization occurs.
Your application should provide a menu item or user interface control so that the user can request
synchronization.

3.2.3.4.1 Microsoft ActiveSync Synchronization in UltraLite
C++

Microsoft ActiveSync handles data synchronization between a desktop computer running Microsoft Windows
and a connected Microsoft Windows Mobile handheld device. UltraLite supports Microsoft ActiveSync versions
3.5 and later.

If you use Microsoft ActiveSync, synchronization can be initiated only by Microsoft ActiveSync itself. Microsoft
ActiveSync automatically initiates a synchronization when the device is placed in the cradle or when
Synchronize is selected from the Microsoft ActiveSync window. The MobiLink provider starts the application, if
it is not already running, and sends a message to the application.

The Microsoft ActiveSync provider uses the wParam parameter. A wParam value of 1 indicates that the
MobiLink provider for Microsoft ActiveSync launched the application. The application must then shut itself
down after it has finished synchronizing. If the application was already running when called by the MobiLink
provider for Microsoft ActiveSync, wParam is 0. The application can ignore the wParam parameter if it wants to
keep running.

Adding synchronization depends on whether you are addressing the Microsoft Windows API directly or whether
you are using the Microsoft Foundation Classes. Both development models are described here.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 713

3.2.3.4.2 Microsoft ActiveSync Synchronization in UltraLite
C++ (Windows API)

If you are programming directly to the Windows API, you must handle the message from the MobiLink provider
in your application's WindowProc function, using the ULIsSynchronizeMessage function to determine if it has
received the message.

Here is an example of how to handle the message:

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 if(ULIsSynchronizeMessage(uMsg)) {
 DoSync();
 if(wParam == 1) DestroyWindow(hWnd);
 return 0;
 }
 switch(uMsg) {
 // code to handle other windows messages
 default:
 return DefWindowProc(hwnd, uMsg, wParam, lParam);
 }
 return 0; }

where DoSync is the method that actually calls ULSynchronize.

3.2.3.4.3 Adding ActiveSync Synchronization in the Main
Dialog Class

Catch synchronization messages in your main dialog class.

Prerequisites

You must use Microsoft Foundation Classes to develop your application

Context

Your application must create and register a custom window class name for notification.

714 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Procedure

1. Add a registered message and declare a message handler.

Find the message map in the source file for your main dialog (the name is of the same form as
CMyAppDlg.cpp). Add a registered message using the static and declare a message handler using
ON_REGISTERED_MESSAGE as in the following example:

static UINT WM_ULTRALITE_SYNC_MESSAGE = ::RegisterWindowMessage(UL_AS_SYNCHRONIZE);
BEGIN_MESSAGE_MAP(CMyAppDlg, CDialog)
 //{{AFX_MSG_MAP(CMyAppDlg)
 //}}AFX_MSG_MAP
 ON_REGISTERED_MESSAGE(WM_ULTRALITE_SYNC_MESSAGE,
 OnDoUltraLiteSync) END_MESSAGE_MAP()

2. Implement the message handler.

Add a method to the main dialog class with the following signature. This method is automatically executed
any time the MobiLink provider for ActiveSync requests that your application synchronize. The method
should call the ULSynchronize method.

LRESULT CMyAppDlg::OnDoUltraLiteSync(WPARAM wParam,
 LPARAM lParam);

The return value of this function should be 0.

Results

The main dialog class performs a synchronization.

Related Information

Assigning Class Names for Applications [page 711]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 715

3.2.3.4.4 Adding ActiveSync Synchronization in the
Application Class

Catch synchronization messages in your application class.

Prerequisites

You must use Microsoft Foundation Classes to develop your application.

Your application must create and register a custom window class name for notification.

Procedure

1. Open the Class Wizard for the application class.
2. In the Messages list, highlight PreTranslateMessage and then click Add Function.
3. Click Edit Code.

The PreTranslateMessage method appears.
4. Change the PreTranslateMessage method to read as follows:

BOOL CMyApp::PreTranslateMessage(MSG* pMsg) {
 if(ULIsSynchronizeMessage(pMsg->message)) {
 DoSync();
 // close application if launched by provider
 if(pMsg->wParam == 1) {
 ASSERT(AfxGetMainWnd() != NULL);
 AfxGetMainWnd()->SendMessage(WM_CLOSE);
 }
 return TRUE; // message has been processed
 }
 return CWinApp::PreTranslateMessage(pMsg); }

where the DoSync method calls the ULSynchronize method.

Results

The PreTranslateMessage method performs a synchronization.

Related Information

Assigning Class Names for Applications [page 711]

716 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.2.3.4.5 TCP/IP, HTTP, or HTTPS Synchronization from
Microsoft Windows Mobile

For TCP/IP, HTTP, or HTTPS synchronization, the application controls when synchronization occurs. Your
application should provide a menu item or user interface control so that the user can request synchronization.

3.3 Tutorial: Building a Windows Application using the C++
API

This tutorial guides you through the process of building an UltraLite C++ application. The application is built for
Windows desktop operating systems, and runs at a command prompt.

Prerequisites

This tutorial assumes:

• You are familiar with the C++ programming language
• You have a C++ compiler installed on your computer
• You know how to create an UltraLite database with the Create Database Wizard.

Context

The goal for the tutorial is to gain competence with the process of developing an UltraLite C++ application.

This tutorial is based on development using Microsoft Visual C++, although you can also use any C++
development environment.

The tutorial takes about 30 minutes if you copy and paste the code. The final section of this tutorial contains
the full source code of the program described in this tutorial.

1. Lesson 1: Creating and Connecting to a Database [page 718]
In this lesson, you create an UltraLite database. You then write, compile, and run a C++ application that
accesses the database you created.

2. Lesson 2: Inserting Data into the Database [page 721]
In this lesson, you add data to a database.

3. Lesson 3: Selecting and Listing Rows from the Table [page 723]
In this lesson, you retrieve rows from the table and print them on the command line.

4. Lesson 4: Adding Synchronization to Your Application [page 725]
In this lesson, you add synchronization code to your application, start the MobiLink server, and run your
application to synchronize with the consolidated database.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 717

5. Reviewing the Code Listing for the Tutorial [page 726]
The following is the complete code for the tutorial program described in the preceding sections.

3.3.1 Lesson 1: Creating and Connecting to a Database

In this lesson, you create an UltraLite database. You then write, compile, and run a C++ application that
accesses the database you created.

Prerequisites

This lesson assumes that you have installed the required software.

Procedure

1. Set the VCINSTALLDIR environment variable to the root directory of your Microsoft Visual C++ installation
if the variable does not already exist.

2. Add %VCINSTALLDIR%\VC\atlmfc\src\atl to your INCLUDE environment variable.

3. Create a directory to contain the files you will create in this tutorial.

The remainder of this tutorial assumes that this directory is C:\tutorial\cpp\. If you create a directory
with a different name, use that directory instead of C:\tutorial\cpp\.

4. Using UltraLite in SQL Central, create a database named ULCustomer.udb in your new directory with the
default characteristics.

5. Add a table named ULCustomer to the database. Use the following specifications for the ULCustomer
table:

Column name Data type (size)
Columns allows
NULL values? Default value Primary key

cust_id integer No autoincrement ascending

cust_name varchar(30) No None

6. Disconnect from the database in SQL Central, otherwise your executable will not be able to connect.

7. In Microsoft Visual C++, click File New .
8. On the Files tab, click C++ Source File.
9. Save the file as customer.cpp in your tutorial directory.

10. Include the UltraLite libraries.

Copy the code below into customer.cpp:

#include <tchar.h> #include <stdio.h>
#include "ulcpp.h"

718 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

#define MAX_NAME_LEN 100 #define MAX_ERROR_LEN 256

11. Define connection parameters to connect to the database.

In this code fragment, the connection parameters are hard coded. In a real application, the locations might
be specified at runtime.

Copy the code below into customer.cpp.

static ul_char const * ConnectionParms = "UID=DBA;PWD=sql;DBF=C:\\tutorial\\cpp\\ULCustomer.udb";

 Note
A backslash character that appears in the file name location string must be escaped by a preceding
backslash character.

12. Define a method for handling database errors in the application.

UltraLite provides a callback mechanism to notify the application of errors. In a development environment
this method can be useful as a mechanism to handle errors that were not anticipated. A production
application typically includes code to handle all common error situations. An application can check for
errors after every call to an UltraLite method or can choose to use an error callback function.

The following code is a sample callback function:

ul_error_action UL_CALLBACK_FN MyErrorCallBack(const ULError * error,
 ul_void * user_data)
{
 ul_error_action rc;
 an_sql_code code = error->GetSQLCode();

 (void) user_data;
 switch(code){
 // The following error is used for flow control - don't report it here
 case SQLE_NOTFOUND:
 rc = UL_ERROR_ACTION_CONTINUE;
 break;
 default:
 if (code >= 0) { // warning or success
 rc = UL_ERROR_ACTION_DEFAULT;
 } else { // negative is real error
 ul_char etext[MAX_ERROR_LEN];
 error->GetString(etext, MAX_ERROR_LEN);
 _tprintf("Error %ld: %s\n", code, etext);
 rc = UL_ERROR_ACTION_CANCEL;
 }
 break;
 }
 return rc; }

In UltraLite, the error SQLE_NOTFOUND is often used to control application flow. That error is signaled to
mark the end of a loop over a result set. The generic error handler coded above does not output a message
for this error condition.

13. Define a method to open a connection to a database.

static ULConnection * open_conn(void) { ULConnection * conn =
ULDatabaseManager::OpenConnection(ConnectionParms);

UltraLite Administration
UltraLite - C++ Programming PUBLIC 719

 if(conn == UL_NULL) {
 _tprintf("Unable to open existing database.\n");
 }
 return conn; }

If the database file does not exist, an error message is displayed, otherwise a connection is established.
14. Implement the main method to perform the following tasks:

• Registers the error handling method.
• Opens a connection to the database.
• Closes the connection and finalizes the database manager.

int main() { ULConnection * conn;
 ULDatabaseManager::Init();
 ULDatabaseManager::SetErrorCallback(MyErrorCallBack, NULL);
 conn = open_conn();
 if (conn == UL_NULL) {
 ULDatabaseManager::Fini();
 return 1;
 }
 // Main processing code goes here ...
 conn->Close();
 ULDatabaseManager::Fini();
 return 0; }

15. Compile and link the source file.

The method you use to compile the source file depends on your compiler. The following instructions are for
the Microsoft Visual C++ command line compiler using a makefile:

a. Open a command prompt and change to your tutorial directory.
b. Create a makefile named makefile.
c. In the makefile, add directories to your include path.

IncludeFolders=/I"$(SQLANY17)\SDK\Include"

d. In the makefile, add directories to your libraries path.

LibraryFolders=/LIBPATH:"$(SQLANY17)\UltraLite\Windows\x86\Lib\vs9"

e. In the makefile, add libraries to your linker options.

Libraries=ulimp.lib

The UltraLite runtime library is named ulimp.lib.
f. In the makefile, set compiler options. You must enter these options on a single line.

CompileOptions=/c /nologo /W3 /Od /Zi /DWIN32 /DUL_USE_DLL

g. In the makefile, add an instruction for linking the application.

customer.exe: customer.obj link /NOLOGO /DEBUG customer.obj $(LibraryFolders) $(Libraries)

h. In the makefile, add an instruction for compiling the application.

customer.obj: customer.cpp

720 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

 cl $(CompileOptions) $(IncludeFolders) customer.cpp

i. Run vsvars32.bat.

%VCINSTALLDIR%\Tools\vsvars32.bat

j. Run the makefile.

nmake

This creates an executable named customer.exe.

16. Run the application.

At a command prompt, enter customer.

Results

The application connects to the database and then disconnects. The application runs successfully when you do
not see any error messages.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building a Windows Application using the C++ API [page 717]

Next task: Lesson 2: Inserting Data into the Database [page 721]

Related Information

Error Handling [page 665]

3.3.2 Lesson 2: Inserting Data into the Database

In this lesson, you add data to a database.

Prerequisites

You must have completed the previous lessons in this tutorial.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 721

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Add the method below to customer.cpp immediately before the main method:

static bool do_insert(ULConnection * conn) {
 ULTable * table = conn->OpenTable("ULCustomer");
 if(table == UL_NULL) {
 _tprintf("Table not found: ULCustomer\n");
 return false;
 }
 if(table->GetRowCount() == 0) {
 _tprintf("Inserting one row.\n");
 table->InsertBegin();
 table->SetString("cust_name", "New Customer");
 table->Insert();
 conn->Commit();
 } else {
 _tprintf("The table has %lu rows\n", table->GetRowCount());
 }
 table->Close();
 return true; }

This method performs the following tasks.

• Opens the table using the connection->OpenTable() method. You must open a Table object to perform
operations on the table.

• If the table is empty, adds a row to the table. To insert a row, the code changes to insert mode using the
InsertBegin method, sets values for each required column, and executes an insert to add the row to the
database.

• If the table is not empty, reports the number of rows in the table.
• Closes the Table object to free resources associated with it.
• Returns a boolean indicating whether the operation was successful.

2. Call the do_insert method you have created.

Add the following line to the main() method, immediately before the call to conn->Close.

do_insert(conn);

3. Compile your application by running nmake.
4. Run your application by typing customer at a command prompt.

Results

The application runs and you can insert data into the ULCustomer table.

722 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building a Windows Application using the C++ API [page 717]

Previous task: Lesson 1: Creating and Connecting to a Database [page 718]

Next task: Lesson 3: Selecting and Listing Rows from the Table [page 723]

3.3.3 Lesson 3: Selecting and Listing Rows from the Table

In this lesson, you retrieve rows from the table and print them on the command line.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Add the method below to customer.cpp immediately after the do_insert method.

static bool do_select(ULConnection * conn) {
 ULTable * table = conn->OpenTable("ULCustomer");
 if(table == UL_NULL) {
 return false;
 }
 ULTableSchema * schema = table->GetTableSchema();
 if(schema == UL_NULL) {
 table->Close();
 return false;
 }
 ul_column_num id_cid =
 schema->GetColumnID("cust_id");
 ul_column_num cname_cid =
 schema->GetColumnID("cust_name");
 schema->Close();
 _tprintf("\n\nTable 'ULCustomer' row contents:\n");
 while(table->Next()) {
 ul_char cname[MAX_NAME_LEN];
 table->GetString(cname_cid, cname, MAX_NAME_LEN);
 _tprintf("id=%d, name=%s \n", (int)table->GetInt(id_cid), cname);
 }
 table->Close();
 return true;

UltraLite Administration
UltraLite - C++ Programming PUBLIC 723

 }

This method carries out the following tasks:

• Opens the Table object.
• Retrieves the column identifiers.
• Sets the current position before the first row of the table.

Any operations on a table are carried out at the current position. The position may be before the first
row, on one of the rows of the table, or after the last row. By default, as in this case, the rows are
ordered by their primary key value (cust_id). To order rows in a different way, you can add an index to
an UltraLite database and open a table using that index.

• For each row, the cust_id and cust_name values are written out. The loop carries on until the Next
method returns false, which occurs after the final row.

• Closes the Table object.
2. Add the following line to the main method immediately after the call to the insert method:

do_select(conn);

3. Compile your application by running nmake.

4. Run your application by typing customer at a command prompt.

Results

A list of all the customer IDs and customer names in the ULCustomer table is outputted.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building a Windows Application using the C++ API [page 717]

Previous task: Lesson 2: Inserting Data into the Database [page 721]

Next task: Lesson 4: Adding Synchronization to Your Application [page 725]

724 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.3.4 Lesson 4: Adding Synchronization to Your Application

In this lesson, you add synchronization code to your application, start the MobiLink server, and run your
application to synchronize with the consolidated database.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Context

The UltraLite database you created in the previous lessons synchronizes with the UltraLite 17 Sample database.
The UltraLite 17 Sample database has a ULCustomer table whose columns include those in the customer table
of your local UltraLite database.

Procedure

1. Add the method below to customer.cpp.

static bool do_sync(ULConnection * conn) {
 ul_sync_info info;
 ul_stream_error * se = &info.stream_error;

 ULDatabaseManager::EnableTcpipSynchronization();
 conn->InitSyncInfo(&info);
 info.stream = "TCPIP";
 info.version = "custdb 17.0";
 info.user_name = "50";
 info.download_only = true;
 if(!conn->Synchronize(&info)) {
 _tprintf("Synchronization error \n");
 _tprintf(" stream_error_code is '%lu'\n", se->stream_error_code);
 _tprintf(" system_error_code is '%ld'\n", se->system_error_code);
 _tprintf(" error_string is '");
 _tprintf("%s", se->error_string);
 _tprintf("'\n");
 return false;
 }
 return true; }

This method carries out the following tasks:

• Enables TCP/IP communications by invoking EnableTcpipSynchronization. Synchronization can also
be carried out over HTTP, HTTPS, and TLS.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 725

• Sets the script version. MobiLink synchronization is controlled by scripts stored in the consolidated
database. The script version identifies which set of scripts to use.

• Sets the MobiLink user name. This value is used for authentication at the MobiLink server. It is distinct
from the UltraLite database user ID, although in some applications you may want to give them the
same value.

• Sets the download_only parameter to true. By default, MobiLink synchronization is two-way. This
application uses download-only synchronization so that the rows in your table do not get uploaded to
the sample database.

2. Place the following line of code to the main method after the do_select method call:

do_sync(conn);

3. Compile your application by running nmake.

4. Start the MobiLink server.

At a command prompt, run the following command:

mlsrv17 -c "dsn=SQL Anywhere 17 CustDB;uid=ml_server;pwd=sql" -v -vr -vs -zu+
-o custdbASA.log

The -zu+ option provides automatic addition of users. The -v+ option turns on verbose logging for all
messages.

5. Run your application by typing customer at a command prompt.

Results

The MobiLink server messages window displays status messages indicating the synchronization progress. If
synchronization is successful, the final message displays Synchronization complete.

Task overview: Tutorial: Building a Windows Application using the C++ API [page 717]

Previous task: Lesson 3: Selecting and Listing Rows from the Table [page 723]

Next: Reviewing the Code Listing for the Tutorial [page 726]

3.3.5 Reviewing the Code Listing for the Tutorial

The following is the complete code for the tutorial program described in the preceding sections.

#include <tchar.h> #include <stdio.h>
#include "ulcpp.h"
#define MAX_NAME_LEN 100
#define MAX_ERROR_LEN 256
static ul_char const * ConnectionParms =
 "UID=DBA;PWD=sql;DBF=c:\\tutorial\\cpp\\ULCustomer.udb";
ul_error_action UL_CALLBACK_FN MyErrorCallBack(

726 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

 const ULError * error,
 ul_void * user_data)
{
 ul_error_action rc;
 an_sql_code code = error->GetSQLCode();

 (void) user_data;
 switch(code){
 // The following error is used for flow control - don't report it here
 case SQLE_NOTFOUND:
 rc = UL_ERROR_ACTION_CONTINUE;
 break;
 default:
 if (code >= 0) { // warning or success
 rc = UL_ERROR_ACTION_DEFAULT;
 } else { // negative is real error
 ul_char etext[MAX_ERROR_LEN];
 error->GetString(etext, MAX_ERROR_LEN);
 _tprintf("Error %ld: %s\n", code, etext);
 rc = UL_ERROR_ACTION_CANCEL;
 }
 break;
 }
 return rc;
}
static ULConnection * open_conn(void) {
 ULConnection * conn = ULDatabaseManager::OpenConnection(ConnectionParms);
 if(conn == UL_NULL) {
 _tprintf("Unable to open existing database.\n");
 }
 return conn;
}
static bool do_insert(ULConnection * conn) {
 ULTable * table = conn->OpenTable("ULCustomer");
 if(table == UL_NULL) {
 _tprintf("Table not found: ULCustomer\n");
 return false;
 }
 if(table->GetRowCount() == 0) {
 _tprintf("Inserting one row.\n");
 table->InsertBegin();
 table->SetString("cust_name", "New Customer");
 table->Insert();
 conn->Commit();
 } else {
 _tprintf("The table has %lu rows\n",
 table->GetRowCount());
 }
 table->Close();
 return true;
}
static bool do_select(ULConnection * conn)
{
 ULTable * table = conn->OpenTable("ULCustomer");
 if(table == UL_NULL) {
 return false;
 }
 ULTableSchema * schema = table->GetTableSchema();
 if(schema == UL_NULL) {
 table->Close();
 return false;
 }
 ul_column_num id_cid =
 schema->GetColumnID("cust_id");
 ul_column_num cname_cid =
 schema->GetColumnID("cust_name");
 schema->Close();
 _tprintf("\n\nTable 'ULCustomer' row contents:\n");

UltraLite Administration
UltraLite - C++ Programming PUBLIC 727

 while(table->Next()) {
 ul_char cname[MAX_NAME_LEN];
 table->GetString(cname_cid, cname, MAX_NAME_LEN);
 _tprintf("id=%d, name=%s \n", (int)table->GetInt(id_cid), cname);
 }
 table->Close();
 return true;
}
static bool do_sync(ULConnection * conn)
{
 ul_sync_info info;
 ul_stream_error * se = &info.stream_error;

 ULDatabaseManager::EnableTcpipSynchronization();
 conn->InitSyncInfo(&info);
 info.stream = "TCPIP";
 info.version = "custdb 12.0";
 info.user_name = "50";
 info.download_only = true;
 if(!conn->Synchronize(&info)) {
 _tprintf("Synchronization error \n");
 _tprintf(" stream_error_code is '%lu'\n", se->stream_error_code);
 _tprintf(" system_error_code is '%ld'\n", se->system_error_code);
 _tprintf(" error_string is '");
 _tprintf("%s", se->error_string);
 _tprintf("'\n");
 return false;
 }
 return true;
}
int main()
{
 ULConnection * conn;
 ULDatabaseManager::Init();
 ULDatabaseManager::SetErrorCallback(MyErrorCallBack, NULL);
 conn = open_conn();
 if(conn == UL_NULL){
 ULDatabaseManager::Fini();
 return 1;
 }

 // Main processing code goes here ...
 do_insert(conn);
 do_select(conn);
 do_sync(conn);
 conn->Close();
 ULDatabaseManager::Fini();
 return 0; }

Parent topic: Tutorial: Building a Windows Application using the C++ API [page 717]

Previous task: Lesson 4: Adding Synchronization to Your Application [page 725]

3.4 API Reference

Use the UltraLite C++ API to develop mobile applications.

In this section:

728 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

UltraLite C++ Common API Reference [page 729]
Use functions and macros with the Embedded SQL or C++ interface.

UltraLite C++ API Reference [page 731]
UltraLite C++ offers a variety of API objects.

UltraLite Embedded SQL API Reference [page 731]
Embedded SQL applications support several UltraLite functions.

3.4.1 UltraLite C++ Common API Reference

Use functions and macros with the Embedded SQL or C++ interface.

Header File

• ulglobal.h

The UltraLite C++ common API reference is available in the UltraLite - C++ Common API Reference at https://
help.sap.com/viewer/ad706432629c4e249f93804b239a8377/LATEST/en-US.

In this section:

Macros and Compiler Directives for UltraLite C++ Applications [page 729]
Embedded SQL and C++ applications support a variety of directives. These directives apply to both
APIs unless otherwise specified.

3.4.1.1 Macros and Compiler Directives for UltraLite C++
Applications

Embedded SQL and C++ applications support a variety of directives. These directives apply to both APIs unless
otherwise specified.

You can supply compiler directives:

• On your compiler command line. You commonly set a directive with the /D option. For example, to compile
an UltraLite application with user authentication, a makefile for the Microsoft Visual C++ compiler may
look as follows:

CompileOptions=/c /DPRWIN32 /Od /Zi /DWIN32 /DUL_USE_DLL IncludeFolders= \
/I"$(VCDIR)\include" \ /I"$(SQLANY17)\SDK\Include" sample.obj: sample.cpp cl $(CompileOptions) $(IncludeFolders) sample.cpp

VCDIR and SQLANY17 are environment variables that point to their respective installation directories.

UltraLite Administration
UltraLite - C++ Programming PUBLIC 729

https://help.sap.com/viewer/ad706432629c4e249f93804b239a8377/LATEST/en-US
https://help.sap.com/viewer/ad706432629c4e249f93804b239a8377/LATEST/en-US

• In the compiler settings window of your user interface.
• In source code. You supply directives with the #define statement.

In this section:

UL_USE_DLL Macro [page 730]
Sets the application to use the runtime library DLL, rather than a static runtime library.

UNDER_CE Macro [page 730]
By default, this macro is defined in all new Microsoft Visual C++ Smart Device projects.

3.4.1.1.1 UL_USE_DLL Macro

Sets the application to use the runtime library DLL, rather than a static runtime library.

Remarks

Applies to Microsoft Windows Mobile and Microsoft Windows applications.

3.4.1.1.2 UNDER_CE Macro

By default, this macro is defined in all new Microsoft Visual C++ Smart Device projects.

Remarks

Applies to Microsoft Windows Mobile applications.

Example

/D UNDER_CE

Related Information

UltraLite Application Development for Microsoft Windows Mobile [page 708]

730 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.4.2 UltraLite C++ API Reference

UltraLite C++ offers a variety of API objects.

The following list describes some of the commonly used API objects:

ULDatabaseManager

Provides methods for managing databases and connections.
ULConnection

Represents a connection to an UltraLite database. You can create one or more ULConnection objects.
ULTable

Provides direct access to tables in the database.
ULPreparedStatement, ULResultSet, and ULResultSetSchema

Create Dynamic SQL statements, make queries, execute INSERT, UPDATE, and DELETE statements, and
attain programmatic control over database result sets.

Header File

• ulcpp.h

The UltraLite C++ API reference is available in the UltraLite - C++ API Reference at https://help.sap.com/
viewer/f22db01a54914581a1acf1b8fd359a6f/LATEST/en-US.

3.4.3 UltraLite Embedded SQL API Reference

Embedded SQL applications support several UltraLite functions.

Use the EXEC SQL INCLUDE SQLCA command to include prototypes for the functions in this chapter.

Header Files

• mlfiletransfer.h

• ulprotos.h

The UltraLite Embedded SQL API reference is available in the UltraLite - Embedded SQL API Reference at
https://help.sap.com/viewer/328faa6a0a4f4931b7e14006b07d7a2b/LATEST/en-US.

In this section:

db_fini Method [page 732]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 731

https://help.sap.com/viewer/f22db01a54914581a1acf1b8fd359a6f/LATEST/en-US
https://help.sap.com/viewer/f22db01a54914581a1acf1b8fd359a6f/LATEST/en-US
https://help.sap.com/viewer/328faa6a0a4f4931b7e14006b07d7a2b/LATEST/en-US

Frees resources used by the UltraLite runtime library.

db_init Method [page 733]
Initializes the UltraLite runtime library.

Related Information

UltraLite C++ Application Development Using Embedded SQL [page 676]

3.4.3.1 db_fini Method

Frees resources used by the UltraLite runtime library.

 Syntax

unsigned short db_fini(SQLCA * sqlca);

Returns

• 0 if an error occurs during processing. The error code is set in SQLCA.
• Non-zero if there are no errors.

Remarks

You must not make any other UltraLite library call or execute any Embedded SQL command after db_fini is
called.

Call db_fini once for each SQLCA being used.

Related Information

db_init Method [page 733]

732 PUBLIC
UltraLite Administration

UltraLite - C++ Programming

3.4.3.2 db_init Method

Initializes the UltraLite runtime library.

 Syntax

unsigned short db_init(SQLCA * sqlca);

Returns

• 0 if an error occurs during processing (for example, during initialization of the persistent store). The error
code is set in SQLCA.

• Non-zero if there are no errors. You can begin using Embedded SQL commands and functions.

Remarks

You must call this function before you make any other UltraLite library call, and before you execute any
Embedded SQL command.

Usually you should only call this function once, passing the address of the global sqlca variable (as defined in
the sqlca.h header file). If you have multiple execution paths in your application, you can use more than one
db_init call, as long as each one has a separate sqlca pointer. This separate SQLCA pointer can be a user-
defined one, or could be a global SQLCA that has been freed using db_fini.

In multithreaded applications, each thread must call db_init to obtain a separate SQLCA. Carry out subsequent
connections and transactions that use this SQLCA on a single thread.

Initializing the SQLCA also resets any settings from previously called ULEnable functions. If you re-initialize a
SQLCA, you must issue any ULEnable functions the application requires.

Related Information

db_fini Method [page 732]

UltraLite Administration
UltraLite - C++ Programming PUBLIC 733

4 UltraLite - Java Programming

This book describes the UltraLiteJ programming interface. With UltraLiteJ, you can develop and deploy
database applications to Android devices.

In this section:

System Requirements and Supported Platforms [page 734]
UltraLiteJ supports the Android platform.

UltraLiteJ Application Development [page 734]
The UltraLiteJ API provides database functionality and synchronization to your Java applications.

Tutorial: Building an Android Application [page 753]
This tutorial guides you through the development of an application using the UltraLiteJ API and the
Eclipse environment. In this tutorial, you run the application on a Windows simulator.

UltraLiteJ API Reference [page 761]
UltraLiteJ has a variety of API objects.

4.1 System Requirements and Supported Platforms

UltraLiteJ supports the Android platform.

To develop UltraLiteJ applications, you must have a Java IDE, such as Android Studio.

Related Information

Supported Platforms

4.2 UltraLiteJ Application Development

The UltraLiteJ API provides database functionality and synchronization to your Java applications.

The API contains all the methods required to connect to an UltraLite database, perform schema operations,
and maintain data using SQL statements. Advanced operations, such as data encryption and synchronization,
are also supported.

734 PUBLIC
UltraLite Administration

UltraLite - Java Programming

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/8155387d6ce21014937df18c3511be8f.html

 Note
The UltraLiteJ API shares a common C++ code base with UltraLite for other platforms and its behavior is
similar to that of other platforms. There are a few features available for accessing tables and rows without
using SQL statements for which no API is provided on Android.

In this section:

Quick Start Guide to UltraLiteJ Application Development [page 736]
When creating an UltraLiteJ application, you typically complete several data management tasks in your
application code.

Android Setup Considerations [page 736]
There are UltraLiteJ API considerations to make before developing applications for Android devices.

UltraLite Database Creation and Connection Approaches [page 737]
Java applications must connect to a database before operations can be performed on the data. An
UltraLite database can be created and connected to with a specified password using the UltraLiteJ API.

Quick Start Guide to Schema Operations and Data Management [page 739]
Create, update, or retrieve tables, indexes, foreign keys, publications, and rows in your database using
SQL statements and queries.

Schema Information in UltraLiteJ [page 748]
You can programmatically retrieve database schema descriptions. These descriptions are known as
schema information and are accessible using system tables and the UltraLiteJ API schema interfaces.

Error Handling in UltraLiteJ [page 749]
You can use the ULjException and SQLCode classes to handle errors. Most UltraLite methods throw
ULjException errors.

MobiLink Data Synchronization Using UltraLiteJ [page 750]
Data synchronization can be performed using HTTP or HTTPS network protocols. HTTPS
synchronization provides secure encryption to the MobiLink server.

Deploying an UltraLiteJ application for Android [page 751]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, method calls, and deployment files to ensure that your UltraLiteJ application runs
successfully on Android smartphones.

Code Examples [page 753]
All coding examples that use the UltraLiteJ API can be found in the %SQLANYSAMP17%\UltraLiteJ
\ directory.

Related Information

UltraLite Overview [page 8]
Benefits of UltraLite APIs for Microsoft Windows Mobile [page 21]

UltraLite Administration
UltraLite - Java Programming PUBLIC 735

4.2.1 Quick Start Guide to UltraLiteJ Application
Development

When creating an UltraLiteJ application, you typically complete several data management tasks in your
application code.

1. Import the UltraLiteJ API package into your Java file(s).
The UltraLiteJ package name and location depends on the device you are developing applications for.

2. Create a new Configuration object to create or connect to a database.
Configuration objects define where the client database is located or where it should be created. They also
specify the username and password required to connect to the database. Variations of a Configuration
object are available for different devices and for non-persistent database stores.

3. Create a new Connection object.
Connection objects connect to a client database using the specifications defined in the Configuration
object.

4. Create or modify the database schema using SQL statements, and use the PreparedStatement interface to
query the database.
You can use SQL statements to create or update tables, indexes, foreign keys, and publications for your
database.
PreparedStatement objects query the database associated with the Connection object. They accept
supported SQL statements, which are passed as strings. You can use PreparedStatement objects to
update the contents of the database.

5. Generate ResultSet objects.
ResultSet objects are created when the Connection object executes a PreparedStatement containing a
SQL SELECT statement. You can use ResultSet objects to obtain rows of query results to view the table
contents of the database.

Related Information

UltraLite SQL Statements [page 516]

4.2.2 Android Setup Considerations

There are UltraLiteJ API considerations to make before developing applications for Android devices.

JAR Resource Files

When setting up an application for the UltraLiteJ API, make sure that your project is correctly configured to use
the appropriate UltraLiteJ17.jar or UltraLiteJNI17.jar file.

The UltraLiteJ API is stored in the UltraLite\UltraLiteJ\Android\UltraLiteJNI17.jar file of your
SQL Anywhere installation. You must configure your Android development project to include the
UltraLiteJNI17.jar file in the classpath.

736 PUBLIC
UltraLite Administration

UltraLite - Java Programming

Use the following statement to import the UltraLiteJ package into your Java file:

import com.sap.ultralitejni17.*;

All coding samples and tutorials contained in this document assume that the above statement is specified and
that you are familiar with developing Java applications in Eclipse.

4.2.3 UltraLite Database Creation and Connection
Approaches

Java applications must connect to a database before operations can be performed on the data. An UltraLite
database can be created and connected to with a specified password using the UltraLiteJ API.

 Note
To create an UltraLite database without using the UltraLiteJ API, use SQL Central or UltraLite command
line utilities.

A Configuration object is used to configure a database store. Several implementations of a Configuration
object are provided. A unique implementation exists for every type of database store supported by the
UltraLiteJ API. Each implementation provides a set of methods used to configure the database store.

The following table lists the available Configuration object implementations for the supported database stores:

Store type UltraLiteJ API support

Android file system ConfigFileAndroid interface

Non-persistent (in memory) ConfigNonPersistent interface

After creating and configuring a Configuration object, you use a Connection object to create or connect to the
database. Connection objects can also be used to perform the following operations:

Transactions

A transaction is the set of operations between commits or rollbacks. For persistent database stores, a
commit makes permanent any changes since the last commit or rollback. A rollback returns the database
to the state it was in when the last commit was invoked.

Each transaction and row-level operation in UltraLite is atomic. An insert involving multiple columns either
inserts data to all the columns or to none of the columns.

Transactions must be committed to the database using the commit method of the Connection object.
Prepared SQL statements

Methods are provided by the PreparedStatement interface to handle SQL statements. A
PreparedStatement can be created using the prepareStatement method of the Connection object.
Synchronizations

A set of objects governing MobiLink synchronization is accessed from the Connection object.

In this section:

Creating or Connecting to a Database [page 738]

UltraLite Administration
UltraLite - Java Programming PUBLIC 737

Use the UltraLiteJ API with your Java application to create or connect to a database.

Related Information

UltraLite Database Creation Approaches [page 26]
MobiLink File Transfers [page 88]
UltraLite Database Unload Utility (ulunload) [page 243]

4.2.3.1 Creating or Connecting to a Database

Use the UltraLiteJ API with your Java application to create or connect to a database.

Prerequisites

An existing Java application for an Android device that implements the UltraLiteJ API.

Procedure

1. Create a new Configuration object that references the database name and is appropriate for your platform.

In the following examples, config is the Configuration object name and DBname is the database name.

ConfigFileAndroid config = DatabaseManager.createConfigurationFileAndroid(
 "DBname.udb",
 getApplicationContext());

2. Set database properties using methods of the Configuration object.

For example, you may set a new database password using the setPassword method:

config.setPassword("my_password");

Use the setCreationString and setConnectionString methods to set additional creation and connection
parameters, respectively.

3. Create a Connection object to create or connect to the database:

Connection conn = DatabaseManager.createDatabase(config);

The DatabaseManager.createDatabase method creates the database and returns a connection to it.

738 PUBLIC
UltraLite Administration

UltraLite - Java Programming

In the above example, the following code is used to connect to an existing database:

Connection conn = DatabaseManager.connect(config);

The connect method finalizes the database connection process. If the database does not exist, an error is
thrown.

Results

You can execute SQL statements from your Java application to create the tables and indexes in your database
but you cannot change certain database creation parameters, such as the database name, password, or page
size.

Related Information

UltraLite Options [page 143]
UltraLite Connection Parameters [page 181]

4.2.4 Quick Start Guide to Schema Operations and Data
Management

Create, update, or retrieve tables, indexes, foreign keys, publications, and rows in your database using SQL
statements and queries.

When performing schema operations to manage data, you typically perform the following tasks in your
application code:

1. Perform schema operations.
Manage and modify the schema by using SQL statements such as CREATE TABLE or CREATE INDEX on
the database connection.

2. Manage row operations.
Manage data in tables using SQL statements such as INSERT, UPDATE, or DELETE on the database
connection.

3. Retrieve row data in a result set.
Retrieve a result set using the SELECT statement, and then traverse the row data using result set
navigation methods, such as previous and next.

In this section:

Example: Managing Database Operations on an Android Device [page 740]
This example illustrates how to create a sample class in an Android application that uses the UltraLiteJ
API to create a database and perform basic data operations.

Schema Operations [page 743]

UltraLite Administration
UltraLite - Java Programming PUBLIC 739

General database operations, such as table creation, can be conducted using the PreparedStatement
object.

Row Operation Management [page 744]
Row operations can be managed using the Connection and PreparedStatement objects.

Row Data Retrieval [page 747]
Data can be retrieved using the executeQuery method and the navigational methods in a ResultSet
object.

4.2.4.1 Example: Managing Database Operations on an
Android Device

This example illustrates how to create a sample class in an Android application that uses the UltraLiteJ API to
create a database and perform basic data operations.

The example illustrates the following operations:

• Create a table in a database
• Insert new rows into the table
• Update a row in the table
• Delete a row from the table
• Commit changes to the database
• Select all rows from the table by creating a result set
• Traverse the result set to view the rows in the database

In addition to performing these operations, the class contains a method named PrintText that is used to output
successful operations to the log (see the LogCat tab in Eclipse), and a HandleError method that is used to
report errors that may occur while performing UltraLiteJ API operations.

package com.sampleapp; import android.app.Activity;
import android.os.Bundle;
import android.util.Log; import com.sap.ultralitejni17.*; public class NewUltraLiteJAppActivity extends Activity {
 Connection _conn = null;
 ResultSet _departments = null;
 PreparedStatement _inserter = null;
 PreparedStatement _updater = null;
 PreparedStatement _deleter = null;
 PreparedStatement _preparer = null;
 public void PrintText(String strText) {
 Log.i("NewUltraLiteJAppActivity", strText);
 }
 public void HandleError(ULjException err) {
 Log.w("NewUltraLiteJAppActivity", "Exception: " + err.toString());
 }
 public Connection GetDatabase(String strFilename) {
 ConfigFileAndroid config = null;
 Connection dbConnection = null;
 try {
 config = DatabaseManager.createConfigurationFileAndroid(
 strFilename, getApplicationContext()
);
 dbConnection = DatabaseManager.connect(config);

740 PUBLIC
UltraLite Administration

UltraLite - Java Programming

 PrintText("Successfully connected to the database at: "
 + strFilename);
 } catch(ULjException ex) {
 if (config != null) {
 try {
 dbConnection = DatabaseManager.createDatabase(config);
 PrintText("Successfully created a new database at: "
 + strFilename);
 } catch(ULjException exception) {
 HandleError(exception);
 }
 }
 HandleError(ex);
 }
 return dbConnection;
 }
 public void Commit() {
 try {
 _conn.commit();
 } catch (ULjException e1) {
 HandleError(e1);
 }
 }
 public void CloseDatabase() {
 try {
 _conn.release();
 } catch (ULjException e) {
 HandleError(e);
 }
 }
 public void ExecuteSQLStatement(String strSQLstmt) {
 PreparedStatement ps;
 try {
 ps = _conn.prepareStatement(strSQLstmt);
 ps.execute();
 ps.close();
 PrintText("Successfully executed: " + strSQLstmt);
 } catch (ULjException e) {
 HandleError(e);
 }
 }
 public void InitStatements() {
 String stmt;
 try {
 stmt = "INSERT INTO Department(dept_no, name) VALUES (?,?)";
 _inserter = _conn.prepareStatement(stmt);
 stmt = "UPDATE Department SET dept_no = ? WHERE dept_no = ?";
 _updater = _conn.prepareStatement(stmt);
 stmt = "DELETE FROM Department WHERE dept_no = ?";
 _deleter = _conn.prepareStatement(stmt);
 } catch (ULjException e) {
 HandleError(e);
 }
 }
 public void FiniStatements() {
 try {
 _departments.close();
 _inserter.close();
 _updater.close();
 _deleter.close();
 _preparer.close();
 } catch (ULjException e) {
 HandleError(e);
 }
 }
 public void AddDepartment(int deptID, String deptName) {
 try {
 _inserter.set(1, deptID);

UltraLite Administration
UltraLite - Java Programming PUBLIC 741

 _inserter.set(2, deptName);
 _inserter.execute();
 PrintText("Successfully executed:"
 + " INSERT INTO Department(dept_no, name)"
 + " VALUES (" + deptID + "," + deptName + ")");
 } catch (ULjException e) {
 HandleError(e);
 }
 }
 public void UpdateDepartment(int deptIDold, int deptIDnew) {
 try {
 _updater.set(1, deptIDnew);
 _updater.set(2, deptIDold);
 _updater.execute();
 PrintText("Successfully executed:"
 + " UPDATE Department SET dept_no = " + deptIDnew
 + " WHERE dept_no = " + deptIDold);
 } catch (ULjException e) {
 HandleError(e);
 }
 }
 public void DeleteDepartment(int deptID) {
 try {
 _deleter.set(1, deptID);
 _deleter.execute();
 PrintText("Successfully executed:"
 + " DELETE FROM Department WHERE dept_no = " + deptID);
 } catch (ULjException e) {
 HandleError(e);
 }
 }
 public ResultSet SelectDepartmentRows() {
 String stmt = "SELECT * FROM Department ORDER BY dept_no";
 _preparer = null;
 _departments = null;
 try {
 _preparer = _conn.prepareStatement(stmt);
 _departments = _preparer.executeQuery();
 PrintText("Successfully executed: " + stmt);
 } catch (ULjException e) {
 HandleError(e);
 }
 return _departments;
 }
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 PrintText("Starting application...");

 _conn = GetDatabase("test.udb");
 if (_conn == null) {
 return;
 }

 String[] stmt = new String[3];

 stmt[0] = "CREATE TABLE Department("
 + "dept_no INT PRIMARY KEY, "
 + "name CHAR(50) NOT NULL)";
 stmt[1] = "CREATE TABLE Employee("
 + "id INT PRIMARY KEY, "
 + "last_name CHAR(50) NOT NULL, "
 + "first_name CHAR(50) NOT NULL, "
 + "dept_id INT NOT NULL, "
 + "NOT NULL FOREIGN KEY(dept_id) "
 + "REFERENCES Department(dept_no))";
 stmt[2] = "CREATE INDEX ON Employee(last_name, first_name)";

742 PUBLIC
UltraLite Administration

UltraLite - Java Programming

 for(int i = 0; i< stmt.length; i++) {
 ExecuteSQLStatement(stmt[i]);
 }
 InitStatements();
 AddDepartment(101, "Electronics");
 AddDepartment(105, "Sales");
 AddDepartment(109, "Accounting");
 UpdateDepartment(101, 102);
 DeleteDepartment(102);
 Commit();
 _departments = SelectDepartmentRows();
 if (_departments != null) {
 try {
 while(_departments.next()) {
 int dept_no = _departments.getInt(1);
 String dept_name = _departments.getString(2);
 PrintText("Department no.:" + dept_no
 + " Department name: " + dept_name);
 }
 } catch (ULjException e) {
 HandleError(e);
 }
 }

 FiniStatements();
 CloseDatabase();
 PrintText("Closing application...");
 finish();
 } }

Related Information

UltraLite SQL Statements [page 516]

4.2.4.2 Schema Operations

General database operations, such as table creation, can be conducted using the PreparedStatement object.

Perform schema operations by following these general tasks:

1. Construct a SQL statement in a String variable.
2. Create a PreparedStatement object by passing the String variable to the Connection.prepareStatement

method.
3. Call the PreparedStatement.execute method to perform the operation on the database.
4. Close the PreparedStatement object to free resources.

Example

The code referenced in this example is part of a complete sample that illustrates how to perform basic schema
and data management operations using the UltraLiteJ API.

UltraLite Administration
UltraLite - Java Programming PUBLIC 743

Individual CREATE TABLE and CREATE INDEX statements are constructed and passed to a custom method
named ExecuteSQLStatement to perform all necessary schema operations:

String[] stmt = new String[3]; stmt[0] = "CREATE TABLE Department("
 + "dept_no INT PRIMARY KEY, "
 + "name CHAR(50) NOT NULL)";
stmt[1] = "CREATE TABLE Employee("
 + "id INT PRIMARY KEY, "
 + "last_name CHAR(50) NOT NULL, "
 + "first_name CHAR(50) NOT NULL, "
 + "dept_id INT NOT NULL, "
 + "NOT NULL FOREIGN KEY(dept_id) "
 + "REFERENCES Department(dept_no))";
stmt[2] = "CREATE INDEX ON Employee(last_name, first_name)";

for(int i = 0; i< stmt.length; i++) {
 ExecuteSQLStatement(stmt[i]); }

The ExecuteSQLStatement method consists of the following code:

public void ExecuteSQLStatement(String strSQLstmt) { PreparedStatement ps;
 try {
 ps = _conn.prepareStatement(strSQLstmt);
 ps.execute();
 ps.close();
 PrintText("Successfully executed: " + strSQLstmt);
 } catch (ULjException e) {
 HandleError(e);
 } }

Related Information

Example: Managing Database Operations on an Android Device [page 740]

4.2.4.3 Row Operation Management

Row operations can be managed using the Connection and PreparedStatement objects.

Manage row operations by performing the following general tasks:

1. Construct a SQL statement in a String variable.
2. Create a PreparedStatement object by passing the String variable to the Connection.prepareStatement

method.
3. Set any host variables, indicated by the question mark (?) character, by using the PreparedStatement.set

method.
Each host variable can be referenced in accordance to its ordinal position in the statement. For example,
the first ? is referenced as 1, and the second as 2. The set method, illustrated in the example below, allows
you to reference the ordinal position of the variable and specify a new value.

4. Call the PreparedStatement.execute method to perform the operation on the database.

744 PUBLIC
UltraLite Administration

UltraLite - Java Programming

5. Commit the changes to the database by calling the Connection.commit method to make the changes
permanent; otherwise, call the Connection.rollback method.
Transactions must be explicitly committed or rolled back by using the methods supported by the
Connection interface.

6. Close the PreparedStatement object to free resources.

Example

The code referenced in this example is part of a complete sample that illustrates how to perform basic schema
and data management operations using the UltraLiteJ API.

Global PreparedStatement objects are defined and instantiated by an InitStatements method call. Data insert,
update, and delete operations are illustrated in the custom AddDepartment, UpdateDepartment, and
DeleteDepartment methods, respectively. The Commit method illustrates how to make the row operations
permanent. The FiniStatements method closes the global PreparedStatement objects and frees resources.

Connection _conn = null; ResultSet _departments = null;
PreparedStatement _inserter = null;
PreparedStatement _updater = null;
PreparedStatement _deleter = null;
PreparedStatement _preparer = null;
public void InitStatements() {
 String stmt;
 try {
 stmt = "INSERT INTO Department(dept_no, name) VALUES (?,?)";
 _inserter = _conn.prepareStatement(stmt);
 stmt = "UPDATE Department SET dept_no = ? WHERE dept_no = ?";
 _updater = _conn.prepareStatement(stmt);
 stmt = "DELETE FROM Department WHERE dept_no = ?";
 _deleter = _conn.prepareStatement(stmt);
 } catch (ULjException e) {
 HandleError(e);
 }
}
public void FiniStatements() {
 try {
 _departments.close();
 _inserter.close();
 _updater.close();
 _deleter.close();
 _preparer.close();
 } catch (ULjException e) {
 HandleError(e);
 }
}
public void AddDepartment(int deptID, String deptName) {
 try {
 _inserter.set(1, deptID);
 _inserter.set(2, deptName);
 _inserter.execute();
 PrintText("Successfully executed:"
 + " INSERT INTO Department(dept_no, name)"
 + " VALUES (" + deptID + "," + deptName + ")");
 } catch (ULjException e) {
 HandleError(e);
 }
}
public void UpdateDepartment(int deptIDold, int deptIDnew) {
 try {

UltraLite Administration
UltraLite - Java Programming PUBLIC 745

 _updater.set(1, deptIDnew);
 _updater.set(2, deptIDold);
 _updater.execute();
 PrintText("Successfully executed:"
 + " UPDATE Department SET dept_no = " + deptIDnew
 + " WHERE dept_no = " + deptIDold);
 } catch (ULjException e) {
 HandleError(e);
 }
}
public void DeleteDepartment(int deptID) {
 try {
 _deleter.set(1, deptID);
 _deleter.execute();
 PrintText("Successfully executed:"
 + " DELETE FROM Department WHERE dept_no = " + deptID);
 } catch (ULjException e) {
 HandleError(e);
 }
}
public void Commit() {
 try {
 _conn.commit();
 } catch (ULjException e1) {
 HandleError(e1);
 } }

 Note
String concatenation is recommended over host variable usage when constructing SQL statements that
must be executed only once.

For example, the following code, which uses String concatenation to construct SQL statements, can be
used to replace the DeleteDepartment method:

public void DeleteDepartment(int deptID) { String stmt = "DELETE FROM Department WHERE dept_no = " + deptID;
 PreparedStatement deleter;
 try {
 deleter = _conn.prepareStatement(stmt);
 deleter.execute();
 deleter.close();
 PrintText("Successfully executed: " + stmt);
 } catch (ULjException e) {
 HandleError(e);
 } }

Related Information

Example: Managing Database Operations on an Android Device [page 740]

746 PUBLIC
UltraLite Administration

UltraLite - Java Programming

4.2.4.4 Row Data Retrieval

Data can be retrieved using the executeQuery method and the navigational methods in a ResultSet object.

Retrieve row data from a table by performing the following general tasks:

1. Construct a SELECT SQL statement in a String variable.
2. Create a PreparedStatement object by passing the String variable to the Connection.prepareStatement

method.
3. Call the PreparedStatement.executeQuery method to assign the query results to a ResultSet object.
4. Traverse through the ResultSet object using the navigational methods to retrieve the row data.

The following navigational methods can be used to traverse a result set:

afterLast

Position immediately after the last row.
beforeFirst

Position immediately before the first row.
first

Move to the first row.
last

Move to the last row.
next

Move to the next row.
previous

Move to the previous row.
relative(offset)

Move a specified number of rows relative to the current row, as specified by the signed offset value.
Positive offset values move forward in the result set, relative to the current pointer position in the result
set. Negative offset values move backward in the result set. An offset value of zero does not move the
current location, but allows you to repopulate the row buffer.

5. Close the ResultSet and PreparedStatement objects to free resources.

Example

The code referenced in this example is part of a complete sample that illustrates how to perform basic schema
and data management operations using the UltraLiteJ API.

A result set is retrieved in the custom SelectDepartmentRows method:

public ResultSet SelectDepartmentRows() { String stmt = "SELECT * FROM Department ORDER BY dept_no";
 _preparer = null;
 _departments = null;
 try {
 _preparer = _conn.prepareStatement(stmt);
 _departments = _preparer.executeQuery();
 PrintText("Successfully executed: " + stmt);

UltraLite Administration
UltraLite - Java Programming PUBLIC 747

 } catch (ULjException e) {
 HandleError(e);
 }
 return _departments; }

Row data is retrieved by traversing through a result set using the next navigational method:

_departments = SelectDepartmentRows(); if (_departments != null) {
 try {
 while(_departments.next()) {
 int dept_no = _departments.getInt(1);
 String dept_name = _departments.getString(2);
 PrintText("Department no.:" + dept_no
 + " Department name: " + dept_name);
 }
 } catch (ULjException e) {
 HandleError(e);
 } }

Related Information

Example: Managing Database Operations on an Android Device [page 740]

4.2.5 Schema Information in UltraLiteJ

You can programmatically retrieve database schema descriptions. These descriptions are known as schema
information and are accessible using system tables and the UltraLiteJ API schema interfaces.

Accessing Schema Information Using System Tables

Database schema information is stored in UltraLite system tables. You can access this information by
executing a regular SQL query to select the desired information from the appropriate system table, and then
accessing the result set.

Accessing Schema Information Using Schema Interfaces

Some schema information can be accessed using schema interfaces instead of system tables. The UltraLiteJ
API contains the following schema interfaces:

TableSchema

Returns information about the column and index configurations.
IndexSchema

748 PUBLIC
UltraLite Administration

UltraLite - Java Programming

Returns information about the columns in the index. IndexSchema objects can be retrieved from
TableSchema objects.
ColumnSchema

Returns information about the columns in the table. ColumnSchema objects can be retrieved from
TableSchema objects.

Related Information

Row Data Retrieval [page 747]
UltraLite System Tables [page 248]

4.2.6 Error Handling in UltraLiteJ

You can use the ULjException and SQLCode classes to handle errors. Most UltraLite methods throw
ULjException errors.

SQLCode errors are negative numbers indicating the error type, and can be referenced using constants such as
ULjException.SQLE_INDEX_NOT_FOUND. You can use the ULjException.getErrorCode method to retrieve the
SQLCode value assigned to the error. You can use the ULjException.toString method to obtain a descriptive
text of the error.

Example

The following example illustrates a Java class that uses the ULjException class to handle an error that may
occur when connecting to an UltraLite database:

import com.sap.ultralitejni17.*; import java.util.log;
import android.content.Context;
class DataAccess {
 DataAccess() {
 }

 public static synchronized DataAccess getDataAccess(boolean reset)
 throws Exception
 {
 if (_da == null) {
 _da = new DataAccess();
 ConfigFileAndroid config =
DatabaseManager.createConfigurationFileAndroid("HelloDB.udb",
getApplicationContext());
 if (reset) {
 _conn = DatabaseManager.createDatabase(config);
 }
 else {
 try {
 _conn = DatabaseManager.connect(config);
 }
 catch (ULjException uex1) {

UltraLite Administration
UltraLite - Java Programming PUBLIC 749

 if (uex1.getErrorCode() !=
ULjException.SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
 Log.e("Exception: " + uex1.toString(), ". Recreating
database...");
 }
 _conn = DatabaseManager.createDatabase(config);
 }
 }
 }
 return _da;
 }
 private static Connection _conn;
 private static DataAccess _da; }

Related Information

SQL Anywhere Error Messages Sorted by SQLCODE

4.2.7 MobiLink Data Synchronization Using UltraLiteJ

Data synchronization can be performed using HTTP or HTTPS network protocols. HTTPS synchronization
provides secure encryption to the MobiLink server.

To synchronize data, your application must perform the following steps:

1. Instantiate a syncParms object, which contains information about the consolidated database (name of the
server, port number), the name of the database to be synchronized, and the definition of the tables to be
synchronized.

2. Call the synchronize method from the connection object with the syncParms object to perform the
synchronization.

The data to be synchronized can be defined at the table level. You cannot configure synchronization for
portions of a table.

The CustDB tutorial demonstrates data synchronization with an UltraLiteJ application and can be found in
%SQLANYSAMP17%\UltraLiteJ\Android\CustDB.

In this section:

Network Protocol Options for UltraLiteJ Synchronization Streams [page 751]
When synchronizing with a MobiLink server, you must set the network protocol in your application.
Each database synchronizes over a network protocol. Two network protocols are available for
UltraLiteJ: HTTP and HTTPS.

Related Information

Tutorial: Building an Android Application [page 753]

750 PUBLIC
UltraLite Administration

UltraLite - Java Programming

https://help.sap.com/viewer/8534f27c56354283bd00fc8f77adaf94/17.0.01/en-US/81133cb16ce210148ebed01b8c288d75.html

4.2.7.1 Network Protocol Options for UltraLiteJ
Synchronization Streams

When synchronizing with a MobiLink server, you must set the network protocol in your application. Each
database synchronizes over a network protocol. Two network protocols are available for UltraLiteJ: HTTP and
HTTPS.

For the network protocol you set, choose from a set of corresponding protocol options to ensure that the
UltraLiteJ application can locate and communicate with the MobiLink server. Network protocol options provide
information such as addressing information (host and port) and protocol-specific information.

Setting up an HTTP Network Protocol

An HTTP network protocol is set with the StreamHTTPParms interface in the UltraLiteJ API. Use the interface
methods to specify the network protocol options defined on the MobiLink server.

Setting up an HTTPS Network Protocol

An HTTPS network protocol is set with the StreamHTTPSParms interface in the UltraLiteJ API. Use the
interface methods to specify the network protocol options defined on the MobiLink server.

Related Information

MobiLink Client Network Protocol Options

4.2.8 Deploying an UltraLiteJ application for Android

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, method calls, and deployment files to ensure that your UltraLiteJ application runs successfully on
Android smartphones.

Procedure

1. Add the following files to your Android project:

UltraLite Administration
UltraLite - Java Programming PUBLIC 751

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8e2886ce21014af37ca9aa8f73a47.html

Copy From Copy To

%SQLANY17%\UltraLite\UltraLiteJ\Android
\UltraLiteJNI17.jar

app\libs

%SQLANY17%\UltraLite\UltraLiteJ\Android
\x86\libultralitej17.so

app\src\main\jniLibs\arm64-v8a

%SQLANY17%\UltraLite\UltraLiteJ\Android
\x86_64\libultralitej17.so

app\src\main\jniLibs\x86

%SQLANY17%\UltraLite\UltraLiteJ\Android
\ARM\libultralitej17.so

app\src\main\jniLibs\armeabi-v7a

%SQLANY17%\UltraLite\UltraLiteJ\Android
\ARM64\libultralitej17.so

app\src\main\jniLibs\arm64-v8a

2. Specify the following parameters when encrypting the database:

• When using AES encryption, set the connection parameter DBKEY=encryption-key while creating
and connecting to the database.

To set these parameters, use the setCreationString and setConnectionString methods.
3. Set the appropriate parameter settings when using synchronization in your UltraLite application:

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to "tcpip".

HTTP Set the Stream synchronization parameter to "http".

RSA TLS Set the Stream synchronization parameter to "tls".

RSA HTTPS Set the Stream synchronization parameter to "https".

4. When using RSA end-to-end encryption (RSA E2EE), set the protocol option e2ee_public_key=key-file.

5. When using ZLIB compression, set the protocol option compression=zlib.
6. When using AES encryption, call the ConfigPersistent.EnableAesDBEncryption method.

Results

The UltraLiteJ application runs successfully on the Android device that it is deployed to.

Next Steps

Deploy an UltraLite database to the Android mobile device that the application was deployed to, or create a
new database with the deployed application.

752 PUBLIC
UltraLite Administration

UltraLite - Java Programming

Related Information

UltraLite Database Deployment Techniques [page 130]
UltraLite Application Build and Deployment Specifications [page 124]

4.2.9 Code Examples

All coding examples that use the UltraLiteJ API can be found in the %SQLANYSAMP17%\UltraLiteJ\
directory.

A sample Eclipse project that uses the CustDB sample database is available in the %SQLANYSAMP17%
\UltraLiteJ\Android\CustDB directory. The source code can be found in %SQLANYSAMP17%
\UltraLiteJ\Android\CustDB\src\com\sap\custdb.

A tutorial based on the example is available.

4.3 Tutorial: Building an Android Application

This tutorial guides you through the development of an application using the UltraLiteJ API and the Eclipse
environment. In this tutorial, you run the application on a Windows simulator.

Prerequisites

You need the following:

• Familiarity with Java
• Familiarity with Eclipse

You require the following software:

• Eclipse 3.5.2 or later
• Android SDK Starter Package
• Android Development Tools (ADT) Plug-in for Eclipse 1.1 or later
• SQL Anywhere 17 samples
• UltraLiteJ API

Context

The Android application used in this tutorial is located in the %SQLANYSAMP17%\UltraLiteJ\Android
\Eclipse\CustDB\ directory.

UltraLite Administration
UltraLite - Java Programming PUBLIC 753

 Note
An alternative Android Studio version of this tutorial is located in the %SQLANYSAMP17%\UltraLiteJ
\Android\AndroidStudio\CustDB\ directory.

The application code, located in the src\com\sap\custdb directory, references the UltraLiteJ API to perform
the following tasks:

• UltraLite remote database creation.
• SQL operations on the database.
• Data synchronization with the SQL Anywhere CustDB sample database using MobiLink.

The res\menu and res\layout directories illustrate how to create Android menu items and interfaces. You
can view these files through Eclipse when you create the new Android project.

The AndroidManifest.xml project file was modified so that the Android application can access the network,
which is required for data synchronization. The following permission statement was added:

<uses-permission android:name="android.permission.INTERNET" />

1. Lesson 1: Setting up a New Android Project [page 755]
In this lesson, you create a new Android project through the Eclipse Integrated Development
Environment.

2. Lesson 2: Starting the MobiLink Server [page 757]
In this lesson, you start the MobiLink server to perform synchronization.

3. Lesson 3: Running Your Android Application [page 758]
In this lesson, you run your application through an Android simulator.

4. Lesson 4: Testing Your Android Application and Synchronizing [page 759]
In this lesson, you use your Android application to update the UltraLite remote database and
synchronize the CustDB consolidated database.

5. Lesson 5: Cleaning up [page 761]
Remove your recently created tutorial materials from your computer.

Related Information

Android SDK and the Android Development Tools (ADT) Plug-in for Eclipse
UltraLiteJ API Reference [page 761]

754 PUBLIC
UltraLite Administration

UltraLite - Java Programming

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdeveloper.android.com

4.3.1 Lesson 1: Setting up a New Android Project

In this lesson, you create a new Android project through the Eclipse Integrated Development Environment.

Prerequisites

This lesson assumes that you have installed the required software.

Context

This tutorial assumes that you are familiar with Java and Eclipse.

Procedure

1. Copy the Android libraries to your Android CustDB sample directory.

Open a command prompt, change to the %SQLANYSAMP17%\UltraLiteJ\Android\CustDB\
directory, and then run the following command:

setup.bat

The UltraLiteJNI17.jar and libultralitej17.so files are copied into the Android\CustDB\libs
and Android\CustDB\libs\armeabi directories.

2. Run Eclipse.

The default application path is C:\Eclipse\eclipse.exe.

3. In the Workspace field, specify a working directory that is not your CustDB sample directory, and then click
OK.

4. Import the CustDB project into Eclipse.

a. Click File Import .
b. Expand the General directory, and then click Existing Projects into Workspace. Click Next.
c. In the Select Root Directory field, type %SQLANYSAMP17%\UltraLiteJ\Android\CustDB. Select

Copy Projects Into Workspace, and then click Finish.
5. Make sure that the appropriate Android SDK path is specified in Eclipse.

 Note
You must install an Android SDK before specifying the path.

a. Click Window Preferences .
b. In the left pane, click Android.

UltraLite Administration
UltraLite - Java Programming PUBLIC 755

c. In the SDK Location field, type the location of the Android SDK and then click Apply.

A list of available build targets appears.
d. Click OK.

6. Make sure that the UltraLiteJ library path is specified in Eclipse.

a. Click File Properties .

b. In the left pane, click Java Build Path User libraries .
c. Click the Libraries tab.
d. Click UltraLiteJNI17.jar, and then click Edit.
e. From your working directory, open \CustDB\libs\UltraLiteJNI17.jar.
f. Click OK.

7. Add the path to your UltraLiteJNI Javadoc documentation to the project.
a. In the left pane, click Javadoc Location.
b. Click Browse, and then open %SQLANY17%\UltraLite\UltraLiteJ\Android\html.
c. Click OK.
d. Click OK to close the window.

8. Build the project. Click Project Clean , and then click OK.

The project should build without errors occurring, but you may notice warnings listed under the Problems
tab.

Results

The UltraLiteJ API is functional in the new Android application.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building an Android Application [page 753]

Next task: Lesson 2: Starting the MobiLink Server [page 757]

756 PUBLIC
UltraLite Administration

UltraLite - Java Programming

4.3.2 Lesson 2: Starting the MobiLink Server

In this lesson, you start the MobiLink server to perform synchronization.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

Start MobiLink by running the following command from %SQLANYSAMP17%\MobiLink\CustDB\:

mlsrv17 -v+ -zu+ -c "DSN=SQL Anywhere 17 CustDB;UID=ml_server;PWD=sql" -x
http(port=80) -ot ml.mls

The -c option connects MobiLink to the SQL Anywhere CustDB database. The -v+ option sets a high level of
verbosity so that you can follow what is happening in the MobiLink server messages window. The -x option
specifies the port number being used for the communications. The -ot option specifies that a log file (ml.mls)
is to be created in the directory where you started the MobiLink server. The Android app uses HTTP to connect
to MobiLink. If you use another port besides port 80, then you must open that port in your firewall.

Results

The MobiLink server has started.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building an Android Application [page 753]

Previous task: Lesson 1: Setting up a New Android Project [page 755]

Next task: Lesson 3: Running Your Android Application [page 758]

UltraLite Administration
UltraLite - Java Programming PUBLIC 757

Related Information

MobiLink Server Options

4.3.3 Lesson 3: Running Your Android Application

In this lesson, you run your application through an Android simulator.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Set up your Android virtual device in Eclipse.

a. Click Window AVD Manager .
b. Click New.

The Create New Android Virtual Device (AVD) window appears.
c. In the Name field, type my_avd.
d. In the Target field, click Android 2.2 - API Level 8.
e. Click Create AVD.
f. Close the AVD Manager window.

2. In the Package Explorer window, select CustDB.

3. From the Run menu, choose Run As Android Application .

The Android simulator loads.
4. Click Menu.

Your Android application loads.

Results

The UltraLite application loads in a simulated Android device.

758 PUBLIC
UltraLite Administration

UltraLite - Java Programming

https://help.sap.com/viewer/4949f39728bd400ebee2fb94687cc74f/17.0.01/en-US/81c864066ce210148928fcee0a1c5b55.html

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building an Android Application [page 753]

Previous task: Lesson 2: Starting the MobiLink Server [page 757]

Next task: Lesson 4: Testing Your Android Application and Synchronizing [page 759]

4.3.4 Lesson 4: Testing Your Android Application and
Synchronizing

In this lesson, you use your Android application to update the UltraLite remote database and synchronize the
CustDB consolidated database.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Ensure that the Employee ID field is 50, the Host field is 10.0.2.2, and the Port field is 80, and then click
Save.

The application automatically synchronizes and a set of customers, products, and orders is downloaded to
the application from the CustDB consolidated database.

2. In the simulator, click Menu New .
3. In the Customer field, choose Ace Properties.
4. In the Product field, choose 4x8 Drywall x100.
5. In the Quantity field, type 999.
6. In the Discount field, type 25.
7. Click OK to add the new order.
8. Synchronize the application with the CustDB consolidated database.

In the simulator, click Menu and then click Sync.
9. Connect to the CustDB consolidated database with Interactive SQL.

UltraLite Administration
UltraLite - Java Programming PUBLIC 759

a. Click Start Programs SQL Anywhere 17 Administration Tools Interactive SQL , or run the
following command:

dbisql

b. Click ODBC Data Source Name, click Browse, click SQL Anywhere 17 CustDB, and then click OK.
c. In the password field, type sql and then click Connect.

10. Verify that the synchronization was successful.

Execute the following SQL statement in Interactive SQL:

SELECT order_id, disc, quant, notes, status, c.cust_id, cust_name, p.prod_id, prod_name, price
 FROM ULOrder o, ULCustomer c, ULProduct p
 WHERE o.cust_id = c.cust_id
 AND o.prod_id = p.prod_id
 AND c.cust_name = 'Ace Properties' AND p.prod_name = '4x8 Drywall x100'

Synchronization was successful when an order entry appears in Interactive SQL.
11. Close the simulator window.

Results

The changes you made in the simulator are synchronized with the CustDB consolidated database.

Next Steps

Proceed to the next lesson.

Task overview: Tutorial: Building an Android Application [page 753]

Previous task: Lesson 3: Running Your Android Application [page 758]

Next task: Lesson 5: Cleaning up [page 761]

760 PUBLIC
UltraLite Administration

UltraLite - Java Programming

4.3.5 Lesson 5: Cleaning up

Remove your recently created tutorial materials from your computer.

Prerequisites

You must have completed the previous lessons in this tutorial.

You must have the roles and privileges listed at the beginning of this tutorial.

Procedure

1. Close Eclipse.

Click File Exit .
2. Close MobiLink, Interactive SQL, and synchronization client windows by right-clicking each task bar item

and clicking Exit or Shut Down.
3. Reset the CustDB database.

Run the following command from the %SQLANYSAMP17%\UltraLite\CustDB directory:

makedbs

Results

The materials are removed from your computer, and this tutorial can be repeated again from the first lesson.

Task overview: Tutorial: Building an Android Application [page 753]

Previous task: Lesson 4: Testing Your Android Application and Synchronizing [page 759]

4.4 UltraLiteJ API Reference

UltraLiteJ has a variety of API objects.

The following list describes some of the commonly used API objects:

DatabaseManager

Provides methods for managing databases and connections.

UltraLite Administration
UltraLite - Java Programming PUBLIC 761

Connection

Represents a connection to an UltraLite database. You can create one or more Connection objects.
SyncParms

Synchronizes your UltraLite database with a MobiLink server.
PreparedStatement, ResultSet

Create dynamic SQL statements, make queries, execute INSERT, UPDATE, and DELETE statements, and
attain programmatic control over database result sets.

Package [Android]

com.sap.ultralitejni17

762 PUBLIC
UltraLite Administration

UltraLite - Java Programming

5 UltraLite - UWP Programming

This book describes the UltraLite UWP (Universal Windows Platform) programming interface. UltraLite for
UWP provides database functionality and synchronization to Microsoft Windows 10 and Microsoft Windows 10
Mobile UWP apps.

In this section:

System Requirements and Supported Platforms [page 763]
UltraLite for UWP supports Microsoft Windows 10.

UltraLite for UWP Application Development [page 764]
UltraLite for UWP provides database functionality and synchronization to Microsoft Windows Phone or
Windows Store Apps.

Tutorial: Building a Windows Phone Application [page 770]
Develop an application for Windows Phone by using the UltraLite for UWP API and the Microsoft Visual
Studio environment. This tutorial assumes that the application runs on a Windows Phone emulator.

UltraLite for UWP API Reference [page 775]
UltraLite for UWP has a variety of API objects that you use from C#, C++, or JavaScript.

5.1 System Requirements and Supported Platforms

UltraLite for UWP supports Microsoft Windows 10.

System requirements

To develop UltraLite for UWP applications, you must have the following software:

Windows 10

• Windows 10 SDK
• Microsoft Visual Studio 2017

Target platforms

UltraLite for UWP supports the following target platforms:

• Windows 10 Universal Windows Platform (UWP), x86, x64, or ARM CPU

UltraLite Administration
UltraLite - UWP Programming PUBLIC 763

Related Information

Supported Platforms
Windows Phone SDK 8.0 download center

5.2 UltraLite for UWP Application Development

UltraLite for UWP provides database functionality and synchronization to Microsoft Windows Phone or
Windows Store Apps.

The API contains all the methods required to connect to an UltraLite database, perform schema operations,
maintain data using SQL statements, and encrypt data.

There is a CustDb sample UltraLite for UWP. The sample is a Visual Studio 2015 project that targets the
Universal Windows Platform (UWP). The project is located in%SQLANYSAMP17%\UltraLite.WinRT
\Windows10UWP\CustDb.

In this section:

Quick Start Guide to UltraLite for UWP Application Development [page 765]
When creating an application, you typically complete several data management tasks in your
application code.

UltraLite for UWP Setup Considerations [page 765]
There are API considerations to make before developing UWP applications.

Quick Start Guide to Schema Operations and Data Management [page 766]
Create or retrieve tables, indexes, foreign keys, publications, and rows in your database using SQL
statements and queries.

Deploying an UltraLite Application for Windows Phone or Windows Store Apps [page 769]
Specify appropriate creation parameters, connection parameters, synchronization parameters,
protocol options, link libraries, method calls, and deployment files to ensure that your UltraLite
application runs successfully on Windows Phone devices or Windows Store Apps.

Related Information

UltraLite Overview [page 8]
Benefits of UltraLite APIs for Microsoft Windows Mobile [page 21]

764 PUBLIC
UltraLite Administration

UltraLite - UWP Programming

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/8155387d6ce21014937df18c3511be8f.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdev.windowsphone.com

5.2.1 Quick Start Guide to UltraLite for UWP Application
Development

When creating an application, you typically complete several data management tasks in your application code.

UltraLite for UWP uses the Windows Phone Runtime API model. You implement your application using C++ or
C# and then use the API projection into the required language.

1. Initialize a DatabaseManager object.
2. Open a connection to an existing database or create a new database using methods of the Database

Manager object.
3. Finalize the DatabaseManager object when the application terminates.

Related Information

UltraLite for UWP Setup Considerations [page 765]
UltraLite SQL Statements [page 516]

5.2.2 UltraLite for UWP Setup Considerations

There are API considerations to make before developing UWP applications.

Secure Data Synchronization

Due to limitations of the Windows Phone Runtime APIs, secure data synchronization has the following caveats:

• HTTPS must be used for the network protocol
• Client certificates are not supported
• The trusted_certificate=filename protocol option is not supported. The application must add trusted root

certificates to the trusted certificate store on the device before it can perform HTTPS synchronization
operations.

The following MobiLink network protocol options are not supported by the client:

• certificate_company
• certificate_name
• client_port
• e2ee_public_key
• fips
• identity
• identity_name
• identity_password

UltraLite Administration
UltraLite - UWP Programming PUBLIC 765

• identity_adapter_name
• network_leave_open
• network_name
• trusted_certificates
• trusted_certificate_name

Windows Phone Application Settings

The following capabilities need to be defined in the Universal Windows Platform application's package manifest
file:

<Capability name="ID_CAP_IDENTITY_DEVICE"/> This capability generates a unique device identifier,
which is used to generate good quality GUIDs.
<Capability name="ID_CAP_NETWORKING"/> This capability is required to perform network operations.

Windows Store Apps Settings

The following capabilities need to be defined in the Universal Windows Platform application's package manifest
file:

<Capability name="internetClient"/> This capability is located in package.appxmanifest.

Related Information

UltraLite Database Creation Approaches [page 26]

5.2.3 Quick Start Guide to Schema Operations and Data
Management

Create or retrieve tables, indexes, foreign keys, publications, and rows in your database using SQL statements
and queries.

When performing schema operations to manage data, you typically perform the following tasks in your
application code:

1. Perform schema operations.
Manage and modify the schema by using SQL statements such as CREATE TABLE or CREATE INDEX on
the database connection.

2. Manage row operations.
Manage data in tables using the INSERT SQL statement on the database connection.

766 PUBLIC
UltraLite Administration

UltraLite - UWP Programming

3. Retrieve row data in a result set.
Retrieve a result set using the SELECT statement, and then traverse the row data using result set
navigation methods, such as previous and next.

In this section:

Example: Managing Database Operations on a Windows Phone [page 767]
This example illustrates how to create a sample class in a Windows Phone application to create a
database and perform basic data operations.

Related Information

Example: Managing Database Operations on a Windows Phone [page 767]

5.2.3.1 Example: Managing Database Operations on a
Windows Phone

This example illustrates how to create a sample class in a Windows Phone application to create a database and
perform basic data operations.

The example illustrates the following operations:

• Create a table in a database
• Insert new rows into the table
• Update a row in the table
• Delete a row from the table
• Commit changes to the database
• Select all rows from the table by creating a result set
• Traverse the result set to view the rows in the database

using UltraLite; using Windows Storage;

if (DatabaseManager.Init()) { // DatabaseManager.Init() succeeded.
} else {
 // DatabaseManager.Init() failed.
}
// Use DatabaseManager.Fini() when terminating the app.
private async void Button1_Click_1(object sender, RoutedEventArgs e)
{
 String mypath = ApplicationData.Current.LocalFolder.Path;
 Connection conn = null;
 int code;
 String errorParms;
 try {
 conn = DatabaseManager.CreateDatabase("dbf=" + mypath +
 "\\test.udb", "");
 conn.ExecuteStatement("CREATE TABLE T
 (c1 integer primary key, c2 char(20))");

UltraLite Administration
UltraLite - UWP Programming PUBLIC 767

 PreparedStatement ps = conn.PrepareStatement
 ("INSERT INTO T VALUES(?,?)");
 ps.SetParameterInt32(0, 11);
 ps.SetParameterString(1, "row 11");
 ps.ExecuteStatement();
 ps.SetParameterInt32(0, 37);
 ps.SetParameterString(1, "row 37");
 ps.ExecuteStatement();
 conn.Commit();
 ps.CloseObject();
 ps = conn.PrepareStatement("SELECT * FROM T");
 IAsyncOperation<ResultSet> op = ps.ExecuteQueryAsync();
 ResultSet rs = await op;
 int i;
 string str;
 while (rs.Next()) {
 i = rs.GetInt32(0);
 str = rs.GetString(1);
 // do something with row values
 }
 rs.CloseObject();
 ps.CloseObject();
 }
 catch (Exception ex) {
 // EXCEPTION HRESULT: ex.HResult
 if (ex.HResult == (int)ErrorCodes.E_ULTRALITE_ERROR) {
 if (conn != null) {
 conn.GetLastError(out code, out errorParms);
 } else {
 DatabaseManager.GetLastError(out code, out errorParms);
 }
 // do something with SQL code and error parameters
 }
 }
 finally {
 if (conn != null) {
 conn.CloseObject();
 }
 } }

Related Information

Deploying an UltraLite Application for Windows Phone or Windows Store Apps [page 769]

768 PUBLIC
UltraLite Administration

UltraLite - UWP Programming

5.2.4 Deploying an UltraLite Application for Windows Phone
or Windows Store Apps

Specify appropriate creation parameters, connection parameters, synchronization parameters, protocol
options, link libraries, method calls, and deployment files to ensure that your UltraLite application runs
successfully on Windows Phone devices or Windows Store Apps.

Procedure

1. Specify the following parameters:

• When using AES encryption, set the connection parameter DBKEY= encryption-key while creating
or connecting to the database.

2. Set the appropriate parameter settings when using synchronization in your UltraLite application:

Synchronization type Parameter settings

TCP/IP Set the Stream synchronization parameter to tcpip.

HTTP Set the Stream synchronization parameter to http.

RSA HTTPS Set the Stream synchronization parameter to https.

3. When using ZLIB compression, set the protocol option compression=zlib.
4. Add a reference to the UltraLite.winmd file to the UltraLite WinRT component in your Microsoft Visual

Studio project.

The UltraLite.dll library gets packaged with the application when a reference to UltraLite.winmd is
added.

The WinRT components for the ARM, x86, and x64 processors are located in the UltraLite\UWP\
directory of your SQL Anywhere installation. The Windows Phone 8 emulator for x86 processors is
included in the respective directory.

Results

The UltraLite application runs successfully on the Windows Phone device or Windows Store App that it is
deployed to.

Next Steps

Deploy an UltraLite database to the Windows Phone device or Windows Store App that the application was
deployed to, or create a new database with the deployed application.

UltraLite Administration
UltraLite - UWP Programming PUBLIC 769

Related Information

UltraLite Database Deployment Techniques [page 130]
UltraLite Application Build and Deployment Specifications [page 124]

5.3 Tutorial: Building a Windows Phone Application

Develop an application for Windows Phone by using the UltraLite for UWP API and the Microsoft Visual Studio
environment. This tutorial assumes that the application runs on a Windows Phone emulator.

Prerequisites

You need the following:

• Familiarity with C#
• Familiarity with Microsoft Visual Studio

You require the following software:

• Microsoft Visual Studio 2017

Context

The Windows Phone application used in this tutorial is located in the %SQLANY17%\UltraLite\UWP
\WindowsPhone\CustDb\ directory. The application code, located in the \CustDb directory, references the
UltraLite for UWP API to perform the following tasks:

• UltraLite remote database creation.
• SQL operations on the database.
• Data synchronization with the CustDB sample database by using MobiLink.

The XAML files illustrate how to create Windows Phone menu items and interfaces. View these files in Microsoft
Visual Studio by opening the CustDb.sln solution file.

The Universal Windows Platform application's package manifest file was modified to permit network access,
and to allow the application to generate a good quality GUID. The following Capability statements were added:

<Capability Name="ID_CAP_NETWORKING" /> <Capability Name="ID_CAP_IDENTITY_DEVICE" />

In this section:

Lesson 1: Setting up a New Windows Phone Application [page 771]
Create a new Windows Phone solution by using Microsoft Visual Studio.

770 PUBLIC
UltraLite Administration

UltraLite - UWP Programming

Lesson 2: Starting the MobiLink Server [page 772]
Start the MobiLink server to perform synchronization.

Lesson 3: Running Your Windows Phone Application and Synchronizing [page 773]
Use your Windows Phone application to update the UltraLite remote database and synchronize the
CustDB consolidated database.

Lesson 4: Cleaning up [page 774]
Remove tutorial materials from your computer.

5.3.1 Lesson 1: Setting up a New Windows Phone Application

Create a new Windows Phone solution by using Microsoft Visual Studio.

Context

This tutorial assumes that you are familiar with C# and Microsoft Visual Studio.

Procedure

1. Open %SQLANYSAMP17%\UltraLite.WinRT\WindowsPhone\CustDB\CustDb.sln in Microsoft
Visual Studio 2013.

2. Build the project. Click Build Build Solution .

The project builds successfully.

Results

The UltraLite for WinRT API is functional in the new Windows Phone application.

Next Steps

Proceed to the next lesson.

UltraLite Administration
UltraLite - UWP Programming PUBLIC 771

5.3.2 Lesson 2: Starting the MobiLink Server

Start the MobiLink server to perform synchronization.

Prerequisites

You must have completed the previous lessons in this tutorial.

Procedure

1. Start MobiLink. Click Start SQLAnywhere 17 MobiLink Synchronization Server Sample .
2. Allow the Windows Phone application in the emulator to connect to the MobiLink server. Open the

appropriate incoming port in the Windows firewall. For TCP/IP, the default is 2439, which is the IANA-
registered port number for the MobiLink server.

a. Click Start Control Panel Windows Firewall .
b. Click Advanced settings.
c. Click Inbound Rules.
d. Click New Rule
e. Click Port. Click Next.
f. Ensure that TCP is selected. Select Specific local ports. Type 2439. Click Next.
g. Select Allow the connection. Click Next.
h. In the Name field, type MobiLink Incoming. Click Finish.

Results

The MobiLink server starts. TCP port 2439 is open for incoming traffic.

Next Steps

Proceed to the next lesson.

772 PUBLIC
UltraLite Administration

UltraLite - UWP Programming

5.3.3 Lesson 3: Running Your Windows Phone Application
and Synchronizing

Use your Windows Phone application to update the UltraLite remote database and synchronize the CustDB
consolidated database.

Prerequisites

You must have completed the previous lessons in this tutorial.

Procedure

1. When the CustDb application runs for the first time, a configuration screen appears.

• Employee ID identifies the employee using the application. The CustDb application shows only data
relevant to the employee. The default is 50.

• Host identifies the computer running the MobiLink server. If you are connected to the MobiLink server
on a local area network, then you can use the computer's local IP address or host name. You can run
ipconfig on the command line to find your computer's IP address.

• Port refers to the incoming port number used by the MobiLink server. The default is 2439.
2. In the Orders screen, click Sync.

The application automatically synchronizes, and a set of customers, products, and orders is downloaded to
the application from the CustDB consolidated database. Browse the orders by flicking up or down and
tapping the individual order to bring up the Order Details screen.

3. Add a new order. Click New. Complete the form as indicated with the following information:

Option Description

Customer Ace Properties

Product 4x8 Drywall x100

Quantity 999

Discount 25

4. Click OK to add the new order.
5. Click Sync to synchronize the application with the CustDb consolidated database.
6. Confirm that the synchronization was successful. You can use Interactive SQL to connect to the CustDb

consolidated database.

a. Click Start SQL Anywhere 17 Administration Tools Interactive SQL .
b. Click ODBC Data Source Name and choose SQL Anywhere 17 CustDb.
c. Click Connect.

7. Verify that the synchronization was successful.

UltraLite Administration
UltraLite - UWP Programming PUBLIC 773

Execute the following statement:

SELECT order_id, disc, quant, notes, status, c.cust_id, cust_name, p.prod_id, prod_name, price
 FROM ULOrder o, ULCustomer c, ULProduct p
 WHERE o.cust_id = c.cust_id
 AND o.prod_id = p.prod_id
 AND c.cust_name = 'Ace Properties' AND p.prod_name = '4x8 Drywall x100'

Synchronization was successful when an order entry appears in Interactive SQL.
8. Close the emulator window.

Results

The changes you made in the emulator are synchronized with the CustDB consolidated database.

Next Steps

Proceed to the next lesson.

5.3.4 Lesson 4: Cleaning up

Remove tutorial materials from your computer.

Prerequisites

You must have completed the previous lessons in this tutorial.

Procedure

1. Close Microsoft Visual Studio.
2. Close MobiLink, Interactive SQL, and the synchronization client window by right-clicking each task bar item

and clicking Exit or Shut Down.
3. Reset the CustDb database.

Run the following command from the %SQLANYSAMP17%\UltraLite\CustDb directory:

makedbs

774 PUBLIC
UltraLite Administration

UltraLite - UWP Programming

Results

The materials are removed from your computer, and this tutorial can be repeated again from the first lesson.

5.4 UltraLite for UWP API Reference

UltraLite for UWP has a variety of API objects that you use from C#, C++, or JavaScript.

The following list describes some of the commonly used API objects:

DatabaseManager

Provides methods for managing databases and connections.
Connection

Represents a connection to an UltraLite database. You can create one or more Connection objects.
PreparedStatement, ResultSet

Create dynamic SQL statements, make queries, execute INSERT, UPDATE, and DELETE statements, and
attain programmatic control over database result sets.

Namespace

UltraLite

The UltraLite UWP API reference is available in the UltraLite - UWP API Reference at https://help.sap.com/
viewer/4aa0fa9335514000836c47c2bec0bdc1/LATEST/en-US.

UltraLite Administration
UltraLite - UWP Programming PUBLIC 775

https://help.sap.com/viewer/4aa0fa9335514000836c47c2bec0bdc1/LATEST/en-US
https://help.sap.com/viewer/4aa0fa9335514000836c47c2bec0bdc1/LATEST/en-US

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

• Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

• The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.

• SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any
damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

• Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Bias-Free Language
SAP supports a culture of diversity and inclusion. Whenever possible, we use unbiased language in our documentation to refer to people of all cultures, ethnicities,
genders, and abilities.

776 PUBLIC
UltraLite Administration

Important Disclaimers and Legal Information

UltraLite Administration
Important Disclaimers and Legal Information PUBLIC 777

www.sap.com/contactsap

© 2022 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	UltraLite Administration
	Content
	1 UltraLite - Database Management and Developer Guide
	1.1 UltraLite Overview
	1.1.1 UltraLite Architecture
	1.1.2 UltraLite Synchronization Client Features
	1.1.3 UltraLite Supported Platforms
	1.1.4 UltraLite and SQL Anywhere Feature Comparisons
	1.1.5 UltraLite Database Limitations
	1.1.6 CustDB Sample Application Overview
	1.1.6.1 CustDB File Locations for UltraLite

	1.1.7 UltraLite Solution Considerations for Microsoft Windows Mobile
	1.1.7.1 Benefits of UltraLite APIs for Microsoft Windows Mobile
	1.1.7.2 UltraLite Data Management Components for Microsoft Windows Mobile

	1.2 UltraLite Security Considerations
	1.3 Configuring UltraLite Clients to Use Transport Layer Security
	1.4 UltraLite Database Creation Approaches
	1.4.1 Creating an UltraLite Database with the Create Database Wizard
	1.4.2 UltraLite Database Creation Using a Command Prompt
	1.4.3 UltraLite Database Creation Using a MobiLink Synchronization Model
	1.4.4 UltraLite Database Creation Through Central Administration of Remote Databases
	1.4.5 Creating an UltraLite Database from an XML File
	1.4.6 UltraLite Database Creation on a First Connection
	1.4.7 How to Access Creation Option Values
	1.4.8 UltraLite Character Sets
	1.4.8.1 UltraLite Platform Requirements for Character Set Encoding
	1.4.8.2 UltraLite Supported Collations

	1.4.9 Database Security

	1.5 Conversion from a SQL Anywhere Database to an UltraLite Database
	1.6 UltraLite Database Connections
	1.6.1 UltraLite Connection Strings and Parameters
	1.6.1.1 Precedence of Connection Parameters for UltraLite Administration Tools

	1.6.2 UltraLite Connection Parameters and the ULSQLCONNECT Environment Variable
	1.6.3 UltraLite File Path Formats in Connection Parameters

	1.7 UltraLite Database Tasks and Features
	1.7.1 Reading Database Properties
	1.7.2 Accessing Database Options
	1.7.3 UltraLite Event Notifications
	1.7.4 Isolation Levels
	1.7.4.1 Characteristics of the read_uncommitted Isolation Level

	1.7.5 Validating an UltraLite Database
	1.7.6 UltraLite Database Back up and Recovery

	1.8 UltraLite Database Schemas
	1.8.1 UltraLite Tables and Columns
	1.8.1.1 Row Packing and Table Definitions
	1.8.1.2 Creating UltraLite Tables
	1.8.1.3 Adding a Column to an UltraLite Table
	1.8.1.4 Altering UltraLite Column Definitions
	1.8.1.5 Deleting UltraLite Tables
	1.8.1.6 Browsing the Information in UltraLite Tables
	1.8.1.7 Data Copying and Pasting to or from UltraLite Databases
	1.8.1.8 Viewing Entity-relationship (ER) Diagrams in SQL Central

	1.8.2 UltraLite Indexes
	1.8.2.1 When to Use an Index
	1.8.2.2 Index Types
	1.8.2.3 Adding an UltraLite Index
	1.8.2.4 Dropping an UltraLite Index

	1.8.3 UltraLite Users
	1.8.3.1 Connection Parameters for Managing UltraLite Users
	1.8.3.2 SQL Statements for Managing UltraLite Users
	1.8.3.3 Creating an UltraLite User with SQL Central
	1.8.3.4 Deleting an UltraLite User with SQL Central

	1.9 UltraLite as a MobiLink Client
	1.9.1 UltraLite Clients
	1.9.1.1 UltraLite Client Synchronization Behavior Customization
	1.9.1.2 Primary Key Uniqueness in UltraLite
	1.9.1.2.1 GLOBAL AUTOINCREMENT Columns in UltraLite
	1.9.1.2.2 Methods for Finding the Last Assigned GLOBAL AUTOINCREMENT Value
	1.9.1.2.3 Partition Sizes
	1.9.1.2.3.1 Overriding the Partition Size for a GLOBAL AUTOINCREMENT Column

	1.9.1.3 UltraLite Client Synchronization Design
	1.9.1.3.1 UltraLite Non-synchronizing Tables
	1.9.1.3.2 UltraLite Download-only Tables
	1.9.1.3.3 UltraLite Synchronize-All Tables
	1.9.1.3.4 Publishing Data in UltraLite
	1.9.1.3.5 Table Order in UltraLite
	1.9.1.3.5.1 Avoiding Synchronization Issues with Foreign Key Cycles

	1.9.1.3.6 Synchronization Setup for Your UltraLite Application

	1.9.1.4 MobiLink File Transfers
	1.9.1.5 UltraLite Publications
	1.9.1.5.1 Publishing Whole Tables in UltraLite
	1.9.1.5.2 Publishing a Subset of Rows from an UltraLite Table
	1.9.1.5.3 Dropping a Publication for UltraLite

	1.9.2 Microsoft ActiveSync Synchronization Overview
	1.9.3 UltraLite Synchronization Parameters
	1.9.3.1 Additional Parameters Synchronization Parameter
	1.9.3.2 Authentication Parameters Synchronization Parameter
	1.9.3.3 Authentication Status Synchronization Parameter
	1.9.3.4 Authentication Value Synchronization Parameter
	1.9.3.5 Download Only Synchronization Parameter
	1.9.3.6 Ignored Rows Synchronization Parameter
	1.9.3.7 Keep Partial Download Synchronization Parameter
	1.9.3.8 New Password Synchronization Parameter
	1.9.3.9 Number of Authentication Parameters Synchronization Parameter
	1.9.3.10 Observer Synchronization Parameter
	1.9.3.11 Partial Download Retained Synchronization Parameter
	1.9.3.12 Password Synchronization Parameter
	1.9.3.13 Ping Synchronization Parameter
	1.9.3.14 Publications Synchronization Parameter
	1.9.3.15 Resume Partial Download Synchronization Parameter
	1.9.3.16 Send Download Acknowledgement Synchronization Parameter
	1.9.3.17 Stream Error Synchronization Parameter
	1.9.3.18 Stream Type Synchronization Parameter
	1.9.3.19 Stream Parameters Synchronization Parameter
	1.9.3.20 Sync Result Synchronization Parameter
	1.9.3.21 Upload OK Synchronization Parameter
	1.9.3.22 Upload Only Synchronization Parameter
	1.9.3.23 User Data Synchronization Parameter
	1.9.3.24 User Name Synchronization Parameter
	1.9.3.25 Version Synchronization Parameter

	1.9.4 UltraLite Network Protocol Options
	1.9.4.1 Synchronization Stream Options

	1.10 UltraLite Deployment
	1.10.1 UltraLite Application Build and Deployment Specifications
	1.10.2 UltraLite Database Deployment Techniques
	1.10.3 Deploying UltraLite Database Schema Upgrades
	1.10.4 UltraLite Engine Startup
	1.10.5 Registering Applications with the Microsoft ActiveSync Manager

	1.11 Tutorial: Building the UltraLite CustDB Sample Application
	1.11.1 Lesson 1: Building and Running the CustDB Application
	1.11.2 Lesson 2: Starting the MobiLink Server and Performing an Initial Synchronization
	1.11.3 Lesson 3: Updating Data in the UltraLite Database
	1.11.4 Lesson 4: Synchronizing the UltraLite Database with the Consolidated Database
	1.11.5 Lesson 5: Browsing MobiLink Synchronization Scripts

	1.12 UltraLite Database Reference
	1.12.1 UltraLite Options
	1.12.1.1 UltraLite case Creation Option
	1.12.1.2 UltraLite checksum_level Creation Option
	1.12.1.3 UltraLite collation Creation Option
	1.12.1.4 UltraLite date_format Creation Option
	1.12.1.5 UltraLite date_order Creation Option
	1.12.1.6 UltraLite DBF Creation Option
	1.12.1.7 UltraLite DBKEY Creation Option
	1.12.1.8 UltraLite Desktop Creation Option Prefix
	1.12.1.9 UltraLite Device Creation Option Prefix
	1.12.1.10 UltraLite fips Creation Option
	1.12.1.11 UltraLite kdf_iterations Creation Option
	1.12.1.12 UltraLite max_hash_size Creation Option
	1.12.1.13 UltraLite nearest_century Creation Option
	1.12.1.14 UltraLite PWD Creation Option
	1.12.1.15 UltraLite obfuscate Creation Option
	1.12.1.16 UltraLite page_size Creation Option
	1.12.1.17 UltraLite Precision Creation Option
	1.12.1.18 UltraLite scale Creation Option
	1.12.1.19 UltraLite time_format Creation Option
	1.12.1.20 UltraLite timestamp_format Creation Option
	1.12.1.21 UltraLite timestamp_increment Creation Option
	1.12.1.22 UltraLite timestamp_with_time_zone_format Creation Option
	1.12.1.23 UltraLite UID Creation Option
	1.12.1.24 UltraLite utf8_encoding Creation Option

	1.12.2 UltraLite Connection Parameters
	1.12.2.1 UltraLite Connection Parameter Prefixes
	1.12.2.2 UltraLite CACHE_MAX_SIZE Connection Parameter
	1.12.2.3 UltraLite CACHE_MIN_SIZE Connection Parameter
	1.12.2.4 UltraLite CACHE_SIZE Connection Parameter
	1.12.2.5 UltraLite COMMIT_FLUSH Connection Parameter
	1.12.2.6 UltraLite CON Connection Parameter
	1.12.2.7 UltraLite DBF Connection Parameter
	1.12.2.8 UltraLite DBKEY Connection Parameter
	1.12.2.9 UltraLite DBN Connection Parameter
	1.12.2.10 UltraLite Desktop Connection Parameter Prefix
	1.12.2.11 UltraLite Device Connection Parameter Prefix
	1.12.2.12 UltraLite MIRROR_FILE Connection Parameter
	1.12.2.13 UltraLite PWD Connection Parameter
	1.12.2.14 UltraLite RESERVE_SIZE Connection Parameter
	1.12.2.15 UltraLite START Connection Parameter
	1.12.2.16 UltraLite TEMP_DIR Connection Parameter
	1.12.2.17 UltraLite UID Connection Parameter

	1.12.3 UltraLite Database Properties
	1.12.4 UltraLite Database Options
	1.12.4.1 UltraLite cache_allocation Option
	1.12.4.2 UltraLite commit_flush_count Option [Temporary]
	1.12.4.3 UltraLite commit_flush_timeout Option [Temporary]
	1.12.4.4 UltraLite global_database_id Option
	1.12.4.5 UltraLite isolation_level Option
	1.12.4.6 UltraLite ml_remote_id Option

	1.12.5 UltraLite Utilities
	1.12.5.1 Supported Exit Codes
	1.12.5.2 Interactive SQL for UltraLite Utility (dbisql)
	1.12.5.3 SQL preprocessor for UltraLite Utility (sqlpp)
	1.12.5.4 UltraLite Engine Utility (uleng17)
	1.12.5.5 UltraLite Engine Stop Utility (ulstop)
	1.12.5.6 UltraLite Erase Utility (ulerase)
	1.12.5.7 UltraLite Information Utility (ulinfo)
	1.12.5.8 UltraLite Initialize Database Utility (ulinit)
	1.12.5.9 UltraLite Load XML to Database Utility (ulload)
	1.12.5.10 UltraLite Synchronization Utility (ulsync)
	1.12.5.11 UltraLite Synchronization Profile Options
	1.12.5.12 UltraLite Database Unload Utility (ulunload)
	1.12.5.13 UltraLite Validate Database Utility (ulvalid)

	1.12.6 UltraLite System Tables
	1.12.6.1 sysarticle System Table
	1.12.6.2 syscolumn System Table
	1.12.6.3 sysindex System Table
	1.12.6.4 sysixcol System Table
	1.12.6.5 syspublication System Table
	1.12.6.6 syssyncresult System Table
	1.12.6.7 systable System Table

	1.13 UltraLite SQL reference
	1.13.1 UltraLite SQL Language Elements
	1.13.1.1 Keywords in UltraLite
	1.13.1.2 Identifiers in UltraLite
	1.13.1.3 Strings in UltraLite
	1.13.1.4 Comments in UltraLite
	1.13.1.5 Numbers in UltraLite
	1.13.1.6 The NULL Value in UltraLite
	1.13.1.7 Special Values in UltraLite
	1.13.1.7.1 CURRENT DATE Special Value - UltraLite
	1.13.1.7.2 CURRENT TIME Special Value - UltraLite
	1.13.1.7.3 CURRENT TIMESTAMP Special Value - UltraLite
	1.13.1.7.4 CURRENT UTC TIMESTAMP Special Value - UltraLite
	1.13.1.7.5 SQLCODE Special Value

	1.13.1.8 Dates and Times in UltraLite
	1.13.1.9 Expressions in UltraLite
	1.13.1.9.1 Constants in Expressions
	1.13.1.9.2 Column Names in Expressions - UltraLite
	1.13.1.9.3 IF Expressions - UltraLite
	1.13.1.9.4 CASE Expressions - UltraLite
	1.13.1.9.5 Aggregate Expressions - UltraLite
	1.13.1.9.6 Subqueries in Expressions - UltraLite
	1.13.1.9.7 Input Parameters

	1.13.1.10 Search Conditions in UltraLite
	1.13.1.10.1 Comparison Operators - UltraLite
	1.13.1.10.2 Logical Operators - UltraLite
	1.13.1.10.3 ALL Search Condition - UltraLite
	1.13.1.10.4 ANY Search Condition - UltraLite
	1.13.1.10.5 BETWEEN Search Condition - UltraLite
	1.13.1.10.6 EXISTS Search Condition - UltraLite
	1.13.1.10.7 IN Search Condition - UltraLite
	1.13.1.10.8 LIKE Search Condition - UltraLite

	1.13.1.11 Operators in UltraLite
	1.13.1.11.1 Arithmetic Operators - UltraLite
	1.13.1.11.2 String Operators - UltraLite
	1.13.1.11.3 Bitwise Operators - UltraLite
	1.13.1.11.4 Operator Precedence - UltraLite

	1.13.1.12 Variables in UltraLite

	1.13.2 SQL Data Types
	1.13.2.1 Character Data Types
	1.13.2.1.1 CHAR Data Type
	1.13.2.1.2 LONG VARCHAR Data Type
	1.13.2.1.3 VARCHAR Data Type

	1.13.2.2 Numeric Data Types
	1.13.2.2.1 BIGINT Data Type
	1.13.2.2.2 BIT Data Type
	1.13.2.2.3 DECIMAL Data Type
	1.13.2.2.4 DOUBLE Data Type
	1.13.2.2.5 FLOAT Data Type
	1.13.2.2.6 INTEGER Data Type
	1.13.2.2.7 NUMERIC Data Type
	1.13.2.2.8 REAL Data Type
	1.13.2.2.9 SMALLINT Data Type
	1.13.2.2.10 TINYINT Data Type

	1.13.2.3 Date and Time Data Types
	1.13.2.3.1 DATE Data Type
	1.13.2.3.2 DATETIME Data Type
	1.13.2.3.3 DATETIMEOFFSET Data Type
	1.13.2.3.4 TIME Data Type
	1.13.2.3.5 TIMESTAMP Data Type
	1.13.2.3.6 TIMESTAMP WITH TIME ZONE Data Type

	1.13.2.4 Binary Data Types
	1.13.2.4.1 BINARY Data Type
	1.13.2.4.2 LONG BINARY Data Type
	1.13.2.4.3 UNIQUEIDENTIFIER Data Type
	1.13.2.4.4 VARBINARY Data Type

	1.13.3 Spatial Data Types
	1.13.3.1 ST_GEOMETRY Data Type - UltraLite

	1.13.4 User-defined Data Types and Their Equivalents
	1.13.5 SQL Functions
	1.13.5.1 Function Types
	1.13.5.1.1 Aggregate Functions
	1.13.5.1.2 Data Type Conversion Functions
	1.13.5.1.3 Date and Time Functions
	1.13.5.1.3.1 Specifying Date Parts

	1.13.5.1.4 Miscellaneous Functions
	1.13.5.1.5 Numeric Functions
	1.13.5.1.6 Spatial Functions - UltraLite
	1.13.5.1.7 String Functions
	1.13.5.1.8 System Functions

	1.13.5.2 Functions
	1.13.5.2.1 ABS Function [Numeric]
	1.13.5.2.2 ACOS Function [Numeric]
	1.13.5.2.3 ARGN Function [Miscellaneous]
	1.13.5.2.4 ASCII Function [String]
	1.13.5.2.5 ASIN Function [Numeric]
	1.13.5.2.6 ATAN Function [Numeric]
	1.13.5.2.7 ATAN2 Function [Numeric]
	1.13.5.2.8 AVG Function [Aggregate]
	1.13.5.2.9 BYTE_LENGTH Function [String]
	1.13.5.2.10 BYTE_SUBSTR Function [String]
	1.13.5.2.11 CAST Function [Data Type Conversion]
	1.13.5.2.12 CEILING Function [Numeric]
	1.13.5.2.13 CHAR Function [String]
	1.13.5.2.14 CHAR_LENGTH Function [String]
	1.13.5.2.15 CHARINDEX Function [String]
	1.13.5.2.16 COALESCE Function [Miscellaneous]
	1.13.5.2.17 CONVERT Function [Data Type Conversion]
	1.13.5.2.18 COS Function [Numeric]
	1.13.5.2.19 COT Function [Numeric]
	1.13.5.2.20 COUNT Function [Aggregate]
	1.13.5.2.21 COUNT_UPLOAD_ROWS function [Aggregate]
	1.13.5.2.22 DATALENGTH Function [System]
	1.13.5.2.23 DATE Function [Date and Time]
	1.13.5.2.24 DATEADD Function [Date and Time]
	1.13.5.2.25 DATEDIFF Function [Date and Time]
	1.13.5.2.26 DATEFORMAT Function [Date and Time]
	1.13.5.2.27 DATENAME Function [Date and Time]
	1.13.5.2.28 DATEPART Function [Date and Time]
	1.13.5.2.29 DATETIME Function [Date and Time]
	1.13.5.2.30 DAY Function [Date and Time]
	1.13.5.2.31 DAYNAME Function [Date and Time]
	1.13.5.2.32 DAYS Function [Date and Time]
	1.13.5.2.33 DB_PROPERTY Function [System]
	1.13.5.2.34 DEGREES Function [Numeric]
	1.13.5.2.35 DIFFERENCE Function [String]
	1.13.5.2.36 DOW Function [Date and Time]
	1.13.5.2.37 EXP Function [Numeric]
	1.13.5.2.38 EXPLANATION Function [Miscellaneous]
	1.13.5.2.39 EXTRACT Function [Date and Time]
	1.13.5.2.40 FLOOR Function [Numeric]
	1.13.5.2.41 GETDATE Function [Date and Time]
	1.13.5.2.42 GREATER Function [Miscellaneous]
	1.13.5.2.43 HEXTOINT Function [Data Type Conversion]
	1.13.5.2.44 HOUR Function [Date and Time]
	1.13.5.2.45 HOURS Function [Date and Time]
	1.13.5.2.46 IFNULL Function [Miscellaneous]
	1.13.5.2.47 INSERTSTR Function [String]
	1.13.5.2.48 INTTOHEX Function [Data Type Conversion]
	1.13.5.2.49 ISDATE Function [Data Type Conversion]
	1.13.5.2.50 ISNULL Function [Miscellaneous]
	1.13.5.2.51 LCASE Function [String]
	1.13.5.2.52 LEFT Function [String]
	1.13.5.2.53 LENGTH Function [String]
	1.13.5.2.54 LESSER Function [Miscellaneous]
	1.13.5.2.55 LIST Function [Aggregate]
	1.13.5.2.56 LOCATE Function [String]
	1.13.5.2.57 LOG Function [Numeric]
	1.13.5.2.58 LOG10 Function [Numeric]
	1.13.5.2.59 LOWER Function [String]
	1.13.5.2.60 LTRIM Function [String]
	1.13.5.2.61 MAX Function [Aggregate]
	1.13.5.2.62 MICROSECOND Function [Date and Time]
	1.13.5.2.63 MILLISECOND Function [Date and Time]
	1.13.5.2.64 MIN Function [Aggregate]
	1.13.5.2.65 MINUTE Function [Date and Time]
	1.13.5.2.66 MINUTES Function [Date and Time]
	1.13.5.2.67 ML_GET_SERVER_NOTIFICATION function [System]
	1.13.5.2.68 MOD Function [Numeric]
	1.13.5.2.69 MONTH Function [Date and Time]
	1.13.5.2.70 MONTHNAME Function [Date and Time]
	1.13.5.2.71 MONTHS Function [Date and Time]
	1.13.5.2.72 NEWID Function [Miscellaneous]
	1.13.5.2.73 NOW Function [Date and Time]
	1.13.5.2.74 NULLIF Function [Miscellaneous]
	1.13.5.2.75 PATINDEX Function [String]
	1.13.5.2.76 PI Function [Numeric]
	1.13.5.2.77 POWER Function [Numeric]
	1.13.5.2.78 QUARTER Function [Date and Time]
	1.13.5.2.79 RADIANS Function [Numeric]
	1.13.5.2.80 REMAINDER Function [Numeric]
	1.13.5.2.81 REPEAT Function [String]
	1.13.5.2.82 REPLACE Function [String]
	1.13.5.2.83 REPLICATE Function [String]
	1.13.5.2.84 RIGHT Function [String]
	1.13.5.2.85 ROUND Function [Numeric]
	1.13.5.2.86 RTRIM Function [String]
	1.13.5.2.87 SECOND Function [Date and Time]
	1.13.5.2.88 SECONDS Function [Date and Time]
	1.13.5.2.89 SHORT_PLAN function [Miscellaneous]
	1.13.5.2.90 SIGN Function [Numeric]
	1.13.5.2.91 SIMILAR Function [String]
	1.13.5.2.92 SIN Function [Numeric]
	1.13.5.2.93 SOUNDEX Function [String]
	1.13.5.2.94 SPACE Function [String]
	1.13.5.2.95 SQRT Function [Numeric]
	1.13.5.2.96 ST_AsBinary Function [Spatial] - UltraLite
	1.13.5.2.97 ST_AsExtText Function [Spatial] - UltraLite
	1.13.5.2.98 ST_AsText Function [Spatial] - UltraLite
	1.13.5.2.99 ST_Distance Function [Spatial] - UltraLite
	1.13.5.2.100 ST_Equals Function [Spatial] - UltraLite
	1.13.5.2.101 ST_IntersectsRect Function [Spatial] - UltraLite
	1.13.5.2.102 ST_Point Function [Spatial] - UltraLite
	1.13.5.2.103 ST_PointFromExtText Function [Spatial] - UltraLite
	1.13.5.2.104 ST_PointFromText Function [Spatial] - UltraLite
	1.13.5.2.105 ST_PointFromWKB Function [Spatial] - UltraLite
	1.13.5.2.106 ST_SRID Function [Spatial] - UltraLite
	1.13.5.2.107 ST_X Function [Spatial] - UltraLite
	1.13.5.2.108 ST_Y Function [Spatial] - UltraLite
	1.13.5.2.109 STR Function [String]
	1.13.5.2.110 STRING Function [String]
	1.13.5.2.111 STRTOUUID Function [String]
	1.13.5.2.112 STUFF Function [String]
	1.13.5.2.113 SUBSTRING Function [String]
	1.13.5.2.114 SUM Function [Aggregate]
	1.13.5.2.115 SWITCHOFFSET Function [Date and Time]
	1.13.5.2.116 SYNC_PROFILE_OPTION_VALUE Function [System] - UltraLite
	1.13.5.2.117 TAN Function [Numeric]
	1.13.5.2.118 TODATETIMEOFFSET Function [Date and Time]
	1.13.5.2.119 TODAY Function [Date and Time]
	1.13.5.2.120 TRIM Function [String]
	1.13.5.2.121 TRUNCNUM Function [Numeric]
	1.13.5.2.122 UCASE Function [String]
	1.13.5.2.123 UPPER Function [String]
	1.13.5.2.124 UUIDTOSTR Function [String]
	1.13.5.2.125 WEEKS Function [Date and Time]
	1.13.5.2.126 YEAR Function [Date and Time]
	1.13.5.2.127 YEARS Function [Date and Time]
	1.13.5.2.128 YMD Function [Date and Time]

	1.13.6 UltraLite SQL Statements
	1.13.6.1 UltraLite Statement Categories
	1.13.6.2 ALTER DATABASE SCHEMA FROM FILE Statement [UltraLite]
	1.13.6.3 ALTER PUBLICATION Statement [UltraLite]
	1.13.6.4 ALTER SYNCHRONIZATION PROFILE Statement [UltraLite]
	1.13.6.5 ALTER TABLE Statement [UltraLite]
	1.13.6.6 ALTER USER Statement [UltraLite]
	1.13.6.7 CHECKPOINT Statement [UltraLite]
	1.13.6.8 COMMIT Statement [UltraLite]
	1.13.6.9 CREATE INDEX Statement [UltraLite]
	1.13.6.10 CREATE PUBLICATION Statement [UltraLite]
	1.13.6.11 CREATE SYNCHRONIZATION PROFILE Statement [UltraLite]
	1.13.6.12 CREATE TABLE Statement [UltraLite]
	1.13.6.13 CREATE USER Statement [UltraLite]
	1.13.6.14 DELETE Statement [UltraLite]
	1.13.6.15 DROP INDEX Statement [UltraLite]
	1.13.6.16 DROP PUBLICATION Statement [UltraLite]
	1.13.6.17 DROP SYNCHRONIZATION PROFILE Statement [UltraLite]
	1.13.6.18 DROP TABLE Statement [UltraLite]
	1.13.6.19 DROP USER Statement [UltraLite]
	1.13.6.20 FROM Clause [UltraLite]
	1.13.6.21 INSERT Statement [UltraLite]
	1.13.6.22 LOAD TABLE Statement [UltraLite]
	1.13.6.23 ROLLBACK Statement [UltraLite]
	1.13.6.24 SELECT Statement [UltraLite]
	1.13.6.25 SET OPTION Statement [UltraLite]
	1.13.6.26 START SYNCHRONIZATION DELETE Statement [UltraLite]
	1.13.6.27 STOP SYNCHRONIZATION DELETE Statement [UltraLite]
	1.13.6.28 SYNCHRONIZE Statement [UltraLite]
	1.13.6.29 TRUNCATE TABLE Statement [UltraLite]
	1.13.6.30 UNION Statement [UltraLite]
	1.13.6.31 UPDATE Statement [UltraLite]

	1.14 UltraLite Performance Tips
	1.14.1 Cache Size Adjustment for an UltraLite Database
	1.14.2 Query Performance Tips
	1.14.2.1 Index Scan Creation and Maintenance
	1.14.2.2 Index Hashing
	1.14.2.3 Optimal Hash Size Limit
	1.14.2.4 Execution Plans in UltraLite
	1.14.2.4.1 Determine the Access Method Used by the Optimizer
	1.14.2.4.1.1 Manage Temporary Tables
	1.14.2.4.1.1.1 Direct Page Scans

	1.14.2.4.2 When to View Execution Plans
	1.14.2.4.3 Viewing an Execution Plan
	1.14.2.4.4 How to Read Execution Plans

	1.14.3 Insert and Update Performance Tips
	1.14.3.1 Transaction and Row State Management
	1.14.3.1.1 UltraLite Concurrency
	1.14.3.1.2 UltraLite Database Row State Management
	1.14.3.1.3 UltraLite Transaction Processing

	1.14.3.2 Flush Single or Grouped Transactions

	1.14.4 UltraLite Benchmark Tips
	1.14.4.1 Types of Benchmark Tests
	1.14.4.1.1 SQL Query Testing

	1.14.4.2 Methodology
	1.14.4.2.1 The Preparation Phase
	1.14.4.2.2 The Creation Phase
	1.14.4.2.3 Performing a Benchmark Test

	1.15 UltraLite Troubleshooting
	1.15.1 Unable to Start the UltraLite Engine
	1.15.2 Unable to Connect to Databases After Upgrade
	1.15.3 UltraLite Database Corruption
	1.15.4 Database Size Not Stabilizing
	1.15.5 Importing ASCII Data into a New UltraLite Database
	1.15.6 Utilities Still Running as the Previous Version
	1.15.7 Result Set Changes Unpredictably
	1.15.8 UltraLite Engine Client Fails with Error -764

	2 UltraLite.NET Application Development
	2.1 UltraLite .NET System Requirements and Supported Platforms
	2.2 SQL Anywhere Tools in Microsoft Visual Studio
	2.3 Connection Setup for an UltraLite Database
	2.3.1 Connecting to an UltraLite Database Using UltraLite.NET

	2.4 Data Creation and Modification in UltraLite.NET Using SQL Statements
	2.4.1 Data Modification in UltraLite.NET Using INSERT, UPDATE, and DELETE
	2.4.1.1 Inserting a Row in a Table Using UltraLite.NET
	2.4.1.2 Updating a Row in a Table Using UltraLite.NET
	2.4.1.3 Deleting a Row in a Table in UltraLite.NET

	2.4.2 Retrieving Data in UltraLite.NET Using SELECT
	2.4.3 Result Set Schema Description
	2.4.4 SQL Result Set Navigation in UltraLite.NET

	2.5 Data creation and modification in UltraLite.NET using the ULTable Class
	2.5.1 Row Navigation in UltraLite.NET
	2.5.2 UltraLite Modes
	2.5.3 Row Insertion in UltraLite.NET
	2.5.4 Row Updates
	2.5.4.1 Updating a Row in a Table Using UltraLite.NET

	2.5.5 Row Searches
	2.5.5.1 Searching for a Row with the Find and Lookup Methods

	2.5.6 Row Retrieval
	2.5.7 Row Deletions in UltraLite.NET

	2.6 Transaction Management in UltraLite.NET
	2.7 Schema Information in UltraLite.NET
	2.8 Error Handling in UltraLite.NET
	2.9 MobiLink Data Synchronization in UltraLite.NET
	2.9.1 Synchronization Initiation in a C# Application
	2.9.2 Microsoft ActiveSync Synchronization Setup in UltraLite.NET

	2.10 How to Deploy UltraLite.NET Applications
	2.10.1 Deploying an UltraLite.NET Application for Microsoft Windows Mobile
	2.10.2 Deploying an UltraLite.NET Application for Windows Mobile (UltraLite Engine)

	2.11 Tutorial: Building a Microsoft Windows Mobile Application Using UltraLite.NET
	2.11.1 Lesson 1: Creating a Microsoft Visual Studio Project
	2.11.2 Lesson 2: Creating an UltraLite Database
	2.11.3 Lesson 3: Adding Database Connection Controls to the Application
	2.11.4 Lesson 4: Inserting, Updating, and Deleting Data
	2.11.5 Lesson 5: Building and Deploying the Application
	2.11.6 Code Listing for C# Tutorial
	2.11.7 Code Listing for Microsoft Visual Basic Tutorial

	3 UltraLite - C++ Programming
	3.1 System Requirements and Supported Platforms
	3.2 UltraLite Application Development Using C++
	3.2.1 UltraLite C++ Application Development
	3.2.1.1 Quick Start Guide to UltraLite C++ Application Development
	3.2.1.2 Apple iOS and macOS Considerations
	3.2.1.3 UltraLite Database Connections
	3.2.1.3.1 Connecting to an UltraLite Database Using UltraLite C++

	3.2.1.4 Data Creation and Modification in UltraLite C++ Using SQL Statements
	3.2.1.4.1 Data Modification in UltraLite C++ Using INSERT, UPDATE, and DELETE
	3.2.1.4.1.1 Inserting a Row in a Table Using UltraLite C++
	3.2.1.4.1.2 Deleting a Row in a Table in UltraLite C++
	3.2.1.4.1.3 Updating a Row in a Table

	3.2.1.4.2 Retrieving Data in UltraLite C++ Using SELECT
	3.2.1.4.3 Schema Description Creation and Retrieval
	3.2.1.4.4 SQL Result Set Navigation in UltraLite C++

	3.2.1.5 Data Creation and Modification in UltraLite C++ Using the ULTable Class
	3.2.1.5.1 Row Navigation in UltraLite C++
	3.2.1.5.2 UltraLite Modes
	3.2.1.5.3 Row Insertions in UltraLite C++
	3.2.1.5.4 Updating Rows
	3.2.1.5.5 Find and Lookup Modes for Searching Rows
	3.2.1.5.6 Access to Values in the Current Row
	3.2.1.5.7 Row Deletions in UltraLite C++

	3.2.1.6 Transaction Management in UltraLite C++
	3.2.1.7 Schema Information in UltraLite C++
	3.2.1.8 Error Handling
	3.2.1.9 MobiLink Data Synchronization in UltraLite C++
	3.2.1.10 Closing the UltraLite Database Connection
	3.2.1.11 How to Build and Deploy UltraLite C++ Applications
	3.2.1.11.1 Deploying an UltraLite Application for Microsoft Windows Mobile (Static Linkage)
	3.2.1.11.2 Deploying an UltraLite Application for Microsoft Windows Mobile (Dynamic Linkage)
	3.2.1.11.3 Deploying an UltraLite Application for Microsoft Windows Mobile (UltraLite Engine)
	3.2.1.11.4 Deploying an UltraLite Application for macOS or iOS
	3.2.1.11.5 Deploying an UltraLite Application for Linux

	3.2.2 UltraLite C++ Application Development Using Embedded SQL
	3.2.2.1 Quick Start Guide to UltraLite Embedded SQL Application Development
	3.2.2.2 Example of Embedded SQL
	3.2.2.2.1 Embedded SQL Program Structure

	3.2.2.3 SQL Communications Area Initialization
	3.2.2.3.1 SQLCA Fields Used in UltraLite C++

	3.2.2.4 UltraLite Database Connection Using Embedded SQL
	3.2.2.4.1 Using Multiple SQLCAs to Manage Multiple Database Connections

	3.2.2.5 Host Variables
	3.2.2.5.1 Host Variable Declaration
	3.2.2.5.2 Data Types
	3.2.2.5.3 Host Variable Usage in UltraLite C++
	3.2.2.5.4 Host Variable Scope
	3.2.2.5.5 Expressions as Host Variables
	3.2.2.5.6 Host Variables in C++
	3.2.2.5.7 Indicator Variables
	3.2.2.5.7.1 Indicator Variables to Handle NULL

	3.2.2.6 Data Fetching
	3.2.2.6.1 Single Row Fetching
	3.2.2.6.2 Multiple Row Fetching

	3.2.2.7 User Authentication
	3.2.2.8 Data Encryption with UltraLite Embedded SQL
	3.2.2.9 Synchronization Setup for an Embedded SQL Application
	3.2.2.9.1 Synchronization Parameter Initialization
	3.2.2.9.2 Synchronization Invocation
	3.2.2.9.3 Committed Changes and Synchronization
	3.2.2.9.4 Initial Data for Your Application
	3.2.2.9.5 Synchronization Communications Errors
	3.2.2.9.6 Synchronization Monitoring and Canceling
	3.2.2.9.6.1 Synchronization Status Information

	3.2.2.10 Embedded SQL Application Building
	3.2.2.10.1 General Build Procedures
	3.2.2.10.2 Development Tool Configuration for Embedded SQL Development
	3.2.2.10.2.1 Running the SQL Preprocessor

	3.2.3 UltraLite Application Development for Microsoft Windows Mobile
	3.2.3.1 CustDB Sample Application
	3.2.3.1.1 Building the CustDB Sample Application

	3.2.3.2 Persistent Data
	3.2.3.3 Assigning Class Names for Applications
	3.2.3.4 Microsoft Windows Mobile Synchronization
	3.2.3.4.1 Microsoft ActiveSync Synchronization in UltraLite C++
	3.2.3.4.2 Microsoft ActiveSync Synchronization in UltraLite C++ (Windows API)
	3.2.3.4.3 Adding ActiveSync Synchronization in the Main Dialog Class
	3.2.3.4.4 Adding ActiveSync Synchronization in the Application Class
	3.2.3.4.5 TCP/IP, HTTP, or HTTPS Synchronization from Microsoft Windows Mobile

	3.3 Tutorial: Building a Windows Application using the C++ API
	3.3.1 Lesson 1: Creating and Connecting to a Database
	3.3.2 Lesson 2: Inserting Data into the Database
	3.3.3 Lesson 3: Selecting and Listing Rows from the Table
	3.3.4 Lesson 4: Adding Synchronization to Your Application
	3.3.5 Reviewing the Code Listing for the Tutorial

	3.4 API Reference
	3.4.1 UltraLite C++ Common API Reference
	3.4.1.1 Macros and Compiler Directives for UltraLite C++ Applications
	3.4.1.1.1 UL_USE_DLL Macro
	3.4.1.1.2 UNDER_CE Macro

	3.4.2 UltraLite C++ API Reference
	3.4.3 UltraLite Embedded SQL API Reference
	3.4.3.1 db_fini Method
	3.4.3.2 db_init Method

	4 UltraLite - Java Programming
	4.1 System Requirements and Supported Platforms
	4.2 UltraLiteJ Application Development
	4.2.1 Quick Start Guide to UltraLiteJ Application Development
	4.2.2 Android Setup Considerations
	4.2.3 UltraLite Database Creation and Connection Approaches
	4.2.3.1 Creating or Connecting to a Database

	4.2.4 Quick Start Guide to Schema Operations and Data Management
	4.2.4.1 Example: Managing Database Operations on an Android Device
	4.2.4.2 Schema Operations
	4.2.4.3 Row Operation Management
	4.2.4.4 Row Data Retrieval

	4.2.5 Schema Information in UltraLiteJ
	4.2.6 Error Handling in UltraLiteJ
	4.2.7 MobiLink Data Synchronization Using UltraLiteJ
	4.2.7.1 Network Protocol Options for UltraLiteJ Synchronization Streams

	4.2.8 Deploying an UltraLiteJ application for Android
	4.2.9 Code Examples

	4.3 Tutorial: Building an Android Application
	4.3.1 Lesson 1: Setting up a New Android Project
	4.3.2 Lesson 2: Starting the MobiLink Server
	4.3.3 Lesson 3: Running Your Android Application
	4.3.4 Lesson 4: Testing Your Android Application and Synchronizing
	4.3.5 Lesson 5: Cleaning up

	4.4 UltraLiteJ API Reference

	5 UltraLite - UWP Programming
	5.1 System Requirements and Supported Platforms
	5.2 UltraLite for UWP Application Development
	5.2.1 Quick Start Guide to UltraLite for UWP Application Development
	5.2.2 UltraLite for UWP Setup Considerations
	5.2.3 Quick Start Guide to Schema Operations and Data Management
	5.2.3.1 Example: Managing Database Operations on a Windows Phone

	5.2.4 Deploying an UltraLite Application for Windows Phone or Windows Store Apps

	5.3 Tutorial: Building a Windows Phone Application
	5.3.1 Lesson 1: Setting up a New Windows Phone Application
	5.3.2 Lesson 2: Starting the MobiLink Server
	5.3.3 Lesson 3: Running Your Windows Phone Application and Synchronizing
	5.3.4 Lesson 4: Cleaning up

	5.4 UltraLite for UWP API Reference

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

