
PUBLIC
SQL Anywhere - MobiLink
Document Version: 17.01.0 – 2021-10-15

MobiLink Server Administration

©
 2

02
2

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 MobiLink - Server Administration. 7
1.1 MobiLink Deployment. 8

MobiLink Server Deployment. 9
Microsoft Windows 32-Bit Applications. 10
Microsoft Windows 64-Bit Applications. 13
64-Bit Applications on UNIX and Linux. 16
SQL Anywhere MobiLink Client Deployment. 18
Microsoft Windows Applications. 18
Applications on UNIX, Linux, and macOS. 20
UltraLite MobiLink Client Deployment. 21

1.2 MobiLink Server. 21
Required Privileges for MobiLink Server. 23
MobiLink Connectivity. 24
MobiLink Server Shutdown. .24
MobiLink Server Logging. 25
MobiLink Server Use Outside the Current Session. .29
MobiLink Server in a Server Farm. 37
Troubleshooting MobiLink Server Startup. 38

1.3 MobiLink Server Options. 40
mlsrv17 Syntax. 44
@data mlsrv17 Option. 50
-a mlsrv17 Option. 51
-b mlsrv17 Option. 51
-bn mlsrv17 Option. .52
-c mlsrv17 Option. .53
-ca mlsrv17 Option. 54
-cinit mlsrv17 Option. 54
-cn mlsrv17 Option. 55
-cr mlsrv17 Option. 56
-cs mlsrv17 Option. 56
-ct mlsrv17 Option. 57
-dl mlsrv17 Option. 57
-dr mlsrv17 Option. 58
-ds mlsrv17 Option. .58
-dsd mlsrv17 Option. 59
-dt mlsrv17 Option. 60

2 PUBLIC
MobiLink Server Administration

Content

-e mlsrv17 Option. 61
-esu mlsrv17 Option. 62
-et mlsrv17 Option. 63
-fips mlsrv17 Option. 63
-ftr mlsrv17 Option. .64
-ftru mlsrv17 Option. 65
-lsc mlsrv17 Option. 65
-nc mlsrv17 Option. .66
-ncs mlsrv17 Option. 67
-ncsd mlsrv17 Option. 68
-ncsp mlsrv17 Option. 69
-notifier mlsrv17 Option. 69
-o mlsrv17 Option. .70
-on mlsrv17 Option. 71
-oq mlsrv17 Option. 72
-os mlsrv17 Option. 73
-ot mlsrv17 Option. 74
-ppv mlsrv17 Option. 74
-q mlsrv17 Option. .79
-r mlsrv17 Option. 79
-rd mlsrv17 Option. 79
-rp mlsrv17 Option. 80
-rrp mlsrv17 Option. 81
-s mlsrv17 Option. 81
-sl dnet mlsrv17 Option. .82
-sl java mlsrv17 Option. 84
-sm mlsrv17 Option. 85
-tc mlsrv17 Option. 86
-tf mlsrv17 Option. 87
-ts mlsrv17 Option. 88
-tx mlsrv17 Option. 89
-ud mlsrv17 Option. 90
-ui mlsrv17 Option. 91
-ux mlsrv17 Option. 91
-v mlsrv17 Option. .92
-w mlsrv17 Option. 96
-wm mlsrv17 Option. 97
-wn mlsrv17 Option. 98
-wu mlsrv17 Option. 98
-x mlsrv17 Option. .99
-zf mlsrv17 Option. 107

MobiLink Server Administration
Content PUBLIC 3

-zp mlsrv17 Option. 108
-zs mlsrv17 Option. 108
-zt mlsrv17 Option. 109
-zu mlsrv17 Option. 109
-zup mlsrv17 Option. 110
-zus mlsrv17 Option. 111
-zw mlsrv17 Option. 111
-zwd mlsrv17 Option. 112
-zwe mlsrv17 Option. 113

1.4 Synchronization Techniques. 113
Implementing Timestamp-based Downloads. 115
Snapshot Synchronization. .119
Partitioned Rows Among Remote Databases. 121
Upload-only and Download-only Synchronizations. .125
Unique Primary Keys. 126
Conflict Handling Overview. 133
Deletes. 142
Failed Downloads. 144
Download Acknowledgement. .147
Result Sets from Stored Procedure Calls. .147
Self-referencing Tables. 149
MobiLink Isolation Levels. 149

1.5 MobiLink Consolidated Databases. 152
How Remote Tables Relate to Consolidated Tables. .154
Consolidated Database Setup. 155
RDBMS-Dependent Synchronization Scripts. 157
Synchronization of Spatial Data. 158
Adaptive Server Enterprise Consolidated Database. 163
IBM DB2 LUW Consolidated Database. 165
Microsoft SQL Server and Microsoft Azure Consolidated Databases. 168
MySQL Consolidated Database. 170
Oracle Consolidated Database. 173
SAP HANA Consolidated Database. 179
SQL Anywhere Consolidated Database. 181
SAP IQ Consolidated Database. 182

1.6 MobiLink Performance. .183
Test to Improve Performance. .186
Avoid Contention. 186
Use Multithreaded Network Processing. 187
Use an Optimal Number of Database Worker Threads. 187
Automatic Adjustment of Database Worker Threads. 187

4 PUBLIC
MobiLink Server Administration

Content

Use Smaller Upload Transactions. .188
Avoid Synchronizing Unnecessary BLOBs. .188
Set the Maximum Number of Database Connections. 188
Have Enough Physical Memory. 188
Use Enough Processing Power. .189
Optimize Script Execution. 189
Use Minimum Logging Verbosity. 189
Plan for Operating System Limitations. 189
Java or .NET vs. SQL Synchronization Logic. 190
Priority Synchronization. 190
Download Only the Rows You Need. 191
Only Synchronize When You Need to. .191
For Large Uploads, Estimate the Number of Rows. 191
Use Background Synchronization. .191
Key Factors Influencing MobiLink Performance. 191
MobiLink Performance Monitoring. 195

1.7 MobiLink Client/Server Communications Encryption. 196
End-to-end Encryption. 196
Starting the MobiLink Server with Transport Layer Security. 197
MobiLink Client Configuration to Use Transport Layer Security. 198

1.8 Manage Remote Databases. 202
Central Administration Concepts. 204
MobiLink Agents. 207
Remote Tasks. 219
Deployment and Configuration. 245

1.9 MobiLink Profiler. .247
Starting the MobiLink Profiler (Administration Tools). .249
MobiLink Profiler (mlprof) on the Command Line. 250
Starting a Profiling Session. 250
Ending a Profiling Session. 252
Opening or Deleting a Previous Profiling Session. 253
The Profiling Database. 253
MobiLink Profiler Interface. 254
Statistic Customization. 263
Using the Profiling Database. 264
MobiLink Synchronization Statistical Properties. 267

1.10 MobiLink File-based Download. 270
File-Based Download Setup. 271
Validation Checks. .275
File-Based Download Examples. 278

1.11 The Relay Server Reverse Proxy. 287

MobiLink Server Administration
Content PUBLIC 5

1.12 MobiLink Events. 288
Synchronization Scripts. 288
Synchronization Events. 332

1.13 MobiLink Server APIs. 525
Synchronization Script Writing in Java. 526
MobiLink Server Java API Reference. 540
Synchronization Scripts in Microsoft .NET. 541
MobiLink Server .NET API Reference. 557
Direct Row Handling. .558

1.14 MobiLink Reference. 569
MobiLink Replay C++ Callbacks. .570
MobiLink Server System Procedures. 582
MobiLink Utilities. 647
MobiLink Data Mappings Between Remote and Consolidated Databases.662
Character Set Considerations. 708
ODBC Drivers for MobiLink. 710

6 PUBLIC
MobiLink Server Administration

Content

1 MobiLink - Server Administration

This book describes how to set up and administer MobiLink servers, consolidated databases, and MobiLink
applications. It also describes the SQL Anywhere Monitor for MobiLink, a web browser-based administration
tool that provides information about the health and availability of MobiLink servers, and the Relay Server, which
enables secure communication between mobile devices and MobiLink servers through a web server.

 Note
Adobe will stop updating and distributing the Flash Player at the end of 2020. Because the SQL Anywhere
Monitor is based on Flash, you cannot use it once Flash support ends. In many cases, tasks that were
previously performed in the Monitor can be performed in the SQL Anywhere Cockpit. See SQL Anywhere
Monitor Non-GUI User Guide.

In this section:

MobiLink Deployment [page 8]
Deploying MobiLink applications involves the following activities:

MobiLink Server [page 21]
All MobiLink clients synchronize through the MobiLink server. None connect directly to a database
server. You must start the MobiLink server before a MobiLink client synchronizes.

MobiLink Server Options [page 40]
The following options are available for use with the MobiLink server.

Synchronization Techniques [page 113]
Adding synchronization functionality to an application adds a degree of complexity to your application.
While the added complexity is almost always manageable, you need to be aware of it.

MobiLink Consolidated Databases [page 152]
Your consolidated database holds system objects that are required by MobiLink. Usually, it also holds
your application data, but you can hold all or part of your application data in other forms as well.

MobiLink Performance [page 183]
The following is a list of suggestions to help you get the best performance out of MobiLink.

MobiLink Client/Server Communications Encryption [page 196]
You can encrypt MobiLink client/server communication using transport layer security.

Manage Remote Databases [page 202]
You can centrally manage remote databases involved in MobiLink synchronization using the MobiLink
plug-in SQL Central.

MobiLink Profiler [page 247]
The MobiLink Profiler is a MobiLink administration tool that provides you with detailed information
about the performance of your synchronizations, enabling you to analyze bottlenecks and maximize
performance.

MobiLink File-based Download [page 270]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 7

https://help.sap.com/doc/4dbffc39d22945a7ac69af24995cc3dc/17.0/en-US/SQL-Anywhere-Monitor-Non-GUI-User-Guide.pdf
https://help.sap.com/doc/4dbffc39d22945a7ac69af24995cc3dc/17.0/en-US/SQL-Anywhere-Monitor-Non-GUI-User-Guide.pdf

File-based download is an alternative way to download data to SQL Anywhere remote databases:
downloads can be distributed as files, enabling offline distribution of synchronization changes. This
allows you to create a file once and distribute it to many remote databases.

The Relay Server Reverse Proxy [page 287]
The Relay Server is a reverse proxy that enables secure, load-balanced communication between mobile
devices and backend servers through a web server. Supported backend servers include MobiLink, SAP
Mobile Server, SAP Afaria, and SAP Mobile Office.

MobiLink Events [page 288]
The synchronization process has multiple steps and a unique event identifies each step. You control the
synchronization process by writing scripts associated with some of these events.

MobiLink Server APIs [page 525]
MobiLink synchronization scripts can be written in SQL, in Java (using the MobiLink server API for
Java) or in .NET (using the MobiLink server API for .NET).

MobiLink Reference [page 569]
Many useful tools and resources are available to help you use MobiLink.

1.1 MobiLink Deployment

Deploying MobiLink applications involves the following activities:

• Deploy the MobiLink server into a production setting.
• Deploy any SQL Anywhere MobiLink clients.
• Deploy any UltraLite MobiLink clients.

The Deploy Synchronization Model Wizard can help with your deployment on Microsoft Windows.

 Note
Check your license agreement

Redistribution of files is subject to your license agreement. No statements in this document override
anything in your license agreement. Check your license agreement before considering deployment.

In this section:

MobiLink Server Deployment [page 9]
The simplest way to deploy a MobiLink server into a production environment is to install a licensed
copy of SQL Anywhere onto the production computer.

Microsoft Windows 32-Bit Applications [page 10]
All directories are relative to %SQLANY17%.

Microsoft Windows 64-Bit Applications [page 13]
All directories are relative to %SQLANY17%.

64-Bit Applications on UNIX and Linux [page 16]
All directories are relative to $SQLANY17.

SQL Anywhere MobiLink Client Deployment [page 18]

8 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Keep the following notes in mind for SQL Anywhere MobiLink client deployment.

Microsoft Windows Applications [page 18]
All directories are relative to %SQLANY17%. There are 64-bit versions of these files in the Bin64
directory.

Applications on UNIX, Linux, and macOS [page 20]
All directories are relative to $SQLANY17.

UltraLite MobiLink Client Deployment [page 21]
For UltraLite clients, the UltraLite runtime library or the UltraLite component includes the required
synchronization stream functions. The UltraLite runtime library is compiled into your application.
Deployment is subject to your license agreement.

Related Information

The Deployment Wizard for Windows

1.1.1 MobiLink Server Deployment

The simplest way to deploy a MobiLink server into a production environment is to install a licensed copy of SQL
Anywhere onto the production computer.

However, if you are redistributing a MobiLink server in a separate installation program, you may want to include
only a subset of the files. In this case, you need to include the following files in your installation.

Notes

• Test on a clean computer before redistributing.
• Files must be installed to the SQL Anywhere installation directory, with the exception of samples.
• The files should be in the same directory unless otherwise noted.
• When a location is given, the files must be copied into a directory of the same name.
• On UNIX and Linux, environment variables must be set for the system to locate SQL Anywhere applications

and libraries. Use the appropriate file for your shell, either sa_config.sh or sa_config.csh as a
template for setting the required environment variables. Some of the environment variables set by the
sa_config files include PATH, LD_LIBRARY_PATH, SQLANY17, and SQLANYSAMP17.

• On Microsoft Windows, the PATH environment variable must be set for the system to locate SQL Anywhere
applications and libraries. Check the PATH variable to ensure that it includes %SQLANY17%\Bin32 for 32-
bit environments or %SQLANY17%\Bin64 for 64-bit environments. If both entries exist, remove the path
that does not apply to your environment.

• To use Java synchronization logic, you must have JRE 1.6.0 or later installed, and to use the graphical
administration tools (SQL Central and the MobiLink Profiler), you must have JRE 1.8.0 installed.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 9

https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/815b83c46ce21014aa8ab5d2d887314b.html

Related Information

The Deployment Wizard for Windows
Administration Tool Deployment

1.1.2 Microsoft Windows 32-Bit Applications

All directories are relative to %SQLANY17%.

Description Microsoft Windows files

MobiLink server The MobiLink server is only available as a 64-bit application.

Language library • Bin32\dblgen17.dll 1

Java synchronization logic • Java\activation.jar 2

• Java\imap.jar 2

• Java\jodbc4.jar
• Java\mailapi.jar 2

• Java\mlscript.jar
• Java\mlsupport.jar
• Java\pop3.jar 2

• Java\smtp.jar 2

• Bin32\dbjodbc17.dll
• Bin32\mljodbc17.dll

.NET synchronization logic • MobiLink\Setup\Dnet\mlDomConfig.xml
• Assembly\V2\Sap.MobiLink.dll
• Assembly\V2\Sap.MobiLink.Script.dll
• Assembly\V2\Sap.MobiLink.Script.xml
• Bin32\mlDomConfig.xsd

Encrypted communications3 • Bin32\dbrsa17.dll
• Bin32\dbfips17.dll
• Bin32\sapcrypto.dll
• Bin32\sapcryptofips.dll
• Bin32\slcryptokernel.dll
• Bin32\slcryptokernel.dll.sha256
• Bin32\msvcr90.dll

Setup scripts (deploy the ones for your consolidated data
base)

• MobiLink\Setup\
• MobiLink\Upgrade\

10 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/815b83c46ce21014aa8ab5d2d887314b.html
https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/81683e126ce2101497369d47dd97f1e1.html

Description Microsoft Windows files

mluser utility • Bin32\mluser.exe
• Bin32\dbicu17.dll
• Bin32\dbicudt17.dll

mlstop utility • Bin32\mlstop.exe
• Bin32\dbicu17.dll

mlreplay utility6 • Bin32\mlreplay.exe
• Bin32\mlgenreplayapi.exe

MobiLink arbiter • Bin32\dbserv17.dll
• Bin32\mlarb17.exe
• Bin32\mlarb17.lic
• Bin32\mlarbiter.bat
• MobiLink\mlarbiter.control
• mlarbstop.exe

MobiLink Profiler • Java\mlprof.jar
• Java\mlstream.jar
• Java\JComponents.jar
• Java\jsyblib1700.jar
• Bin32\jsyblib1700.dll
• Bin32\mlprof.exe
• Bin32\mljstrm17.dll

For security with the MobiLink Profiler:3

• Bin32\mlcrsa17.dll
• Bin32\mlcrsafips17.dll
• Bin32\mlczlib17.dll

Online help for the MobiLink 17 plug-in and MobiLink Profiler • Documentation\en\htmlhelp
\sqlanywhere_en17.chm 1

• Documentation\en\htmlhelp
\sqlanywhere_en17.map 1

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 11

Description Microsoft Windows files

Notifier • Java\jodbc4.jar
• Java\mlnotif.jar
• Java\mlscript.jar
• Bin32\mljodbc17.dll
• Bin32\mljstrm17.dll
• Bin32\mlsmtp17.dll

For security with the Notifier:3

• Bin32\mlcrsa17.dll
• Bin32\mlcrsafips17.dll
• Bin32\mlczlib17.dll

Relay Server Outbound Enabler • Bin32\rsoe2.exe

For security with the Outbound Enabler:

• Bin32\mlcrsa17.dll

1 For German, Japanese, and Chinese editions, use dblgde17.dll, dblgja17.dll and dblgzh17.dll
respectively.

2 If you are redistributing an application, you must obtain these files directly from Oracle.

3 The non-certified version of RSA encryption is included with SQL Anywhere. FIPS-certified encryption is
separately licensed.

4 To compile generated code, any files prefixed with mlreplay in SDK/Include are required.

Related Information

Separately Licensed Components

12 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/81552fcf6ce21014b634eaf8cdc2b48a.html

1.1.3 Microsoft Windows 64-Bit Applications

All directories are relative to %SQLANY17%.

Description Microsoft Windows files

MobiLink server • Bin64\mlodbc17.dll
• Bin64\mlsrv17.exe
• Bin64\mlserv17.dll
• Bin64\mlsrv17.lic
• Bin64\mlsql17.dll
• Bin64\dbicu17.dll
• Bin64\dbicudt17.dll

Language library • Bin64\dblgen17.dll 1

Java synchronization logic • Java\activation.jar 2

• Java\imap.jar 2

• Java\jodbc4.jar
• Java\mailapi.jar 2

• Java\mlscript.jar
• Java\mlsupport.jar
• Java\pop3.jar 2

• Java\smtp.jar 2

• Bin64\mljava17.dll
• Bin64\dbjodbc17.dll
• Bin64\mljodbc17.dll

.NET synchronization logic • MobiLink\Setup\Dnet\mlDomConfig.xml
• Bin64\mldnet17.dll
• Bin64\dnetodbc17.dll
• Assembly\V3.5\Sap.MobiLink.dll
• Assembly\V3.5\Sap.MobiLink.Script.dll
• Assembly\V3.5\Sap.MobiLink.Script.xml
• Bin64\mlDomConfig.xsd

Encrypted communications3 • Bin64\dbrsa17.dll
• Bin64\dbfips17.dll
• Bin32\sapcrypto.dll
• Bin32\sapcryptofips.dll
• Bin32\slcryptokernel.dll
• Bin32\slcryptokernel.dll.sha256
• Bin64\msvcr100.dll

Setup scripts (deploy the ones for your consolidated data
base)

• MobiLink\Setup\
• MobiLink\Upgrade\

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 13

Description Microsoft Windows files

mluser utility • Bin64\mluser.exe
• Bin64\mlodbc17.dll
• Bin64\dbicu17.dll
• Bin64\dbicudt17.dll

mlstop utility • Bin64\mlstop.exe
• Bin64\dbicu17.dll

mlreplay utility6 • Bin64\mlreplay.exe
• Bin64\mlgenreplayapi.exe

MobiLink arbiter • Bin64\dbserv17.dll
• Bin64\mlarb17.exe
• Bin64\mlarb17.lic
• Bin64\mlarbiter.bat
• MobiLink\mlarbiter.control
• mlarbstop.exe

MobiLink Profiler • Java\mlprof.jar
• Java\mlstream.jar
• Java\JComponents1700.jar
• Java\jsyblib1700.jar
• Bin64\jsyblib1700.dll
• Bin64\mlprof.exe
• Bin64\mljstrm17.dll

For security with the MobiLink Profiler:3

• Bin64\mlcrsa17.dll
• Bin64\mlcrsafips17.dll
• Bin64\mlczlib17.dll

Online help for the MobiLink 17 plug-in and MobiLink Profiler • Documentation\en\htmlhelp
\sqlanywhere_en17.chm 1

• Documentation\en\htmlhelp
\sqlanywhere_en17.map 1

14 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Description Microsoft Windows files

Notifier • Java\jodbc4.jar
• Java\mlnotif.jar
• Java\mlscript.jar
• Java\jsyblib1700.jar
• Bin64\mljodbc17.dll
• Bin64\mljstrm17.dll
• Bin64\mlsmtp17.dll

For security with the Notifier:3

• Bin64\mlcrsa17.dll
• Bin64\mlcrsafips17.dll
• Bin64\mlczlib17.dll

Relay Server Outbound Enabler • Bin64\rsoe2.exe

For security with the Outbound Enabler:

• Bin64\mlcrsa17.dll

1 For German, Japanese, and Chinese editions, use dblgde17.dll, dblgja17.dll and dblgzh17.dll
respectively.

2 If you are redistributing an application, you must obtain these files directly from Oracle.

3 The non-certified version of RSA encryption is included with SQL Anywhere. FIPS-certified encryption is
separately licensed.

4 To compile generated code, any files prefixed with mlreplay in SDK/Include are required.

Related Information

Separately Licensed Components
Microsoft Windows 32-Bit Applications [page 10]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 15

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/81552fcf6ce21014b634eaf8cdc2b48a.html

1.1.4 64-Bit Applications on UNIX and Linux

All directories are relative to $SQLANY17.

Description UNIX files

MobiLink server • bin64/mlsrv17
• bin64/libmlserv17_r.so
• bin64/mlsrv17.lic
• lib64/libdbodm17.so 3

• lib64/libmlodbc17_r.so 3

• lib64/libmlsql17_r.so 3

• lib64/libdbtasks17_r.so 3

• lib64/libdbicu17_r.so 3

• lib64/libdbicudt17_r.so 3

• lib64/libdbodbcinst17_r.so 3

Language library • res/dblgen17.res 1

Java synchronization logic • java/activation.jar 2

• java/imap.jar 2

• java/jodbc4.jar
• java/mailapi.jar 2

• java/mlscript.jar
• java/mlsupport.jar
• java/pop3.jar 2

• java/smtp.jar 2

• lib64/libmljava17_r.so 3

• lib64/libmljodbc17.so 3

.NET synchronization logic • Not applicable

Encrypted communications4 • lib64/libdbrsa17_r.so 3

• lib64/libdbfips17_r.so (Linux only)

• lib64/libsapcryptofips.so (Linux only)

• lib64/libslcryptokernel.so (Linux only)

• lib64/libslcryptokernel.so.sha25 (Linux
only)

Setup scripts (deploy the ones for your consolidated data
base)

• mobilink/setup
• mobilink/upgrade

mluser utility • bin64/mluser
• lib64/libmlodbc17_r.so 3

• lib64/libdbicu17.so 3

• lib64/libdbicudt17.so 3

16 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Description UNIX files

mlstop utility • bin64/mlstop
• lib64/libdbicu17.so 3

mlreplay utility6 • bin64/mlreplay
• bin64/mlgenreplayapi

MobiLink arbiter • bin64/libdbserv17_r.so
• bin64/mlarb17
• bin64/mlarb17.lic
• bin64/mlarbiter.sh
• mobilink/mlarbiter.control

MobiLink Profiler • bin64/mlprof
• java/mlprof.jar
• java/mlstream.jar
• java/JComponents1700.jar
• java/jsyblib1700.jar
• lib64/libjsyblib1700_r.so 3

For security with the Profiler:

• lib64/libmlcrsa17_r.so
• lib64/libmlcrsafips17_r.so
• lib64/libmlczlib17_r.so

Notifier • java/activation.jar 2

• java/jodbc4.jar
• java/mlnotif.jar
• java/mlscript.jar
• lib64/libmlsmtp17.so

Relay Server Outbound Enabler • bin64/rsoe2

For security with the Outbound Enabler:

• lib64/libmlcrsa17_r.so 3

1 For German, Japanese, and Chinese editions, use dblgde17.res, dblgja17.res and dblgzh17.res
respectively.

2 If you are redistributing an application, you must obtain these files directly from Oracle.

3 For Solaris SPARC and Linux, the file extension is .so. For IBM AIX (deprecated), the file extension is .a.

4 The non-certified version of RSA encryption is included with SQL Anywhere. FIPS-certified encryption is
separately licensed.

5 To compile generated code, any files prefixed with mlreplay in sdk/include are required.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 17

Related Information

Separately Licensed Components

1.1.5 SQL Anywhere MobiLink Client Deployment

Keep the following notes in mind for SQL Anywhere MobiLink client deployment.

• For SQL Anywhere clients, you need to deploy a SQL Anywhere database server and the MobiLink client.
• If you are redistributing MobiLink synchronization clients you need to include the following files in your

installation, in addition to those required for the SQL Anywhere database.
• When deploying files, place them in the same directory structure unless otherwise noted.

Related Information

Database and Application Deployment
Administration Tool Deployment
The Deployment Wizard for Windows

1.1.6 Microsoft Windows Applications

All directories are relative to %SQLANY17%. There are 64-bit versions of these files in the Bin64 directory.

Description Microsoft Windows files

MobiLink synchronization client (dbmlsync) • Bin32\dbcon17.dll
• Bin32\dbicu17.dll 2

• Bin32\dblgen17.dll 1

• Bin32\dblib17.dll
• Bin32\dbmlsync.exe
• Bin32\dbtool17.dll
• Bin32\sapcrypto.dll

Dbmlsync C++ API or the SQL SYNCHRONIZE statement • MobiLink synchronization client files
• Bin32\dbmlsynccli17.dll

Dbmlsync .NET API • MobiLink synchronization client files
• Assembly\V3.5\Sap.MobiLink.Client.dll

18 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/81552fcf6ce21014b634eaf8cdc2b48a.html
https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/8160157f6ce210148d58f30e0bf00a4d.html
https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/81683e126ce2101497369d47dd97f1e1.html
https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/815b83c46ce21014aa8ab5d2d887314b.html

Description Microsoft Windows files

Encrypted communications4
Files for non-FIPS encryption:

• Bin32\dbrsa17.dll
• Bin32\mlcrsa17.dll

Files FIPS encryption:

• Bin32\dbrsa17.dll
• Bin32\mlcrsafips17.dll
• Bin32\sapcrypto.dll
• Bin32\sapcryptofips.dll
• Bin32\slcryptokernel.dll
• Bin32\slcryptokernel.dll.sha256
• Bin32\msvcr90.dll 5

Listener • Bin32\dblgen17.dll 1

• Bin32\dblsn.exe
• Bin32\lsn_udp17.dll

MobiLink Agent (required for central administration of re
mote databases)

To manage a SQL Anywhere remote database, the following
files must be on the remote device:

• sacrypto.dll
• dbrsa17.dll
• dbcon17.dll
• dbeng17.exe 3

• dbeng17.lic 3

• dbghelp.dll
• dbicu17.dll
• dbicudt17.dll 3

• dblgen17.dll 1

• dblib17.dll
• dbmlsync.exe
• dbmlsynccli17.dll
• dbscript17.dll
• dbsrv17.exe
• dbsrv17.lic
• dbtool17.dll
• mlagent.exe
• mlastop.exe
• Bin32\sapcrypto.dll
• mlasaadapt17.dll

Certain features of SQL Anywhere may need extra files to
deploy.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 19

1 For German, Japanese, and Chinese editions, use dblgde17.dll, dblgja17.dll and dblgzh17.dll
respectively.

2 Not required if the database is initialized with dbinit -zn UTF8BIN.

3 For Microsoft Windows operating systems.

4 The non-certified version of RSA encryption is included with SQL Anywhere. FIPS-certified encryption is
separately licensed.

5 The 64-bit version of this file is called msvcr100.dll.

Related Information

Database and Application Deployment
Initialization Utility (dbinit)

1.1.7 Applications on UNIX, Linux, and macOS

All directories are relative to $SQLANY17.

Description UNIX files

MobiLink synchronization client (dbmlsync) • bin32/dbmlsync
• res/dblgen17.res
• lib32/libdbicu17_r.so 1

• lib32/libdblib17_r.so 1

• lib32/libdbtool17_r.so 1

Dbmlsync C++ API or the SQL SYNCHRONIZE statement • MobiLink synchronization client files
• lib32/libdbmlsynccli17_r.so

Encrypted communications2 • lib32/libmlcrsa17_r.so 1

• lib32/libmlcrsafips17_r.so (Linux
only)

• lib32/libdbcrypto.so (Linux only)
• lib32/libdbssl.so (Linux only)

Support for the 64-bit MobiLink synchronization client is located in the bin64/lib64 directories. For macOS,
the file extension is .dylib. Only 64-bit software is supported for macOS.

1For Linux, the file extension is .so.

2 The non-certified version of RSA encryption is included with SQL Anywhere. FIPS-certified encryption is
separately licensed.

20 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/98ad9ec940e2465695685d98e308dff5/17.0.01/en-US/8160157f6ce210148d58f30e0bf00a4d.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bc8f4f76c5f1014b7e0e816307e4ca4.html

Related Information

Separately Licensed Components

1.1.8 UltraLite MobiLink Client Deployment

For UltraLite clients, the UltraLite runtime library or the UltraLite component includes the required
synchronization stream functions. The UltraLite runtime library is compiled into your application. Deployment
is subject to your license agreement.

Related Information

UltraLite Deployment
How to Build and Deploy UltraLite C++ Applications
Lesson 5: Building and Deploying the Application

1.2 MobiLink Server

All MobiLink clients synchronize through the MobiLink server. None connect directly to a database server. You
must start the MobiLink server before a MobiLink client synchronizes.

The MobiLink server opens database connections, via ODBC, with your consolidated database server. It then
accepts connections from remote applications and controls the synchronization process.

 Note
The mlsrv17 options allow you to specify how the MobiLink server works. To control what the server does
during synchronization, you define scripts that are invoked at synchronization events.

To start the MobiLink server, run mlsrv17. Use the -c option to specify the ODBC connection parameters for
your consolidated database.

You must specify connection parameters. Other options are available, but are optional. These options allow you
to specify how the server works. For example, you can specify a cache size and logging options.

The MobiLink server needs an ODBC Data Source Name (DSN) to communicate with the consolidated
database. A DSN includes information for the ODBC Driver Manager on where to load the ODBC driver. On
Microsoft Windows, ODBC data sources can be created with the Microsoft ODBC Data Source Administrator.
The bitness of the MobiLink server must match the bitness of the DSN. More precisely, a 64-bit MobiLink
server must use a 64-bit DSN created via ODBC Data Source Administrator (64-bit).

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 21

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/81552fcf6ce21014b634eaf8cdc2b48a.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826ac7b06ce21014a74ac9dee66cc855.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8278c0d96ce2101489c7b05afd330b52.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/827920a96ce21014a697ebb8ad91dfc7.html

Example

The following command starts the MobiLink server using the ODBC data source SQL Anywhere 17 CustDB to
identify the consolidated database. Enter the entire command on one line.

mlsrv17 -c "DSN=SQL Anywhere 17 CustDB;UID=ml_server;PWD=sql" -zs MyServer -o
mlsrv.log -vcr -x tcpip(port=3303)

In this example, the -c option provides a connection string that contains an ODBC data source name (DSN) and
authentication. The -zs option provides a server name. The -o option specifies that the message log file should
be named mlsrv.log. The contents of mlsrv.log are verbose because of the -vcr option. The -x option
opens a port for version 10 and later clients.

You can also start the MobiLink server as a Microsoft Windows service or UNIX or Linux daemon.

In this section:

Required Privileges for MobiLink Server [page 23]
You must specify a database user for the MobiLink server to connect to the database server. You
specify the database user with the mlsrv17 -c option or in the ODBC data source.

MobiLink Connectivity [page 24]
When using HTTP or HTTPS, with or without the Relay Server, you can use a web browser to verify
MobiLink server is listening for requests.

MobiLink Server Shutdown [page 24]
The MobiLink server is stopped from the computer where the server was started.

MobiLink Server Logging [page 25]
Logging the actions that the server takes is particularly useful during the development process and
when troubleshooting. Verbose output is not recommended for normal operation of a production
environment because it can slow performance.

MobiLink Server Use Outside the Current Session [page 29]
You can set up the MobiLink server to be available all the time. To make this easier, you can run the
MobiLink server for Windows and for Unix so that it remains running when you log off the computer.
The way to do this depends on your operating system.

MobiLink Server in a Server Farm [page 37]
A MobiLink server farm is an environment where there is more than one MobiLink server synchronizing
the same set of remote databases with the same consolidated database. This is often required for large
scale deployments or for fail-over capability.

Troubleshooting MobiLink Server Startup [page 38]
Occasionally you may encounter issues during MobiLink server startup.

Related Information

Synchronization Events [page 332]
MobiLink Server System Procedures [page 582]
Adaptive Server Enterprise Consolidated Database [page 163]

22 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

IBM DB2 LUW Consolidated Database [page 165]
Microsoft SQL Server and Microsoft Azure Consolidated Databases [page 168]
MySQL Consolidated Database [page 170]
Oracle Consolidated Database [page 173]
SQL Anywhere Consolidated Database [page 181]
SAP IQ Consolidated Database [page 182]
Consolidated Database Setup [page 155]
Introduction to the Relay Server
Lesson 1: Setting up a MobiLink Consolidated Database
MobiLink Server Options [page 40]
-c mlsrv17 Option [page 53]
-zs mlsrv17 Option [page 108]
-o mlsrv17 Option [page 70]
-v mlsrv17 Option [page 92]
-x mlsrv17 Option [page 99]
-c mlsrv17 Option [page 53]

1.2.1 Required Privileges for MobiLink Server

You must specify a database user for the MobiLink server to connect to the database server. You specify the
database user with the mlsrv17 -c option or in the ODBC data source.

This database user must have full SELECT, INSERT, UPDATE, and DELETE privileges on the MobiLink system
tables, and must also have the EXECUTE ANY PROCEDURE privilege on the MobiLink system procedures. By
default, the database user who runs the MobiLink setup script has these privileges. To use another database
user to run the MobiLink server, you must grant these privileges for that user on the ml_* tables and the
ml_add_*_script system procedures.

The database user also needs the appropriate privilege on all tables referenced in the MobiLink scripts, and
EXECUTE privileges on any procedures referenced in the MobiLink scripts.

Some types of MobiLink consolidated databases require the database user used by MobiLink server to have
specific privileges against system tables and/or views. See the consolidated database documentation for
information about specific consolidated databases.

Related Information

Adaptive Server Enterprise Consolidated Database [page 163]
IBM DB2 LUW Consolidated Database [page 165]
Microsoft SQL Server and Microsoft Azure Consolidated Databases [page 168]
MySQL Consolidated Database [page 170]
Oracle Consolidated Database [page 173]
SQL Anywhere Consolidated Database [page 181]
SAP IQ Consolidated Database [page 182]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 23

https://help.sap.com/viewer/879b1ee273ed4a71bc837038fc4c18a3/17.0.01/en-US/81f0ad506ce2101497f7f148d56f85d3.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b8e9b06ce210149737de1602b2b6f0.html

Consolidated Database Setup [page 155]
-c mlsrv17 Option [page 53]

1.2.2 MobiLink Connectivity

When using HTTP or HTTPS, with or without the Relay Server, you can use a web browser to verify MobiLink
server is listening for requests.

For example, if your MobiLink server command line is as follows:

mlsrv17 ... -x http(port=8080)

and the computer is ml1.mycorp.com, then you can open a web browser and point it to http://
ml1.mycorp.com:8080.

MobiLink server responds with a 404 Not Found error that also mentions the MobiLink server's major version.

Related Information

-x mlsrv17 Option [page 99]

1.2.3 MobiLink Server Shutdown

The MobiLink server is stopped from the computer where the server was started.

You can stop the MobiLink server in the following ways:

• Use the MobiLink Stop utility (mlstop).
• Click Shut down on the MobiLink server messages window.
• In Microsoft Windows, right-click the MobiLink server icon in the system tray and click Shut down.
• When running on UNIX or Linux without the MobiLink server messages window, type Q.
• Use the shutdown method in the MobiLink server API.

Related Information

MobiLink Stop Utility (mlstop) [page 648]

24 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.2.4 MobiLink Server Logging

Logging the actions that the server takes is particularly useful during the development process and when
troubleshooting. Verbose output is not recommended for normal operation of a production environment
because it can slow performance.

Logging output to a file

Selected logging output is sent to the MobiLink server messages window. In addition, you can send the output
to a message log file using the -o option. The following command sends output to a message log file named
mlsrv.log.

mlsrv17 -o mlsrv.log -c ...

You can control the size of message log files, and specify what you want done when a file reaches its maximum
size with the following options:

• Use the -o option to specify that a message log file should be used.
• Use the -ot option to specify that a message log file should be used and you want the previous contents of

the file to be deleted before messages are sent to it.
• In addition to -o or -ot, use the -on option to specify the size at which the message log file is renamed with

the extension .old and a new file is started with the original name. This option limits the total disk space
taken up by the message log files.

• In addition to -o or -ot, use the -os option to specify the size of old message log files when they are
assigned a new name based on the date and a sequential number.

Controlling the Amount of Logging Output

You can control what information is logged to the message log file and displayed in the MobiLink server
messages window using the -v option.

Controlling Which Warning Messages Are Reported

You can control which warning messages are reported using the mlsrv17 -zw, -zwd, and -zwe options.

In this section:

MobiLink Server Log Viewing [page 26]
You can view MobiLink logs in several ways.

MobiLink Server Logging and SAP Passports [page 26]
The MobiLink server supports the use of SAP Passports to trace requests from the client through to the
backend server.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 25

Related Information

-o mlsrv17 Option [page 70]
-on mlsrv17 Option [page 71]
-os mlsrv17 Option [page 73]
-ot mlsrv17 Option [page 74]
-zw mlsrv17 Option [page 111]
-zwd mlsrv17 Option [page 112]
-zwe mlsrv17 Option [page 113]
-v mlsrv17 Option [page 92]

1.2.4.1 MobiLink Server Log Viewing

You can view MobiLink logs in several ways.

• In the MobiLink server messages window
• By opening the message log file
• Using the MobiLink Server Log File Viewer in SQL Central

To view log information outside the MobiLink server messages window, you must log the information to a file.

MobiLink Server Log File Viewer

To view MobiLink server logs, open SQL Central and click Tools MobiLink 17 MobiLink Server Log File
Viewer . You are prompted to choose a server log file to view.

The MobiLink Server Log File Viewer reads information that is stored in MobiLink log files. It does not connect to
the MobiLink server or change the composition of server log files.

The MobiLink Server Log File Viewer allows you to filter the information that you view. In addition, it provides
statistics based on the information in the server log.

1.2.4.2 MobiLink Server Logging and SAP Passports

The MobiLink server supports the use of SAP Passports to trace requests from the client through to the
backend server.

When a MobiLink client connects using HTTP or HTTPS and the SAP-PASSPORT HTTP header is present, the
MobiLink server does the following:

• Extracts and interprets the SAP passport.
• Issues an error if the passport is malformed.

26 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

• Appends the passport key information to all of the MobiLink server log lines related to the connection.
Passport information is separated from other log output with a hash tag (#) character.

• Respects the tracing level in the passport and adjusts the log details for that connection accordingly.

MobiLink clients send an SAP Passport by using the custom_header MobiLink client network protocol option,
for example:

"host=myhost.mycorp.com;custom_header=SAP-PASSPORT:
2A54482A03010D890A5341505F4532455F54415F506C7567496E20202020202020202020202020202
000005341505F4532455F54415F5573657220202020202020202020202020202020205341505F4532
455F54415F526571756573742000055341505F4
532455F54415F506C7567496E20202020202020202020202020202034363335303030303030333131
4544304141463544433135443530433146373520202000074635000000311ED0AAF5DC15D50BFF750
00100E22A54482A01002701000200030002000104
00085800020002040008300002000302000B000000002A54482A"

The suffix shown in the MobiLink server log for the passport shown above appears as:

#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0

The information in the log file varies for each passport. Following is an explanation of the field values for the
example above.

Field value Description

SAP-PPK Start of passport suffix

V3 SAP passport version

4635000000311ed0aaf5dc15d50c1f75 Transaction ID (unique to each passport)

4635000000311ed0aaf5dc15d50bff75 Root context ID, used to group related passports (unique to
each group)

00000000000000000000000000000000 Connection ID, used to distinguish related passports (unique
to each connection)

0 Connection counter, used to distinguish related passports

Example

Here is an example of how a MobiLink synchronization might be logged when it contains an SAP Passport:

I. 2014-02-04 16:11:37. <15> Request from "UL 17.0.0000" for: remote ID:
12d88b1b-930b-46ba-ad60-2422ff3830f4, user name: ulhttp02, version: ulhttp02#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0 I. 2014-02-04 16:11:37. <15> Table #1: ulhttp02, 2 columns#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> rid integer NOT NULL PRIMARY KEY#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> cint integer#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> Table 'ulhttp02' is referenced by publication
'ul_default_pub'#SAP-

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 27

PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> The current synchronization is using a connection
with connection ID 'SPID 9'#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> Publication #1: ul_default_pub, subscription id: 1,
last download time: 2014-02-04 16:11:37.790000#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> The sync sequence ID in the consolidated database:
041990d3fc7b4af8a8440065ef46de3b; the remote previous sequence ID:
041990d3fc7b4af8a8440065ef46de3b, and the current sequence ID:
553e4d716a574ca48c31dc46da1f14db#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> Log Level: 2#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> COMMIT Transaction: Begin synchronization#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> COMMIT Transaction: Upload#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> COMMIT Transaction: Prepare for download#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> Next last download timestamp fetched from the
consolidated database is "2014-02-04 16:11:37.807000"#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> Insert/Update row [ulhttp02]:#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> -1#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> -2#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> Insert/Update row [ulhttp02]:#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> -2#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> -3#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> Insert/Update row [ulhttp02]:#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> -3#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> -4#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> Sending the download to the remote database#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> COMMIT Transaction: Download#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0
I. 2014-02-04 16:11:37. <15> COMMIT Transaction: End synchronization#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0

28 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

I. 2014-02-04 16:11:37. <15> Synchronization complete#SAP-
PPK#V3#4635000000311ed0aaf5dc15d50c1f75#4635000000311ed0aaf5dc15d50bff75#00000000
000000000000000000000000#0

Related Information

-ncs mlsrv17 Option [page 67]
-ncsd mlsrv17 Option [page 68]
-ncsp mlsrv17 Option [page 69]

1.2.5 MobiLink Server Use Outside the Current Session

You can set up the MobiLink server to be available all the time. To make this easier, you can run the MobiLink
server for Windows and for Unix so that it remains running when you log off the computer. The way to do this
depends on your operating system.

Unix daemon

You can run the MobiLink server as a daemon using the mlsrv17 -ud option, enabling the MobiLink server to
run in the background, and to continue running after you log off.
Windows service

You can run the Windows MobiLink server as a service.

To stop a MobiLink server that is running as a service, you can use mlstop, dbsvc, or the Windows Service
Manager.

In this section:

Running the MobiLink Server as a Daemon on UNIX/Linux [page 30]
To run the MobiLink server in the background on UNIX or Linux, and to enable it to run independently of
the current session, you run it as a daemon.

MobiLink Server as a Service on Microsoft Windows [page 30]
To run the Microsoft Windows MobiLink server in the background, and to enable it to run independently
of the current session, you run it as a service.

Related Information

How to Run the Database Server as a Service or Daemon
-ud mlsrv17 Option [page 90]
MobiLink Stop Utility (mlstop) [page 648]
Service Utility (dbsvc) for Linux

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 29

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814ca3136ce210148facec3bd07ead6e.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813df9e16ce21014bf5cdf75390e9c94.html

1.2.5.1 Running the MobiLink Server as a Daemon on
UNIX/Linux

To run the MobiLink server in the background on UNIX or Linux, and to enable it to run independently of the
current session, you run it as a daemon.

Procedure

Use the -ud option when starting the MobiLink server. For example:

mlsrv17 -c "DSN=SQL Anywhere 17 Demo;UID=DBA;PWD=sql" -ud

Results

The UNIX MobiLink server as running as a daemon.

Related Information

-ud mlsrv17 Option [page 90]
Service Utility (dbsvc) for Linux

1.2.5.2 MobiLink Server as a Service on Microsoft Windows

To run the Microsoft Windows MobiLink server in the background, and to enable it to run independently of the
current session, you run it as a service.

You can run the following service management tasks from the command line, or on the Services tab in SQL
Central:

• Add, edit, and remove services.
• Start and stop services.
• Modify the parameters governing a service.

In this section:

Working with Services [page 31]
Use SQL Central to add a new service, or modify or delete an existing service. Changes to a service
configuration take effect the next time the service is started.

Startup Options for Services [page 32]

30 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813df9e16ce21014bf5cdf75390e9c94.html

The following options govern startup behavior for MobiLink services. You can set them on the General
tab of the Service Properties window.

Command Line Options [page 33]
The Configuration tab of the Service Properties window provides a File name text box for entering the
program executable path and a Parameters text box for entering command line options for a service.
Do not type the name of the program executable in the Parameters box.

Account Options [page 33]
You can choose which account the service runs under. Most services run under the special
LocalSystem account, which is the default option for services.

Changing the Executable File [page 34]
You can change the program executable file associated with a service in SQL Central.

Starting and Stopping a Service [page 34]
If you start a service, it keeps running until you stop it. Closing SQL Central or logging off does not stop
the service.

Multiple Services [page 35]
Although you can use the Windows Service Manager in the Control Panel for some tasks, you cannot
install or configure a MobiLink service from the Windows Service Manager. You can use SQL Central to
perform all the service management for MobiLink.

Related Information

Service Utility (dbsvc) for Windows

1.2.5.2.1 Working with Services

Use SQL Central to add a new service, or modify or delete an existing service. Changes to a service
configuration take effect the next time the service is started.

Context

The service icons in SQL Central display the current state of each service using an icon that indicates whether
the service is running or stopped.

You can also use the dbsvc utility to create the service.

Procedure

1. In SQL Central, in the left pane, click MobiLink 17.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 31

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e03f96ce210149ba0e93860ff4010.html

2. In the right pane, click the Services tab.
3. Perform one of the following tasks:

• To create a new service, click File New Service and then follow the instructions in the Create
Service Wizard.

• To delete a service, choose the service and then click Edit Delete . Click Yes to confirm the
deletion of the service.

• To modify an existing service, choose the service and then click File Properties and then edit the
service properties.

Results

The service is added, deleted or modified.

Related Information

Service Utility (dbsvc) for Windows

1.2.5.2.2 Startup Options for Services

The following options govern startup behavior for MobiLink services. You can set them on the General tab of the
Service Properties window.

Automatic

If you choose Automatic, the service starts whenever the Windows operating system starts. This setting is
appropriate for database servers and other applications running all the time.
Manual

If you choose Manual, the service starts only when a user with Administrator permissions starts it. For
information about Administrator permissions, see your Windows documentation.
Disabled

If you choose Disabled, the service does not start.

The startup option is applied the next time Windows is started.

32 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e03f96ce210149ba0e93860ff4010.html

1.2.5.2.3 Command Line Options

The Configuration tab of the Service Properties window provides a File name text box for entering the program
executable path and a Parameters text box for entering command line options for a service. Do not type the
name of the program executable in the Parameters box.

For example, to start a MobiLink synchronization service with verbose logging, type the following in the
Parameters box:

-c "DSN=SQL Anywhere 17 Demo;UID=DBA;PWD=sql" -vc

The command line options for a service are the same as those for the executable.

Related Information

MobiLink Server Options [page 40]

1.2.5.2.4 Account Options

You can choose which account the service runs under. Most services run under the special LocalSystem
account, which is the default option for services.

You can set the service to log on under another account by opening the Account tab on the Service Properties
window, and entering the account information.

If you choose to run the service under an account other than LocalSystem, that account must have the "log on
as a service" privilege. For information about advanced privileges, see your Microsoft Windows documentation.

Whether an icon for the service appears on the task bar or desktop is dependent on the account you select,
and whether Allow Service To Interact with Desktop is checked, as follows:

• If a service runs under LocalSystem, and Allow Service To Interact with Desktop is checked in the Service
Properties window, an icon appears on the desktop of every user logged in to Windows on the computer
running the service. Any user can open the application window and stop the program running as a service.

• If a service runs under LocalSystem, and Allow Service To Interact with Desktop is cleared in the Service
Properties window, no icon appears on the desktop for any user. Only users with permissions to change the
state of services can stop the service.

• If a service runs under another account, no icon appears on the desktop. Only users with permissions to
change the state of services can stop the service.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 33

1.2.5.2.5 Changing the Executable File

You can change the program executable file associated with a service in SQL Central.

Context

If you move an executable file to a new directory, you must modify this entry.

Procedure

1. Click the Configuration tab on the Service Properties window.
2. Type the new path and file name in the File Name box.

Results

The program executable file associated with the service is updated.

1.2.5.2.6 Starting and Stopping a Service

If you start a service, it keeps running until you stop it. Closing SQL Central or logging off does not stop the
service.

Context

Stopping a service closes all network connections and stops the MobiLink server. For other applications, the
program closes down.

Procedure

1. In SQL Central, click MobiLink 17 in the left pane, and then open the Services tab in the right pane.
2. Right-click the service and click Start or Stop.

34 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Results

The service is started or stopped.

1.2.5.2.7 Multiple Services

Although you can use the Windows Service Manager in the Control Panel for some tasks, you cannot install or
configure a MobiLink service from the Windows Service Manager. You can use SQL Central to perform all the
service management for MobiLink.

When you open the Windows Service Manager from the Windows Control Panel, a list of services appears. The
names of the SQL Anywhere services are formed from the Service Name you provided when installing the
service, prefixed by SQL Anywhere. All the installed services appear together in the list.

Service Sependencies

In some circumstances you might want to run more than one executable as a service, and these executables
may depend on each other. For example, you must run the MobiLink server and the consolidated database
server to synchronize.

Services must start in the correct order. If a MobiLink synchronization service starts before the consolidated
database server has started, MobiLink fails because it cannot find the consolidated database server. The
sequence must be such that the database server is running when you start the MobiLink server. (This does not
apply if the consolidated database server is on another computer.)

You can prevent these problems using service groups, which you manage from SQL Central.

Service Groups

You can assign each service on your system to be a member of a service group. By default, each service
belongs to a group. The default group for the MobiLink server is SQLANYMobiLink.

In this section:

Checking and Changing Which Group a Service Belongs to [page 36]
Before you can configure your services to ensure they start in the correct order, you must check that
your service is a member of an appropriate group. You can check which group a service belongs to, and
change this group, from SQL Central.

Adding a Service or Group to a List of Dependencies [page 37]
With SQL Central, you can specify dependencies for a service. For example, you can ensure that at least
one group has started before the current service.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 35

1.2.5.2.7.1 Checking and Changing Which Group a Service
Belongs to

Before you can configure your services to ensure they start in the correct order, you must check that your
service is a member of an appropriate group. You can check which group a service belongs to, and change this
group, from SQL Central.

Procedure

1. In SQL Central, click MobiLink 17 in the left pane, and then open the Services tab in the right pane.
2. Right-click the service and click Properties.
3. Click the Dependencies tab. The top text box displays the name of the group the service belongs to.
4. Click Change to display a list of available groups on your system.
5. Select one of the groups, or type a name for a new group.
6. Click OK to assign the service to that group.

Results

The service is assigned to the given group.

Next Steps

You can configure your services to ensure they start in the correct order.

Related Information

Adding a Service or Group to a List of Dependencies [page 37]

36 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.2.5.2.7.2 Adding a Service or Group to a List of
Dependencies

With SQL Central, you can specify dependencies for a service. For example, you can ensure that at least one
group has started before the current service.

Procedure

1. In SQL Central, click MobiLink 17 in the left pane, and then open the Services tab in the right pane.
2. Right-click the service and click Properties.
3. Click the Dependencies tab.
4. Click Add Services or Add Service Groups to add a service or group to the list of dependencies.
5. Select one of the services or groups from the list.
6. Click OK to add the service or group to the list of dependencies.

Results

The service or group is added to the list of dependencies.

1.2.6 MobiLink Server in a Server Farm

A MobiLink server farm is an environment where there is more than one MobiLink server synchronizing the
same set of remote databases with the same consolidated database. This is often required for large scale
deployments or for fail-over capability.

These MobiLink server farm deployments may require the use of the Relay Server if an HTTP communication
link is used. For TCP-based streams, a TCP load balancer should work. When using multiple MobiLink servers,
restartable download is supported, but you must configure the load balancer in front of the MobiLink servers to
ensure that all requests with the same value in the ml-client-id HTTP header go to the same MobiLink server.

For HTTP-based streams, one synchronization can require multiple HTTP requests and so you must either use
the Relay Server, or configure session-based affinity in your load balancer to ensure requests all go to same
MobiLink server. The MobiLink server sets two HTTP headers which can be used to control server affinity: the
ml-session-id header is a UUID that is unique for each synchronization; the ml-client-id header is unique for
each remote database. If your load balancer cannot be configured to use either of those headers, you can use
the session_id_cookie or client_id_cookie stream options to cause the server to also set a cookie with the given
name containing the ml-session-id or ml-client-id value, respectively. For example

-x http(port=8081;session_id_cookie=JSESSIONID)

The above will set the commonly used JSESSIONID cookie with the value of the ml-session-id header.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 37

If you are using the Notifier with server-initiated synchronization, use the -lsc option to specify the local server
connection settings. These settings are passed to the other servers in the farm so that they can connect to
each other to share the handling of notifications. For example, if running on host farm_host22:

mlsrv17 -x tcpip(port=3245) -zs server5 -lsc tcpip(host=farm_host22;port=3245) -
c ...

MobiLink Arbiter Server

When running a MobiLink server farm with server-initiated synchronization, use the MobiLink arbiter server to
make sure there is always one primary server in the farm. Having a primary server at all times prevents
redundant notifications and lost messages.

Use the mlarbiter command to start the MobiLink arbiter and use the MobiLink server -ca option along with
the -lsc option to start the MobiLink servers with the arbiter information.

Related Information

MobiLink Arbiter Server Utility for Windows (mlarbiter) [page 658]
-lsc mlsrv17 Option [page 65]
-ca mlsrv17 Option [page 54]
-x mlsrv17 Option [page 99]

1.2.7 Troubleshooting MobiLink Server Startup

Occasionally you may encounter issues during MobiLink server startup.

In this section:

Ensure That Network Communication Software is Running [page 39]
Appropriate network communication software must be installed and running before you run the
MobiLink server. If you are running reliable network software with just one network installed, this should
be straightforward. Confirm that other software requiring network communications is working properly
before running the MobiLink server.

Debug Network Communications Startup Problems [page 39]
If you are having problems establishing a connection across a network, you can use debugging options
at both the client and server to diagnose problems. The startup information appears in the MobiLink
server messages window: you can use the -o option to log the results to an output file.

Verify MobiLink Server Connectivity [page 39]
When using HTTP or HTTPS, with or without the Relay Server, you can use a web browser to verify
MobiLink server is listening for requests.

38 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.2.7.1 Ensure That Network Communication Software is
Running

Appropriate network communication software must be installed and running before you run the MobiLink
server. If you are running reliable network software with just one network installed, this should be
straightforward. Confirm that other software requiring network communications is working properly before
running the MobiLink server.

You may want to confirm that ping and telnet are working properly. The ping and telnet applications are
provided with many TCP/IP protocol stacks.

1.2.7.2 Debug Network Communications Startup Problems

If you are having problems establishing a connection across a network, you can use debugging options at both
the client and server to diagnose problems. The startup information appears in the MobiLink server messages
window: you can use the -o option to log the results to an output file.

Related Information

MobiLink Server Logging [page 25]

1.2.7.3 Verify MobiLink Server Connectivity

When using HTTP or HTTPS, with or without the Relay Server, you can use a web browser to verify MobiLink
server is listening for requests.

For example, if your MobiLink server command line is as follows:

mlsrv17 ... -x http(port=8080)

and the computer is ml1.mycorp.com, then you can open a web browser and point it to http://
ml1.mycorp.com:8080.

MobiLink server responds with a 404 Not Found error that also mentions the MobiLink server's major version.

Related Information

Introduction to the Relay Server

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 39

https://help.sap.com/viewer/879b1ee273ed4a71bc837038fc4c18a3/17.0.01/en-US/81f0ad506ce2101497f7f148d56f85d3.html

1.3 MobiLink Server Options

The following options are available for use with the MobiLink server.

In this section:

mlsrv17 Syntax [page 44]
The mlsrv17 command is used to start a MobiLink server.

@data mlsrv17 Option [page 50]
Reads in options from the specified environment variable or configuration file.

-a mlsrv17 Option [page 51]
Instructs the MobiLink server to keep using a consolidated database connection after a
synchronization error on that connection.

-b mlsrv17 Option [page 51]
For columns of type VARCHAR, CHAR, LONG VARCHAR, or LONG CHAR, removes trailing blanks from
strings during synchronization.

-bn mlsrv17 Option [page 52]
Sets the maximum number of BLOB bytes to compare during conflict detection.

-c mlsrv17 Option [page 53]
Specifies connection parameters for the consolidated database.

-ca mlsrv17 Option [page 54]
Sets the MobiLink arbiter server's host name or IP address to let the MobiLink server know where the
MobiLink arbiter is running.

-cinit mlsrv17 Option [page 54]
Sets the initial size for the server memory cache.

-cn mlsrv17 Option [page 55]
Sets the maximum number of simultaneous consolidated database connections for database worker
threads.

-cr mlsrv17 Option [page 56]
Sets the maximum number of database connection retries.

-cs mlsrv17 Option [page 56]
Specifies connection parameters for your MobiLink System Database (MLSD).

-ct mlsrv17 Option [page 57]
Sets the length of time, in minutes, that a connection may be unused before it is timed out and
disconnected by the MobiLink server.

-dl mlsrv17 Option [page 57]
Displays all MobiLink server messages on screen in the MobiLink server messages window.

-dr mlsrv17 Option [page 58]
For Adaptive Server Enterprise only. This can be used if all tables involved in synchronization do not use
the datarows locking scheme.

-ds mlsrv17 Option [page 58]
For use with restartable downloads. Specifies the maximum amount of data on disk that the MobiLink
server can use to store all restartable downloads.

40 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

-dsd mlsrv17 Option [page 59]
Disables snapshot isolation.

-dt mlsrv17 Option [page 60]
For Microsoft SQL Server, Microsoft Azure, SAP Adaptive Server Enterprise, and Oracle databases only.
Causes MobiLink to detect transactions only within the current database.

-e mlsrv17 Option [page 61]
Stores error logs sent from SQL Anywhere MobiLink clients.

-esu mlsrv17 Option [page 62]
Use snapshot isolation for uploads.

-et mlsrv17 Option [page 63]
Stores error logs sent from SQL Anywhere MobiLink clients in the named file after truncating the
existing file.

-fips mlsrv17 Option [page 63]
Forces all secure MobiLink streams to use FIPS-certified modules.

-ftr mlsrv17 Option [page 64]
Specifies a location for files that are to be downloaded by the mlfiletransfer utility or by the MobiLink
Agent.

-ftru mlsrv17 Option [page 65]
Specifies a location for files that are to be uploaded with the mlfiletransfer utility or by the MobiLink
Agent.

-lsc mlsrv17 Option [page 65]
Specifies the connection information for the local server. This information is passed to other servers in
the server farm.

-nc mlsrv17 Option [page 66]
Sets the maximum number of concurrent network connections.

-ncs mlsrv17 Option [page 67]
Reads the first NCS (Native Component Supportability) configuration file in the path or current
directory. The configuration file contains the settings required to connect to an SAP Diagnostic Agent.

-ncsd mlsrv17 Option [page 68]
Reads the NCS (Native Component Supportability) configuration file in the specified directory. The
configuration file contains the settings required to connect to an SAP Diagnostic Agent.

-ncsp mlsrv17 Option [page 69]
Specifies name=value pairs to configure the NCS (Native Component Supportability) library.

-notifier mlsrv17 Option [page 69]
Starts the Notifier for server-initiated synchronization.

-o mlsrv17 Option [page 70]
Logs output messages to a MobiLink server message log file, and limits the data logged to the MobiLink
server messages window.

-on mlsrv17 Option [page 71]
Specifies a maximum size for the MobiLink server message log file, after which the file is renamed with
the extension .old and a new file is started.

-oq mlsrv17 Option [page 72]
On Windows, prevents the appearance of the error window when a startup error occurs.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 41

-os mlsrv17 Option [page 73]
Sets the maximum size of current and old MobiLink server message log files.

-ot mlsrv17 Option [page 74]
Logs output messages to the MobiLink server message log file, but deletes the contents first.

-ppv mlsrv17 Option [page 74]
Causes MobiLink to print new periodic monitoring values according to the period specified. Periods are
in seconds.

-q mlsrv17 Option [page 79]
Instructs MobiLink to run with a minimized messages window on startup.

-r mlsrv17 Option [page 79]
Sets the maximum number of deadlock retries.

-rd mlsrv17 Option [page 79]
Sets the maximum delay time between deadlock retries.

-rp mlsrv17 Option [page 80]
Specifies the directory to which synchronizations are recorded for playback with the mlreplay utility.

-rrp mlsrv17 Option [page 81]
Causes the MobiLink server to run the mlreplay utility and replay all recorded sessions (files with
extension mlr) in the given directory when the server starts.

-s mlsrv17 Option [page 81]
Sets the maximum number of rows that can be uploaded at the same time.

-sl dnet mlsrv17 Option [page 82]
Sets the .NET Common Language Runtime (CLR) options and forces the CLR to load on startup. This
option is recommended when using .NET scripting logic.

-sl java mlsrv17 Option [page 84]
Sets the Java VM options and forces the Java VM to load on startup. This option is recommended when
using Java scripting logic.

-sm mlsrv17 Option [page 85]
Sets the maximum number of synchronizations that can be actively worked on by limiting the
maximum number of network connections.

-tc mlsrv17 Option [page 86]
Sets a timeout threshold for long running SQL scripts.

-tf mlsrv17 Option [page 87]
This option is used to let the MobiLink server fail a SQL script if the execution time passes the timeout
specified by -tc. This option is not available when the consolidated database is running on an Oracle
server.

-ts mlsrv17 Option [page 88]
Sets up a MobiLink server tracing session.

-tx mlsrv17 Option [page 89]
When using transactional uploads, this option batches groups of transactions and commits them
together.

-ud mlsrv17 Option [page 90]
Instructs MobiLink to run as a daemon.

-ui mlsrv17 Option [page 91]

42 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

For Linux with X window server support, starts the MobiLink server in shell mode if a usable display
isn't available.

-ux mlsrv17 Option [page 91]
For Linux, opens the MobiLink server messages window where messages are displayed.

-v mlsrv17 Option [page 92]
Allows you to specify what information is logged to the message log file.

-w mlsrv17 Option [page 96]
Sets the initial number of concurrent database worker threads, up to the number of threads specified
with the -wm option.

-wm mlsrv17 Option [page 97]
Sets the maximum number of concurrent database worker threads.

-wn mlsrv17 Option [page 98]
Sets the number of network worker threads the MobiLink server uses for concurrent processing of
network streams.

-wu mlsrv17 Option [page 98]
Sets the maximum number of database worker threads that can apply uploads to the consolidated
database simultaneously.

-x mlsrv17 Option [page 99]
Sets network protocol options used by the MobiLink server to listen for synchronization requests.

-zf mlsrv17 Option [page 107]
Causes the MobiLink server to check for script changes at the beginning of each synchronization.

-zp mlsrv17 Option [page 108]
Adjusts the precision of timestamp comparisons for the purpose of conflict detection.

-zs mlsrv17 Option [page 108]
Specifies a MobiLink server name for mlstop.

-zt mlsrv17 Option [page 109]
Specifies the maximum number of processors used to run the MobiLink server.

-zu mlsrv17 Option [page 109]
Controls the automatic addition of users when the authenticate_user and authenticate_user_hashed
scripts are undefined.

-zup mlsrv17 Option [page 110]
Specifies the default user authentication policy to be used to authenticate a user against the LDAP
server.

-zus mlsrv17 Option [page 111]
Causes the MobiLink server to invoke upload scripts for a table even when no rows are uploaded for the
table.

-zw mlsrv17 Option [page 111]
Controls which levels of warning message to display.

-zwd mlsrv17 Option [page 112]
Disables specific warning codes.

-zwe mlsrv17 Option [page 113]
Enables specific warning codes.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 43

1.3.1 mlsrv17 Syntax

The mlsrv17 command is used to start a MobiLink server.

 Syntax

mlsrv17 -c "connection-string" [options]

Option Description

@ data Read in options from the specified environment variable or
configuration file.

-a Keep using a consolidated database connection after a
synchronization error on that connection.

-b Trim blank padding of strings.

-bn size Specify the maximum number of bytes to consider when
comparing BLOBs for conflict detection.

-c " "keyword=value; ..." Supply ODBC database connection parameters for your
consolidated database. This option is required.

-ca host_or_ip Set the host name or IP address for the MobiLink arbiter
server.

-cinit size Specify the initial size for the server memory cache.

-cn connections Set the maximum number of simultaneous connections
with the consolidated database server.

-cr count Set the maximum number of database connection retries.

-cs "keyword=value; ..." Supply system database connection parameters for your
MobiLink System Database (MLSD).

-ct connection-timeout Set the length of time a connection may be unused before
it is timed out.

-dl Display all log messages in the MobiLink server messages
window.

-dr For Adaptive Server Enterprise only. Ensures that tables
involved in synchronization do not use the DataRow lock
ing scheme.

-ds size Specify the maximum amount of data that can be stored
for use in all restartable downloads.

-dsd Disable snapshot isolation, which is the default download
isolation level for SQL Anywhere and Microsoft SQL Server
consolidated databases.

-dt Detect transactions only within the current database.

-e filename Store remote database error logs sent into the named file.

-esu Use snapshot isolation for uploads.

-et filename Store remote database error logs sent into the named file,
but delete the contents first if the file exists.

44 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Option Description

-fips Forces all secure MobiLink streams to be FIPS-certified.

-ftr path Specifies a location for files that are to be downloaded by
the MobiLink transfer utility (mlfiletransfer).

-ftru Specifies a location for files uploaded with the MobiLink
File Transfer utility (mlfiletransfer).

-lsc protocol[protocol-options] Specifies the local server connect information.

-nc connections Sets maximum number of concurrent network connec
tions.

-ncs Reads the first NCS (Native Component Supportability)
configuration file in the path or current directory.

-ncsd directory Reads the NCS (Native Component Supportability) config-
uration file in the specified directory.

-ncsp name=value; ... Configures the NCS library using name=value pairs.

-notifier Starts a Notifier for server-initiated synchronization.

-o logfile Log messages to a file.

-on size Set maximum size for log file.

-oq Prevent the popup window on startup error.

-os size Maximum size of old log files.

-ot logfile Log messages to a file, but delete its contents first.

-ppv period Causes MobiLink to print new periodic monitoring values
according to the period specified.

-q Minimize the MobiLink server messages window.

-r retries Retry deadlocked uploads at most this many times.

-rd delay Set maximum delay, in seconds, before retrying a dead
locked transaction.

-rp directory Specifies the directory to which synchronizations are re
corded for playback with the mlreplay utility.

-rrp directory Causes the MobiLink server to run the mlreplay utility in
the given directory when the server starts.

-s count Specify the maximum number of rows to be uploaded to
or fetched from the consolidated database at once.

-sl dnet script-options Set the .NET Common Language Runtime (CLR) options
and force the CLR to load on startup.

-sl java script-options Set the Java VM options and force loading of the Java VM
on startup.

-sm number Set the maximum number of synchronizations that can be
worked on concurrently.

-tc minutes Set the timeout threshold for SQL script execution.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 45

Option Description

-tf Fail the SQL script execution when the timeout threshold
is reached (not for Oracle).

-ts session-name(session-option=option-
value[;...])

Sets up a MobiLink server tracing session.

-tx count For transactional uploads, batches groups of transactions
and commits them together.

-ud On UNIX and Linux platforms, run as a daemon.

-ui For Linux with X windows, starts the MobiLink server in
shell mode if a usable display isn't available.

-ux For Linux with X windows, opens the MobiLink server mes
sages window.

-v [levels] Controls the type of messages written to the message log
file.

-w count Set the initial number of database worker threads.

-wm count Set the maximum number of database worker threads.

-wn count Set the number of network worker threads for concurrent
processing of network streams.

-wu count Set the maximum number of database worker threads
permitted to process uploads concurrently.

-x protocol "options; ..." Specify the communications protocol. Optionally, specify
network parameters in form parameter=value, with
multiple parameters separated by semicolons.

-zf Specifies that the MobiLink server should check for script
changes at the beginning of each synchronization.

-zp Ignore some apparent differences between TIMESTAMP
values when the remote and consolidated databases have
different precision.

-zs name Specify a server name.

-zt number Specify the maximum number of processors used to run
the MobiLink server.

-zu { + | - } Controls the automatic addition of users when the authen
ticate_user script is undefined.

-zup name Specifies the default user authentication policy to be used
to authenticate a user against the LDAP server.

-zus Causes MobiLink to invoke upload scripts for tables for
which there is no upload.

-zw 1,...5 Controls which levels of warning message to display.

-zwd code Disables specific warning codes.

-zwe code Enables specific warning codes.

46 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

The MobiLink server opens connections, via ODBC, with your consolidated database server. It then accepts
connections from client applications and controls the synchronization process.

You must supply connection parameters for the consolidated database using the -c option. The command line
options may be specified in any order. The -c option is shown here as the first item in a command string as a
convention only. It can be anywhere in a list of options, but must precede a connection string.

Unless your ODBC data source is configured to automatically start the consolidated database, the database
must be running before you start the MobiLink server.

Related Information

MobiLink Server [page 21]
@data mlsrv17 Option [page 50]
-a mlsrv17 Option [page 51]
-b mlsrv17 Option [page 51]
-bn mlsrv17 Option [page 52]
-c mlsrv17 Option [page 53]
-ca mlsrv17 Option [page 54]
-cinit mlsrv17 Option [page 54]
-cn mlsrv17 Option [page 55]
-cr mlsrv17 Option [page 56]
-cs mlsrv17 Option [page 56]
-ct mlsrv17 Option [page 57]
-dl mlsrv17 Option [page 57]
-dr mlsrv17 Option [page 58]
-ds mlsrv17 Option [page 58]
-dsd mlsrv17 Option [page 59]
-dt mlsrv17 Option [page 60]
-e mlsrv17 Option [page 61]
-esu mlsrv17 Option [page 62]
-et mlsrv17 Option [page 63]
-fips mlsrv17 Option [page 63]
-ftr mlsrv17 Option [page 64]
-ftru mlsrv17 Option [page 65]
-lsc mlsrv17 Option [page 65]
-nc mlsrv17 Option [page 66]
-ncs mlsrv17 Option [page 67]
-ncsd mlsrv17 Option [page 68]
-ncsp mlsrv17 Option [page 69]
-notifier mlsrv17 Option [page 69]
-o mlsrv17 Option [page 70]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 47

-on mlsrv17 Option [page 71]
-oq mlsrv17 Option [page 72]
-os mlsrv17 Option [page 73]
-ot mlsrv17 Option [page 74]
-ppv mlsrv17 Option [page 74]
-q mlsrv17 Option [page 79]
-r mlsrv17 Option [page 79]
-rd mlsrv17 Option [page 79]
-rp mlsrv17 Option [page 80]
-rrp mlsrv17 Option [page 81]
-s mlsrv17 Option [page 81]
-sl dnet mlsrv17 Option [page 82]
-sl java mlsrv17 Option [page 84]
-sm mlsrv17 Option [page 85]
-tc mlsrv17 Option [page 86]
-tf mlsrv17 Option [page 87]
-ts mlsrv17 Option [page 88]
-tx mlsrv17 Option [page 89]
-ud mlsrv17 Option [page 90]
-ui mlsrv17 Option [page 91]
-ux mlsrv17 Option [page 91]
-v mlsrv17 Option [page 92]
-w mlsrv17 Option [page 96]
-wm mlsrv17 Option [page 97]
-wn mlsrv17 Option [page 98]
-wu mlsrv17 Option [page 98]
-x mlsrv17 Option [page 99]
-zf mlsrv17 Option [page 107]
-zp mlsrv17 Option [page 108]
-zs mlsrv17 Option [page 108]
-zt mlsrv17 Option [page 109]
-zu mlsrv17 Option [page 109]
-zus mlsrv17 Option [page 111]
-zw mlsrv17 Option [page 111]
-zwd mlsrv17 Option [page 112]
-zwe mlsrv17 Option [page 113]
MobiLink Server [page 21]
@data mlsrv17 Option [page 50]
-a mlsrv17 Option [page 51]
-b mlsrv17 Option [page 51]
-bn mlsrv17 Option [page 52]
-c mlsrv17 Option [page 53]
-ca mlsrv17 Option [page 54]

48 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

-cinit mlsrv17 Option [page 54]
-cn mlsrv17 Option [page 55]
-cr mlsrv17 Option [page 56]
-cs mlsrv17 Option [page 56]
-ct mlsrv17 Option [page 57]
-dl mlsrv17 Option [page 57]
-dr mlsrv17 Option [page 58]
-ds mlsrv17 Option [page 58]
-dsd mlsrv17 Option [page 59]
-dt mlsrv17 Option [page 60]
-e mlsrv17 Option [page 61]
-esu mlsrv17 Option [page 62]
-et mlsrv17 Option [page 63]
-fips mlsrv17 Option [page 63]
-ftr mlsrv17 Option [page 64]
-ftru mlsrv17 Option [page 65]
-lsc mlsrv17 Option [page 65]
-nc mlsrv17 Option [page 66]
-notifier mlsrv17 Option [page 69]
-o mlsrv17 Option [page 70]
-on mlsrv17 Option [page 71]
-oq mlsrv17 Option [page 72]
-os mlsrv17 Option [page 73]
-ot mlsrv17 Option [page 74]
-ppv mlsrv17 Option [page 74]
-q mlsrv17 Option [page 79]
-r mlsrv17 Option [page 79]
-rd mlsrv17 Option [page 79]
-rp mlsrv17 Option [page 80]
-rrp mlsrv17 Option [page 81]
-s mlsrv17 Option [page 81]
-sl dnet mlsrv17 Option [page 82]
-sl java mlsrv17 Option [page 84]
-sm mlsrv17 Option [page 85]
-tc mlsrv17 Option [page 86]
-tf mlsrv17 Option [page 87]
-ts mlsrv17 Option [page 88]
-tx mlsrv17 Option [page 89]
-ud mlsrv17 Option [page 90]
-ui mlsrv17 Option [page 91]
-ux mlsrv17 Option [page 91]
-v mlsrv17 Option [page 92]
-w mlsrv17 Option [page 96]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 49

-wm mlsrv17 Option [page 97]
-wn mlsrv17 Option [page 98]
-wu mlsrv17 Option [page 98]
-x mlsrv17 Option [page 99]
-zf mlsrv17 Option [page 107]
-zp mlsrv17 Option [page 108]
-zs mlsrv17 Option [page 108]
-zt mlsrv17 Option [page 109]
-zu mlsrv17 Option [page 109]
-zus mlsrv17 Option [page 111]
-zw mlsrv17 Option [page 111]
-zwd mlsrv17 Option [page 112]
-zwe mlsrv17 Option [page 113]

1.3.2 @data mlsrv17 Option

Reads in options from the specified environment variable or configuration file.

 Syntax

mlsrv17 -c "connection-string" @data ...

Remarks

Use this option to read mlsrv17 command line options from the specified environment variable or configuration
file. If both exist with the name that is specified, the environment variable is used.

To protect information in the configuration file, you can use the File Hiding utility (dbfhide) to encode the
contents of the configuration file.

Related Information

Configuration Files
File Hiding Utility (dbfhide)
Configuration Files
File Hiding Utility (dbfhide)

50 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html

1.3.3 -a mlsrv17 Option

Instructs the MobiLink server to keep using a consolidated database connection after a synchronization error
on that connection.

 Syntax

mlsrv17 -c "connection-string" -a ...

Remarks

By default, if an error occur during synchronization the MobiLink server automatically disconnects from the
consolidated database, and then re-establishes the connection. Reconnecting ensures that the following
synchronization starts from a known state. When this behavior is not required, you can use this option to
disable it. The maintenance of state information depends on your requirements and may vary depending on
the ways in which you configure MobiLink scripting to work with the RDBMS. This applies even if that database
is an Oracle, SQL Anywhere database, or other supported product. Some status information may need to be
re-initialized depending on the client application.

1.3.4 -b mlsrv17 Option

For columns of type VARCHAR, CHAR, LONG VARCHAR, or LONG CHAR, removes trailing blanks from strings
during synchronization.

 Syntax

mlsrv17 -c "connection-string" -b ...

Remarks

 Note
Use VARCHAR in the consolidated database rather than CHAR, so that this problem does not occur.

This option helps resolve differences between the SQL Anywhere CHAR data type and the CHAR or VARCHAR
data type used by the consolidated database. The SQL Anywhere CHAR data type is equivalent to VARCHAR.
However, in most consolidated databases that are not SQL Anywhere, the CHAR(n) data type is blank-padded
to n characters.

When -b is specified, the MobiLink server removes trailing blanks from strings for columns of type CHAR,
VARCHAR, LONG CHAR, or LONG VARCHAR if the column on the remote database is a string. The trimmed
data is then downloaded to the remote databases.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 51

This option can also be used to properly detect conflict updates when the upload_fetch or
upload_fetch_column_conflict script is used. For each upload update row, the MobiLink server fetches the row
from the consolidated database for the given primary key, compares the row with the pre-image of the update,
and then determines whether the update is a conflict update. When -b is used, MobiLink trims trailing blanks
from columns of type CHAR, VARCHAR, LONG CHAR, or LONG VARCHAR before doing the comparison.

If the -b option is not used, a primary-key value of 'abc' uploaded from a SQL Anywhere or UltraLite remote
database to a CHAR(10) column in the consolidated database becomes 'abc' followed by seven blank spaces. If
the same row is downloaded, then it appears on the remote database as 'abc' followed by seven spaces. If the
remote database is not blank-padded, then the remote database contains two rows: both 'abc' and 'abc'
followed by seven spaces. There is now a duplicate row on the remote.

If the -b option is used, a primary-key value of 'abc' uploaded from a SQL Anywhere or UltraLite remote
database to a CHAR(10) column in the consolidated database becomes 'abc' followed by seven spaces. Seven
spaces still pad the value to ten characters, but if the same row is downloaded, then MobiLink server strips the
trailing spaces, and the value appears on the remote database as 'abc'. The -b option fixes the duplicate row
problem.

Related Information

RDBMS-Dependent Synchronization Scripts [page 157]
NVARCHAR Data Type
upload_fetch Table Event [page 502]
upload_fetch_column_conflict Table Event [page 504]
RDBMS-Dependent Synchronization Scripts [page 157]
NCHAR Data Type
upload_fetch Table Event [page 502]
upload_fetch_column_conflict Table Event [page 504]

1.3.5 -bn mlsrv17 Option

Sets the maximum number of BLOB bytes to compare during conflict detection.

 Syntax

mlsrv17 -c "connection-string" -bn size ...

Remarks

When two BLOBs contain similar or identical values, the operation of comparing them for filtering or conflict
detection can be expensive due to the amount of data involved. This option tells the MobiLink server to

52 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81f487376ce210148ab4c9b8352909ff.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81f45f166ce21014a7e2a4766cae9c2e.html

consider only the first size bytes of two BLOBs when making the comparison. The default is to compare the
two BLOBs in their entirety.

Under some situations, limiting the maximum amount of data compared can speed synchronization
substantially; however, it can also cause errors. For example, if two large BLOBs differ only in the last few bytes,
the MobiLink server may consider them identical when in fact they are not.

1.3.6 -c mlsrv17 Option

Specifies connection parameters for the consolidated database.

 Syntax

mlsrv17 -c "connection-string" ...

Remarks

The connection string must give the MobiLink server enough information to connect to the consolidated
database. The connection string is required.

The connection string must specify connection parameters in the form keyword=value, separated by
semicolons, with no spaces between parameters.

Connection parameters must be included in the ODBC data source specification if not given in the command
line. Check your RDBMS and ODBC data source to determine required connection data.

You can use the File Hiding utility (dbfhide) to hide the password.

Example

mlsrv17 -c "DSN=odbcname;UID=DBA;PWD=passwd"

Related Information

Alphabetical List of Connection Parameters
File Hiding Utility (dbfhide)
Alphabetical List of Connection Parameters
File Hiding Utility (dbfhide)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 53

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/81338cc16ce210148a6f92f876460da5.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/81338cc16ce210148a6f92f876460da5.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html

1.3.7 -ca mlsrv17 Option

Sets the MobiLink arbiter server's host name or IP address to let the MobiLink server know where the MobiLink
arbiter is running.

 Syntax

mlsrv17 -c "connection-string" -ca host_or_ip ...

Remarks

All of the MobiLink servers in the same server farm must contain the same setting for the -ca option.

Along with the -ca option, also use the -lsc option to specify the connection string for the local MobiLink server.

The -ca and -lsc command line options are ignored by the MobiLink server if its command line does not contain
-notifier.

 Note
Port 4953 has been assigned to the MobiLink arbiter so this port number cannot be used by any other
applications on the computer where the MobiLink arbiter server is running.

Related Information

-lsc mlsrv17 Option [page 65]
-notifier mlsrv17 Option [page 69]
-lsc mlsrv17 Option [page 65]
-notifier mlsrv17 Option [page 69]

1.3.8 -cinit mlsrv17 Option

Sets the initial size for the server memory cache.

 Syntax

mlsrv17 -c "connection-string" -cinit size[k | m | g | p] ...

54 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

The initial amount of memory the server uses for holding table data, network buffers, cached download data,
and other structures used for synchronization.

The size is the amount of memory to reserve in bytes. Use k, m, or g to specify units of kilobytes, megabytes,
or gigabytes, respectively. If no letter follows the number, the size is in bytes.

The unit p is a percentage either of the physical system memory, or of the process addressable space,
whichever is lower. The maximum process addressable space depends on the operating system. For example:

• 2.5 GB for Windows 32-bit Advanced Server, Enterprise Server and Datacenter Server
• 3.5 GB for the 32-bit database server running on Windows x64 Edition
• 1.5 GB on all other 32-bit systems
• On 64-bit database servers, the cache size can be considered unlimited

The default is 50m.

1.3.9 -cn mlsrv17 Option

Sets the maximum number of simultaneous consolidated database connections for database worker threads.

 Syntax

mlsrv17 -c "connection-string" -cn value ...

Remarks

Specifies the maximum number of simultaneous connections that the MobiLink server should make to the
consolidated database for database worker threads. The minimum and the default value are the number of
database worker threads. A warning is issued if the supplied value is smaller than the number of the database
worker threads, and the value is automatically adjusted upward.

This type of MobiLink database connection is only used for synchronizations using one script version. When
the MobiLink server is using all the database connections that it is permitted by the -cn option, if a
synchronization is pending but no database connection for its script version currently exists, the MobiLink
server disconnects a connection and then creates a new database connection for the pending
synchronization's script version.

A value larger than the number of database worker threads may speed performance, particularly if connecting
to the consolidated database is slow or if multiple script versions are in use. The optimum maximum number of
database connections is the number of script versions times the number of database worker threads.
Connections above this optimum value do not necessarily speed synchronization, and needlessly consume
resources in both the MobiLink server and the consolidated database server.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 55

Related Information

-w mlsrv17 Option [page 96]
-w mlsrv17 Option [page 96]

1.3.10 -cr mlsrv17 Option

Sets the maximum number of database connection retries.

 Syntax

mlsrv17 -c "connection-string" -cr value ...

Remarks

Set the maximum number of times that the MobiLink server attempts to connect to the database, before
quitting, when a connection goes bad. The default value is three connection retries.

1.3.11 -cs mlsrv17 Option

Specifies connection parameters for your MobiLink System Database (MLSD).

 Syntax

mlsrv17 -c "connection-string" -cs "connection-string" ...

Remarks

MobiLink server system objects, such as system tables, procedures, triggers, and views can be stored in a
database other than the consolidated database. The database that stores the MobiLink system objects is
called MLSD.

When this command option is specified on the command line, the MobiLink server makes connections to
MLSD to fetch user defined scripts and to maintain synchronization status, such as ML user names, remote
IDs, progress offsets, last upload and download timestamps, and so on. The MobiLink server uses the original -
c command line option connections to the consolidated database to upload data from and download data to
the client databases. The consolidated database does not need to have any of the MobiLink server system
objects. All the user defined scripts, including the error reporting and error handling scripts, are fetched from
the MLSD and executed in the consolidated database.

56 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

When this option is used, the MobiLink server requires the Microsoft Distributed Transaction Coordinator
(MSDTC).

The consolidated database and MLSD can be any one of the supported MobiLink consolidated databases.
However, the corresponding ODBC drivers must support Microsoft Distributed Transactions.

The consolidated database and MLSD must have a transaction log to use MSDTC.

This option can only be used on Windows operating systems.

1.3.12 -ct mlsrv17 Option

Sets the length of time, in minutes, that a connection may be unused before it is timed out and disconnected by
the MobiLink server.

 Syntax

mlsrv17 -c "connection-string" -ct connection-timeout ...

Remarks

MobiLink database connections that go unused for a specified amount of time are freed by the server. The
timeout can be set using the -ct option. A default timeout period of 60 minutes is used.

1.3.13 -dl mlsrv17 Option

Displays all MobiLink server messages on screen in the MobiLink server messages window.

 Syntax

mlsrv17 -c "connection-string" -v -dl ...

Remarks

Display all MobiLink server messages in the MobiLink server messages window. By default, only a subset of all
messages is shown in the window when a MobiLink server message log file is being output (using -o). In
circumstances with many messages, this option can degrade performance.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 57

Related Information

How to Log Database Server Messages to a File
-o mlsrv17 Option [page 70]
How to Log Database Server Messages to a File
-o mlsrv17 Option [page 70]

1.3.14 -dr mlsrv17 Option

For Adaptive Server Enterprise only. This can be used if all tables involved in synchronization do not use the
datarows locking scheme.

 Syntax

mlsrv17 -c "connection-string" -dr ...

Remarks

This option should only be used if none of the consolidated tables being synchronized were created using the
DataRow locking scheme.

Use of this option reduces duplicate data sent by the MobiLink server.

Related Information

MobiLink Isolation Levels [page 149]
MobiLink Isolation Levels [page 149]

1.3.15 -ds mlsrv17 Option

For use with restartable downloads. Specifies the maximum amount of data on disk that the MobiLink server
can use to store all restartable downloads.

 Syntax

mlsrv17 -c "connection-string" -ds size[k | m | g] ...

58 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814bff446ce210149d9ffe7aaa0bd4a6.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814bff446ce210149d9ffe7aaa0bd4a6.html

Remarks

The MobiLink server holds download data that has not been received by the client for use in a restartable
download. This option limits the amount of data that the server holds for all the synchronizations combined.

If size is too small the server may release download data, making it impossible to restart a download. The
server does not release download data until one of the following occurs:

• The user successfully completes the download.
• The user comes back with a new synchronization request without resume enabled.
• The cache is needed for incoming requests. The oldest unsuccessful download is cleared first.

Use k, m, or g to specify units of kilobytes, megabytes, or gigabytes, respectively. The default is 10m.

While holding data for a restartable download, the MobiLink server considers the synchronization to still be
active (in the send_download phase of the MobiLink Profiler), and exceeding the network timeout does not
close the synchronization.

Related Information

Resumption of Failed Downloads [page 144]
-dc dbmlsync Option
Resume Partial Download Synchronization Parameter
Resumption of Failed Downloads [page 144]
-dc dbmlsync Option
Resume Partial Download Synchronization Parameter

1.3.16 -dsd mlsrv17 Option

Disables snapshot isolation.

 Syntax

mlsrv17 -c "connection-string" -dsd ...

Remarks

When the consolidated database is SQL Anywhere or Microsoft SQL Server, the default isolation level for
downloads is snapshot isolation.

You can also change the default isolation level in a script. However, for SQL Anywhere and Microsoft SQL Server
databases, the isolation level is set at the start of the upload and download transactions. If you set the isolation

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 59

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a6483b6ce21014ac94ce82688044be.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/827060cc6ce21014bbef9d16822c5e14.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a6483b6ce21014ac94ce82688044be.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/827060cc6ce21014bbef9d16822c5e14.html

level in the begin_connection script, then it may be overridden in the begin_upload and begin_download
scripts.

This option only applies to SQL Anywhere and Microsoft SQL Server consolidated databases.

In Microsoft Azure consolidated databases, by default, uncommitted operations (inserts, updates, and deletes)
do not prevent other connections from accessing the same tables. Because of this behavior, do not use the -
dsd option (disable snapshot isolation for download) when you use timestamp-based download logic for your
synchronization. Doing so can cause data inconsistencies.

Related Information

MobiLink Isolation Levels [page 149]
-dt mlsrv17 Option [page 60]
-esu mlsrv17 Option [page 62]
MobiLink Isolation Levels [page 149]
-dt mlsrv17 Option [page 60]
-esu mlsrv17 Option [page 62]

1.3.17 -dt mlsrv17 Option

For Microsoft SQL Server, Microsoft Azure, SAP Adaptive Server Enterprise, and Oracle databases only. Causes
MobiLink to detect transactions only within the current database.

 Syntax

mlsrv17 -c "connection-string" -dt ...

Remarks

This option makes MobiLink ignore all transactions except ones within the current database. It increases
throughput and reduces duplication of rows that are downloaded.

This option only affects timestamp-based downloads.

Use this option if:

• Your consolidated database is running on Microsoft SQL Server, Microsoft Azure, SAP Adaptive Server
Enterprise, or Oracle that is also running other databases.

• You are using snapshot isolation for uploads or downloads with Microsoft SQL Server or Microsoft Azure.
• You are using the DataRow locking scheme for synchronizing tables with Adaptive Server Enterprise.
• Your upload or download scripts do not access any other databases on the server.

60 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

This option only applies to Microsoft SQL Server or Microsoft Azure databases using snapshot isolation, and
Adaptive Server Enterprise databases using the DataRow locking scheme for tables involved in
synchronization.

For Oracle consolidated databases, the MobiLink user that connects to the Oracle database must have select
permission on the following global view in the Oracle database: GV$TRANSACTION, GV$SESSION, and GV
$LOCKED_OBJECT.

Related Information

MobiLink Isolation Levels [page 149]
-dsd mlsrv17 Option [page 59]
-esu mlsrv17 Option [page 62]
MobiLink Isolation Levels [page 149]
-dsd mlsrv17 Option [page 59]
-esu mlsrv17 Option [page 62]

1.3.18 -e mlsrv17 Option

Stores error logs sent from SQL Anywhere MobiLink clients.

 Syntax

mlsrv17 -c "connection-string" -e filename ...

Remarks

With no -e option, error logs from SQL Anywhere MobiLink clients are stored in a file named mlsrv17.mle. The -
e option instructs the MobiLink server to store the error logs in the named file. By default, dbmlsync sends, on
the occurrence of an error on the remote site, up to 32 kilobytes of remote log messages to a MobiLink server.

This option provides centralized access to remote error logs to help diagnose synchronization issues.

The amount of information delivered from a remote site can be controlled by the dbmlsync extended option
ErrorLogSendLimit.

Related Information

-et mlsrv17 Option [page 63]
ErrorLogSendLimit (el) Extended Option

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 61

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aa9e226ce21014b84af599e7254476.html

-et mlsrv17 Option [page 63]
ErrorLogSendLimit (el) Extended Option

1.3.19 -esu mlsrv17 Option

Use snapshot isolation for uploads.

 Syntax

mlsrv17 -c "connection-string" -esu ...

Remarks

By default, MobiLink uses the read committed isolation level for uploads. This is usually the optimal isolation
level.

If you use snapshot isolation for uploads, you may generate conflicts on snapshot transactions during upload
updates. If this happens, the MobiLink server rolls back the entire upload and retries it. In this case, you might
want to adjust your settings for the MobiLink server options -r or -rd to specify the delay time between retries
and the maximum number of retries.

You can change the default isolation level in a script. To change the upload isolation level, you would typically
use the begin_upload script.

This option only applies to SQL Anywhere, Microsoft SQL Server, and Microsoft Azure consolidated databases.

Related Information

MobiLink Isolation Levels [page 149]
-dsd mlsrv17 Option [page 59]
-dt mlsrv17 Option [page 60]
-r mlsrv17 Option [page 79]
-rd mlsrv17 Option [page 79]
MobiLink Isolation Levels [page 149]
-dsd mlsrv17 Option [page 59]
-dt mlsrv17 Option [page 60]
-r mlsrv17 Option [page 79]
-rd mlsrv17 Option [page 79]

62 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aa9e226ce21014b84af599e7254476.html

1.3.20 -et mlsrv17 Option

Stores error logs sent from SQL Anywhere MobiLink clients in the named file after truncating the existing file.

 Syntax

mlsrv17 -c "connection-string" -et filename ...

Remarks

The -et option is the same as the -e option, except that the error log file is truncated before any new errors are
added to it.

The amount of information delivered from a remote site can be controlled by the dbmlsync extended option
ErrorLogSendLimit.

Related Information

ErrorLogSendLimit (el) Extended Option
-e mlsrv17 Option [page 61]
ErrorLogSendLimit (el) Extended Option
-e mlsrv17 Option [page 61]

1.3.21 -fips mlsrv17 Option

Forces all secure MobiLink streams to use FIPS-certified modules.

 Syntax

mlsrv17 -c connection-string" -fips ...

Remarks

Specifying this option forces all MobiLink encryption to use FIPS-certified algorithms. You can still use
unencrypted connections when the -fips option is specified, but you cannot use connections that employ
simple obfuscation.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 63

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aa9e226ce21014b84af599e7254476.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aa9e226ce21014b84af599e7254476.html

When you use this option, FIPS-certified algorithms are used for connections regardless of whether you specify
them. For example, if you start the MobiLink server with the option -fips and the option -x tls(...;fips=no;...), the
fips=no setting is ignored and the server starts with fips=yes.

For MobiLink transport layer security, the -fips option causes the server to use the FIPS-certified RSA
encryption algorithm, even the -x option does not contain a fips setting.

FIPS-certified encryption requires a separate license.

Related Information

MobiLink Client/Server Communications Encryption [page 196]
FIPS-certified Encryption Technology
Separately Licensed Components
MobiLink Client/Server Communications Encryption [page 196]
FIPS-certified Encryption Technology
Separately Licensed Components

1.3.22 -ftr mlsrv17 Option

Specifies a location for files that are to be downloaded by the mlfiletransfer utility or by the MobiLink Agent.

 Syntax

mlsrv17 -c "connection-string" -ftr path ...

Remarks

This option sets the file transfer root directory. Files that are to be transferred to a user can be placed in the
root directory or in a subdirectory with the user name. MobiLink first looks for the requested file in a
subdirectory of the file transfer root directory with the user name of the connected client. If the file is not in this
subdirectory, MobiLink looks in the file transfer root directory.

This option is required to use the mlfiletransfer utility to download files.

Related Information

MobiLink File Transfer Utility (mlfiletransfer)
-ftru mlsrv17 Option [page 65]
authenticate_file_transfer Connection Event [page 348]

64 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcbfeba6c5f1014984bbc293fdbd5c1.html
https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/81552fcf6ce21014b634eaf8cdc2b48a.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcbfeba6c5f1014984bbc293fdbd5c1.html
https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/81552fcf6ce21014b634eaf8cdc2b48a.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac09836ce21014913ed9c27368e76d.html

MobiLink File Transfer Utility (mlfiletransfer)
-ftru mlsrv17 Option [page 65]
authenticate_file_transfer Connection Event [page 348]

1.3.23 -ftru mlsrv17 Option

Specifies a location for files that are to be uploaded with the mlfiletransfer utility or by the MobiLink Agent.

 Syntax

mlsrv17 -c "connection-string" -ftru path ...

Remarks

This option sets the file transfer root directory for files to be uploaded with the mlfiletransfer utility. Files can
only be uploaded into this root directory or immediate sub-directories of the root directory.

Files can only be uploaded if the authenticate_file_upload script does not exist or if the script exists and returns
an authentication_code in the range 1000-1999. This requirement is for mlfiletransfer only and does not apply
to the MobiLink Agent.

This option is required to use the mlfiletransfer utility to upload files.

Related Information

MobiLink File Transfer Utility (mlfiletransfer)
-ftr mlsrv17 Option [page 64]
authenticate_file_transfer Connection Event [page 348]
MobiLink File Transfer Utility (mlfiletransfer)
-ftr mlsrv17 Option [page 64]
authenticate_file_transfer Connection Event [page 348]

1.3.24 -lsc mlsrv17 Option

Specifies the connection information for the local server. This information is passed to other servers in the
server farm.

 Syntax

mlsrv17 -c "connection-string" -lsc protocol[protocol-options] ...

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 65

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac09836ce21014913ed9c27368e76d.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac09836ce21014913ed9c27368e76d.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac09836ce21014913ed9c27368e76d.html

protocol : tcpip | tls | http | https

protocol-options : (option=value; ...)

Remarks

This option is only used in the following situation:

• When running the notifier in a MobiLink server farm.
• When using the mlreplay utility with the -rrp server option.

For example, if you have a server running on a host named server_rack10, the command line could start:

mlsrv17 -x tcpip(port=200) -zs server5 -lsc tcpip(host=server_rack10;port=200) -c...

In this example, another server would use shared state in the consolidated database to get the connection
string tcpip(host=server_rack10;port=200) and use it to connect to the server just started.

Related Information

MobiLink Server in a Server Farm [page 37]
Notifiers in a MobiLink Server Farm
-rrp mlsrv17 Option [page 81]
-zs mlsrv17 Option [page 108]
-rrp mlsrv17 Option [page 81]
MobiLink Server in a Server Farm [page 37]
Notifiers in a MobiLink Server Farm
-rrp mlsrv17 Option [page 81]
-zs mlsrv17 Option [page 108]
-rrp mlsrv17 Option [page 81]

1.3.25 -nc mlsrv17 Option

Sets the maximum number of concurrent network connections.

 Syntax

mlsrv17 -c "connection-string" -nc connections ...

66 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b49c1b6ce21014a746e8b99064ce09.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b49c1b6ce21014a746e8b99064ce09.html

Remarks

The MobiLink server rejects new synchronization connections when the limit is reached. On the client, a
communication error is issued with a system error code that indicates the connection was refused.

The default is 1024.

To limit the number of concurrent synchronizations for non-persistent HTTP/HTTPS, set -nc significantly
higher than -sm. When the -sm limit is reached, the MobiLink server provides an HTTP error 503 (Service
Unavailable) to the remote client. If the -nc limit is reached, however, a socket error is issued. The greater the
difference between -nc and -sm, the more likely it is that the rejected connections will generate the HTTP 503
error instead of the less descriptive socket error. For example, set -sm to 100 and set -nc to 1000.

The maximum value for -nc depends on the operating system and its configuration. You may need to tune the
configuration to achieve higher socket capacity.

Related Information

-sm mlsrv17 Option [page 85]
-sm mlsrv17 Option [page 85]

1.3.26 -ncs mlsrv17 Option

Reads the first NCS (Native Component Supportability) configuration file in the path or current directory. The
configuration file contains the settings required to connect to an SAP Diagnostic Agent.

 Syntax

mlsrv17 -c "connection-string" -ncs ...

Applies to

Microsoft Windows and x64 Linux.

Remarks

If the ncs.conf file is not present, then the Mobilink server uses NCS defaults

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 67

Related Information

MobiLink Server Logging and SAP Passports [page 26]
-ncsd mlsrv17 Option [page 68]
-ncsp mlsrv17 Option [page 69]

1.3.27 -ncsd mlsrv17 Option

Reads the NCS (Native Component Supportability) configuration file in the specified directory. The
configuration file contains the settings required to connect to an SAP Diagnostic Agent.

 Syntax

mlsrv17 -c "connection-string" -ncsd directory ...

Applies to

Windows and x64 Linux.

Remarks

directory specifies the directory containing the NCS configuration file. If the ncs.conf file is not present in
the specified directory, The MobiLink server uses NCS defaults.

Related Information

MobiLink Server Logging and SAP Passports [page 26]
-ncs mlsrv17 Option [page 67]
-ncsp mlsrv17 Option [page 69]

68 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.3.28 -ncsp mlsrv17 Option

Specifies name=value pairs to configure the NCS (Native Component Supportability) library.

 Syntax

mlsrv17 -c "connection-string" -ncsd "name=value[;...]" ...

Applies to

Microsoft Windows and x64 Linux.

Remarks

Each name must be a valid configuration setting. See the SAP Diagnostic Agent documentation for valid
names.

Related Information

MobiLink Server Logging and SAP Passports [page 26]
-ncs mlsrv17 Option [page 67]
-ncsd mlsrv17 Option [page 68]

1.3.29 -notifier mlsrv17 Option

Starts the Notifier for server-initiated synchronization.

 Syntax

mlsrv17 -c "connection-string" -notifier [notifier-properties-file] ...

Remarks

If you specify a Notifier configuration file name, or if you do not specify a file name but you have a default
Notifier properties file called config.notifier, the Notifier is configured using that file. This overrides any
configuration information that is stored in the ml_properties table in the consolidated database.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 69

Otherwise, MobiLink uses the configuration information that is stored in the ml_properties table in the
consolidated database.

When you use the -notifier option, you start every Notifier that you have enabled.

Related Information

MobiLink Server Settings for Server-initiated Synchronization
Server-side Settings Configured Using the Notifier Configuration File
Notifiers
Notifiers in a MobiLink Server Farm
Notifier Properties
MobiLink Server Settings for Server-initiated Synchronization
Server-side Settings Configured Using the Notifier Configuration File
Notifiers
Notifiers in a MobiLink Server Farm
Notifier Properties

1.3.30 -o mlsrv17 Option

Logs output messages to a MobiLink server message log file, and limits the data logged to the MobiLink server
messages window.

 Syntax

mlsrv17 -c "connection-string" -o logfile ...

Remarks

Write all log messages to the specified file. The MobiLink server messages window, if present, usually shows a
subset of all messages logged.

The MobiLink server gives the full error context in its output file if errors occur during synchronization. The
error context may include the following information:

Remote ID

This is the remote ID of the remote database synchronizing.
User Name

This is the actual user name that was provided to the MobiLink clients during synchronization.
Modified User Name

This is the user name as modified by the modify_user script.
Transaction

70 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b35f076ce210149addf6fee1ef5bf6.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b3faf66ce2101488c9edd83c7d8303.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b053b36ce21014a240defefe9eb4a3.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b49c1b6ce21014a746e8b99064ce09.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b28bbf6ce21014a679bee03de3c895.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b35f076ce210149addf6fee1ef5bf6.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b3faf66ce2101488c9edd83c7d8303.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b053b36ce21014a240defefe9eb4a3.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b49c1b6ce21014a746e8b99064ce09.html
https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b28bbf6ce21014a679bee03de3c895.html

This lists the transaction the error occurs in. The transaction could be authenticate_user,
begin_synchronization, upload, prepare_for_download, download, or end_synchronization.
Table Name

This shows the table name if it is available, or null.
Row Operation

The operation could be INSERT, UPDATE, DELETE or FETCH.
Row Data

This shows all the column values of the row that caused the error.
Script Version

This is the script version currently used for synchronization.
Script

This is the script that caused the error.

Error context information appears in the log regardless of your chosen level of verbosity.

Related Information

-os mlsrv17 Option [page 73]
-dl mlsrv17 Option [page 57]
-ot mlsrv17 Option [page 74]
-on mlsrv17 Option [page 71]
-v mlsrv17 Option [page 92]
-os mlsrv17 Option [page 73]
-dl mlsrv17 Option [page 57]
-ot mlsrv17 Option [page 74]
-on mlsrv17 Option [page 71]
-v mlsrv17 Option [page 92]

1.3.31 -on mlsrv17 Option

Specifies a maximum size for the MobiLink server message log file, after which the file is renamed with the
extension .old and a new file is started.

 Syntax

mlsrv17 -c "connection-string" -on size [k | m]...

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 71

Remarks

The size is the maximum file size for the message log, in bytes. Use the suffix k or m to specify units of
kilobytes or megabytes, respectively. The minimum size limit is 10 KB.

When the message log file reaches the specified size, the MobiLink server renames the output file with the
extension .old, and starts a new one with the original name.

 Note
If the .old file already exists, it is overwritten. At most, two files will be used. To avoid losing old message log
files, use the -os option.

This option cannot be used with the -os option.

Related Information

-o mlsrv17 Option [page 70]
-os mlsrv17 Option [page 73]
-ot mlsrv17 Option [page 74]
-v mlsrv17 Option [page 92]
-o mlsrv17 Option [page 70]
-ot mlsrv17 Option [page 74]
-on mlsrv17 Option [page 71]
-os mlsrv17 Option [page 73]
-v mlsrv17 Option [page 92]

1.3.32 -oq mlsrv17 Option

On Windows, prevents the appearance of the error window when a startup error occurs.

 Syntax

mlsrv17 -c "connection-string" -oq ...

Remarks

By default, the MobiLink server displays a window if a startup error occurs. The -oq option prevents this
window from being displayed.

72 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.3.33 -os mlsrv17 Option

Sets the maximum size of current and old MobiLink server message log files.

 Syntax

mlsrv17 -c "connection-string" -os size [k | m] ...

Remarks

The size is the maximum file size for logging output messages. The default unit is bytes. Use the suffix k or m
to specify units of kilobytes or megabytes, respectively. The minimum size limit is 10 KB.

Before the MobiLink server logs output messages to a file, it checks the current file size. If the log message
makes the file size exceed the specified size, the MobiLink server renames the message log file to
yymmddxx .mls, where xx is a number from 00 to 99, and yymmdd represents the current year, month, and
day.

The latest output is always appended to the file specified by -o or -ot.

You cannot use this option with the -on option.

 Note
This option makes an unlimited number of log files. To avoid this situation, use -o or -on.

Related Information

-o mlsrv17 Option [page 70]
-on mlsrv17 Option [page 71]
-ot mlsrv17 Option [page 74]
-v mlsrv17 Option [page 92]
-o mlsrv17 Option [page 70]
-on mlsrv17 Option [page 71]
-ot mlsrv17 Option [page 74]
-v mlsrv17 Option [page 92]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 73

1.3.34 -ot mlsrv17 Option

Logs output messages to the MobiLink server message log file, but deletes the contents first.

 Syntax

mlsrv17 -c "connection-string" -ot logfilename ...

Remarks

The default is to send output to the MobiLink server messages window or screen.

Related Information

-on mlsrv17 Option [page 71]
-os mlsrv17 Option [page 73]
-v mlsrv17 Option [page 92]
-o mlsrv17 Option [page 70]
-on mlsrv17 Option [page 71]
-os mlsrv17 Option [page 73]
-v mlsrv17 Option [page 92]
-o mlsrv17 Option [page 70]

1.3.35 -ppv mlsrv17 Option

Causes MobiLink to print new periodic monitoring values according to the period specified. Periods are in
seconds.

 Syntax

mlsrv17 -c "connection-string" -ppv period ...

Remarks

These values can provide insight into the state of the server, and are useful for determining the health and
performance of the MobiLink server. For example, one could look at the DB_CONNECTIONS and
LONGEST_DB_WAIT values to look for potential problems with the -w option or in the synchronization scripts.

74 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The values also provide an easy way to track system wide throughput measures, such as the number of rows
uploaded or downloaded per second and the number of successful synchronizations per second.

The suggested period is 60 seconds.

If the period is set too small, the log will grow very quickly.

Each row of output is prefixed with PERIODIC: to aid in searching for and filtering out the values.

The printed values can include the following information:

Printed value Description

CMD_PROCESSOR_STAGE_LEN The length of the queue for synchronization work.

CPU_USAGE The amount of CPU time used by the MobiLink server in mi
croseconds.

DB_CONNECTIONS The number of database connections in use.

FREE_DISK_SPACE The disk space available on the temp disk in bytes.

HEARTBEAT_STAGE_LEN The length of the queue for periodic, non-sync work.

LONGEST_DB_WAIT The longest length of time an active synchronization has
been waiting for the database.

LONGEST_SYNC The age of the oldest synchronization in microseconds.

MEMORY_USED The bytes of RAM in use (for Windows only).

ML_NUM_CONNECTED_CLIENTS The number of connected synchronization clients.

NOTIFIER_STAGE_LEN The length of the notifier work queue.

NUM_COMMITS The total number of commits.

NUM_CONNECTED_FILE_XFERS The number of mlfiletransfers currently connected.

NUM_CONNECTED_LISTENERS The number of listeners currently connected.

NUM_CONNECTED_MONITORS The number of monitors currently connected.

NUM_CONNECTED_PINGS The number of pinging clients currently connected.

NUM_CONNECTED_SYNCS The number of data synchronizations currently connected.

NUM_ERRORS The total number of errors.

NUM_FAILED_SYNCS The total number of failed syncs.

NUM_IN_APPLY_UPLOAD The number of synchronizations currently in the apply up
load phase.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 75

Printed value Description

NUM_IN_AUTH_USER The number of synchronizations currently in the authenti
cate user phase.

NUM_IN_BEGIN_SYNC The number of synchronizations currently in the begin syn
chronization phase.

NUM_IN_CONNECT The number of synchronizations currently in the connect
phase.

NUM_IN_CONNECT_FOR_ACK The number of synchronizations currently in the connect for
download ack phase.

NUM_IN_END_SYNC The number of synchronizations currently in the end syn
chronization phase.

NUM_IN_FETCH_DNLD The number of synchronizations currently in the fetch down
load phase.

NUM_IN_GET_DB_WORKER_FOR_ACK The number of synchronizations currently waiting for a data
base connection to process a non-blocking download ac
knowledgement.

NUM_IN_NON_BLOCKING_ACK The number of synchronizations currently in the non-block
ing download ack phase.

NUM_IN_PREP_FOR_DNLD The number of synchronizations currently in the prepare for
download phase.

NUM_IN_RECVING_UPLOAD The number of synchronizations currently in the receive up
load phase.

NUM_IN_SEND_DNLD The number of synchronizations currently in the send down
load phase.

NUM_IN_SYNC_REQUEST The number of synchronizations currently in the synchroni
zation request phase.

NUM_IN_WAIT_FOR_DNLD_ACK The number of synchronizations currently in the wait for
download ack phase.

NUM_ROLLBACKS The total number of rollbacks.

NUM_ROWS_DOWNLOADED The total number of rows sent to remotes.

NUM_ROWS_UPLOADED The total number of rows received from remotes.

NUM_SUCCESS_SYNCS The total number of successful syncs.

NUM_UPLOAD_CONNS_IN_USE The number of upload connections currently in use.

76 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Printed value Description

NUM_WAITING_CONS The number of synchronizations currently waiting for the
consolidated database.

NUM_WARNINGS The total number of warnings.

PAGES_LOCKED_MAX The number of pages in the memory cache.

PRIMARY_IS_KNOWN Indicates if the primary server is known or not. Shows 0 if
the server does not care what the primary server is. Shows 1
if the server knows what the primary server. Shows 2 if the
server does not know what the primary server is.

RAW_TCP_STAGE_LEN The length of the network work queue.

SERVER_IS_PRIMARY Indicates if the server is primary or secondary. Shows 1 if the
server is primary, otherwise shows 0.

SIRT_NUM_LWP_HITS The number of lightweight polls from remote task agents, in
dicating a notification.

SIRT_NUM_LWPS The number of lightweight polls from remote task agents.

SIRT_NUM_REQUESTS The number of remote task notifications currently outstand
ing.

STREAM_STAGE_LEN The length of the high level network processing queue.

TCP_BYTES_READ The total number of bytes ever read.

TCP_BYTES_WRITTEN The total number of bytes ever written.

TCP_CONNECTIONS The number of TCP connections currently opened.

TCP_CONNECTIONS_CLOSED The total number of connections ever closed.

TCP_CONNECTIONS_OPENED The total number of connections ever opened.

TCP_CONNECTIONS_REJECTED The total number of connections ever rejected.

TRACKED_MEMORY The amount of memory allocated by the server. Use this
metric for non-Windows systems where the MEMORY_USED
metric is unavailable. On Microsoft Windows systems, use
the MEMORY_USED metric for increased accuracy.

VM_MEM_USE The amount of memory used by any attached VMs.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 77

Example

Below is sample output showing the periodic monitoring values.

I. 2009-10-28 11:46:29. <Main> PERIODIC: TCP_CONNECTIONS: 0 I. 2009-10-28 11:46:29. <Main> PERIODIC: PAGES_LOCKED_MAX: 13243
I. 2009-10-28 11:46:29. <Main> PERIODIC: TCP_CONNECTIONS_OPENED: 2
I. 2009-10-28 11:46:29. <Main> PERIODIC: TCP_CONNECTIONS_CLOSED: 2
I. 2009-10-28 11:46:29. <Main> PERIODIC: TCP_CONNECTIONS_REJECTED: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: TCP_BYTES_READ: 5137
I. 2009-10-28 11:46:29. <Main> PERIODIC: TCP_BYTES_WRITTEN: 4549
I. 2009-10-28 11:46:29. <Main> PERIODIC: ML_NUM_CONNECTED_CLIENTS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: CPU_USAGE: 3359375
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_COMMITS: 7
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_ROLLBACKS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_SUCCESS_SYNCS: 1
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_FAILED_SYNCS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_ERRORS: 2
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_WARNINGS: 3
I. 2009-10-28 11:46:29. <Main> PERIODIC: DB_CONNECTIONS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: RAW_TCP_STAGE_LEN: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: STREAM_STAGE_LEN: 5
I. 2009-10-28 11:46:29. <Main> PERIODIC: HEARTBEAT_STAGE_LEN: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: CMD_PROCESSOR_STAGE_LEN: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_ROWS_DOWNLOADED: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_ROWS_UPLOADED: 7
I. 2009-10-28 11:46:29. <Main> PERIODIC: FREE_DISK_SPACE: 124154904576
I. 2009-10-28 11:46:29. <Main> PERIODIC: LONGEST_DB_WAIT: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: LONGEST_SYNC: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: MEMORY_USED: 140275712
I. 2009-10-28 11:46:29. <Main> PERIODIC: SERVER_IS_PRIMARY: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_CONNECTED_SYNCS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_CONNECTED_PINGS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_CONNECTED_FILE_XFERS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_CONNECTED_MONITORS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_CONNECTED_LISTENERS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_WAITING_CONS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_SYNC_REQUEST: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_RECVING_UPLOAD: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_CONNECT: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_AUTH_USER: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_BEGIN_SYNC: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_APPLY_UPLOAD: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_PREP_FOR_DNLD: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_FETCH_DNLD: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_END_SYNC: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_SEND_DNLD: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_WAIT_FOR_DNLD_ACK: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_GET_DB_WORKER_FOR_ACK: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_CONNECT_FOR_ACK: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_IN_NON_BLOCKING_ACK: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: NUM_UPLOAD_CONNS_IN_USE: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: TRACKED_MEMORY: 56269577
I. 2009-10-28 11:46:29. <Main> PERIODIC: VM_MEM_USE: 517013504
I. 2009-10-28 11:46:29. <Main> PERIODIC: NOTIFIER_STAGE_LEN: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: SIRT_NUM_REQUESTS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: SIRT_NUM_LWPS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: SIRT_NUM_LWP_HITS: 0
I. 2009-10-28 11:46:29. <Main> PERIODIC: PRIMARY_IS_KNOWN: 0

78 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.3.36 -q mlsrv17 Option

Instructs MobiLink to run with a minimized messages window on startup.

 Syntax

mlsrv17 -c "connection-string" -q ...

Remarks

Minimize the MobiLink server messages window.

1.3.37 -r mlsrv17 Option

Sets the maximum number of deadlock retries.

 Syntax

mlsrv17 -c "connection-string" -r retries ...

Remarks

By default, MobiLink server retries uploads that are deadlocked in the consolidated database for a maximum of
10 attempts. If the deadlock is not broken, synchronization fails, since there is no guarantee that the deadlock
can be overcome. This option allows an arbitrary retry limit to be set. To stop the server from retrying
deadlocked transactions, specify -r 0. The upper bound on this setting is 2 to the power 32, minus one.

 Note
Deadlocks should not be part of a normal synchronizations system. If they are encountered, then they
should be eliminated by fixing your synchronization scripts.

1.3.38 -rd mlsrv17 Option

Sets the maximum delay time between deadlock retries.

 Syntax

mlsrv17 -c "connection-string" -rd delay ...

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 79

Remarks

When upload transactions are deadlocked in the consolidated database, the MobiLink server waits a random
length of time before retrying the transaction. The random nature of the delay increases the likelihood that
future attempts succeed. This option allows you to specify the maximum delay in units of seconds. The value 0
(zero) makes retries instantaneous, but larger values are recommended because they yield more successful
retries. The default and maximum delay value is 30.

 Note
Deadlocks should not be part of a normal synchronizations system. If encountered, they should be
eliminated by fixing your synchronizations scripts.

1.3.39 -rp mlsrv17 Option

Specifies the directory to which synchronizations are recorded for playback with the mlreplay utility.

 Syntax

mlsrv17 -c "connection-string" -rp directory ...

Remarks

For the best performance, use this option to record synchronizations used by the -rrp option. The -rrp option
enables all synchronizations, including the first synchronization of each unique schema, to take advantage of
the schema cache.

To use the -rrp and -rp options:

• Record synchronizations using the -rp option.
• Determine which prerecorded synchronizations to use to preload schema. There should be one for each

schema and/or set of publications.
• Copy the prerecorded synchronizations to a new directory.
• Run in production without the -rp option and with the -rrp option.

Related Information

-rrp mlsrv17 Option [page 81]
MobiLink Replay Utility (mlreplay) [page 651]
-rrp mlsrv17 Option [page 81]
MobiLink Replay Utility (mlreplay) [page 651]

80 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.3.40 -rrp mlsrv17 Option

Causes the MobiLink server to run the mlreplay utility and replay all recorded sessions (files with extension
mlr) in the given directory when the server starts.

Use this option to preload remote schemas into the MobiLink server. This saves the time and effort for the first
synchronizing remotes in the field to send the remote schema.

 Syntax

mlsrv17 -c "connection-string" -rrp directory ...

Remarks

To use the -rrp option, a local server connection string must be specified using the -lsc option, so the mlreplay
utility can connect to the server.

To use the -rrp and -rp options:

• Record synchronizations using the -rp option.
• Determine which prerecorded synchronizations to use to preload schema. There should be one for each

schema and/or set of publications.
• Copy the prerecorded synchronizations to a new directory.
• Run in production without the -rp option and with the -rrp option.

Related Information

-rp mlsrv17 Option [page 80]
-lsc mlsrv17 Option [page 65]
MobiLink Replay Utility (mlreplay) [page 651]
-rp mlsrv17 Option [page 80]
-lsc mlsrv17 Option [page 65]
MobiLink Replay Utility (mlreplay) [page 651]

1.3.41 -s mlsrv17 Option

Sets the maximum number of rows that can be uploaded at the same time.

 Syntax

mlsrv17 -c "connection-string" -s count ...

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 81

Remarks

Set the maximum number of rows that can be inserted, updated, or deleted at the same time to count.

The MobiLink server sends upload rows to the consolidated database through the ODBC driver. This option
controls the number of rows sent to the database server in each batch. Increasing this value can speed up
processing of the upload stream and reduce network time. However, with a higher setting the MobiLink server
may require more resources for applying the upload stream.

The number of rows uploaded at once can be viewed in the MobiLink server message log file as rowset size.

The default is 10.

1.3.42 -sl dnet mlsrv17 Option

Sets the .NET Common Language Runtime (CLR) options and forces the CLR to load on startup. This option is
recommended when using .NET scripting logic.

 Syntax

mlsrv17 -c "connection-string" -sl dnet(options) ...

Remarks

Sets options to pass directly to the .NET CLR. Some common options are:

Option Description

-D name=value Set an environment variable. For example:

-Dsynchtype=far -Dextra_rows=yes

For more information, see the .NET framework class Sys
tem.Environment.

-MLAutoLoadPath= path Set the location of base assemblies. Only works with private
assemblies. To tell MobiLink where assemblies are located,
use this option or -MLDomConfigFile, but not both. When
you use -MLAutoLoadPath, you cannot specify a domain in
the event script. The default is the current directory.

82 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Option Description

-MLDomConfigFile= file Set the location of base assemblies. Use when you have
shared assemblies, or you don't want to load all assemblies
in the directory, or you cannot use MLAutoLoadPath for
some other reason. To tell MobiLink where assemblies are lo
cated, use -MLDomConfigFile or -MLAutoLoadPath, but not
both.

When the file path referenced in the -MLDomConfigFile op
tion refers to a file in a folder with a space in the name, such
as "C:\Program Files\MyCompany\SyncServer
\MlDomConfig.xml", place double quotes around the
whole option:"-MlDomConfigFile=C:\Program
Files\MyCompany\SyncServer
\MlDomConfig.xml".

-MLStartClasses= classnames, ... At server startup, load and instantiate user-defined start
classes in the order listed.

-clrConGC Enable concurrent garbage collection in the CLR.

-clrFlavor=(wks | svr) Flavor of the .NET CLR to load. The flavor is svr for server
and wks for workstation. By default, svr is loaded.

-clrVersion= version Version of the .NET CLR to load. This must be prefixed with
v. For example, specifying v4.0.30319 causes the Mobi
Link server to attempt to load the .NET CLR located in the
%SystemRoot%\Microsoft.NET\Framework
\v4.0.30319 directory.

To use v4.0 or later assemblies, you need to explicitly add the -clrVersion option to make the MobiLink server
load a v4.0 or later runtime. For example, -clrVersion=v4.0.30319.

Options must be enclosed in round brackets (parentheses) or curly brackets {braces}.

To display this list of options, run the following command:

mlsrv17 -sl dnet (?)

Related Information

Synchronization Scripts in Microsoft .NET [page 541]
Synchronization Scripts in Microsoft .NET [page 541]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 83

1.3.43 -sl java mlsrv17 Option

Sets the Java VM options and forces the Java VM to load on startup. This option is recommended when using
Java scripting logic.

 Syntax

mlsrv17 -c "connection-string" -sl java (options) ...

Remarks

Sets options to indicate which Java VM to use and options to pass directly to the Java VM. Options include, but
are not limited to, the following:

Option Description

-client (Microsoft Windows only) Use the client Java VM.

-server (Microsoft Windows only) Use the server Java VM. This is the default.

-jrepath path (Microsoft Windows and macOS only) Override the default Java Runtime Environment loaded by
the MobiLink Server.

-cp location ;... Specify a set of directories or JAR files in which to search for
classes. You can also use -classpath.

-D name=value Set a system property. For example:

-Dsynchtype=far -Dextra_rows=yes

-DMLStartClasses= classname, ... At server startup, load and instantiate user-defined start
classes in the order listed.

-verbose [:class |:gc | :jni] Enable verbose output.

-X vm-option Set a VM-specific option as described in the file
%SQLANY17%\Bin32\jre180\bin\server
\Xusage.txt or %SQLANY17%
\Bin64\jre180\bin\server\Xusage.txt, for 32-
bit and 64-bit platforms, respectively.

Options must be enclosed in round brackets (parentheses) or curly brackets {braces}.

To display this list of options, run the following command:

mlsrv17 -sl java (?)

To display a list of Java options you can use, run the following command:

java

On UNIX and Linux, the -cp file paths must be separated by colons.

84 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The -jrepath option can be used to override the default Java Runtime Environment loaded by the MobiLink
Server on Windows and macOS. On Windows, the default JRE is located at %SQLANY17%\Bin64\jre180, and
on macOS, the default JRE is located at /System/Library/Frameworks/JavaVM.framework/
Versions/A/JavaVM. The syntax of the -jrepath is slightly different on Windows versus macOS.

On Windows, a directory is specified for the path, and the MobiLink Server will load %path%\bin\server
\jvm.dll or %path%\bin\client\jvm.dll, based on whether -server (the default) or -client was specified
within the -sl java mlsrv17 option.

On macOS, the full path to the libjli.dylib shared library (including the shared library name) is specified for the
path. On Linux and other UNIX platforms, to load a specific JRE, you should set the LD_LIBRARY_PATH
(LIBPATH on IBM AIX, SHLIB_PATH on HP-UX) to include the directory containing the libjvm.so (libjvm.sl on
HP-UX) shared library. The directory must be listed before any of the SQL Anywhere installation directories in
the library path.

Example

For example, on Microsoft Windows the following partial mlsrv17 command line sets the Java VM classpath and
enables Java VM system assertions.

mlsrv17 -sl java (-cp ;\myclasses; -esa) ...

On Microsoft Windows, the following partial mlsrv17 command line sets the Java VM classpath and the Java VM
LDAP_SERVER system property.

mlsrv17 -sl java (-cp ;\myclasses; -DLDAP_SERVER=mycorp-ldap) ...

The following partial mlsrv17 command line works on UNIX and Linux.

mlsrv17 -sl java { -cp .:$CLASSPATH:/opt/myclasses:/opt/my.jar: }

Related Information

Synchronization Script Writing in Java [page 526]
Synchronization Script Writing in Java [page 526]

1.3.44 -sm mlsrv17 Option

Sets the maximum number of synchronizations that can be actively worked on by limiting the maximum
number of network connections.

 Syntax

mlsrv17 -c "connection-string" -sm number ...

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 85

Remarks

The default value is 0, which means the number of synchronizations is unlimited.

The MobiLink server performs the following synchronization tasks simultaneously:

1. Read upload data from the network and unpack it.
2. Apply uploads to the consolidated database.
3. Fetch rows to be downloaded from the consolidated database.
4. Pack download data and send it to remote databases.

The number of synchronizations for each task is limited as follows:

• The number of synchronizations doing tasks 2 and 3 is less than or equal to the setting for the mlsrv17 -w
option.

• The number of synchronizations doing task 2 is less than or equal to the setting for the mlsrv17 -wu option.
• The number of synchronizations doing all four tasks is less than or equal to the setting for the -sm option.

Higher values for -sm, especially when much greater than -w, allow the MobiLink server to perform more
network tasks (1 and 4) than database tasks (2 and 3). This can help ensure that a database worker doesn't
have to wait for tasks when network performance might otherwise be a bottleneck. This can improve
throughput. However, if -sm is set too high and there are enough concurrent connections, the MobiLink server
can allocate more memory than is directly available, causing the virtual memory paging of the operating
system to be activated, which in turn causes memory to be swapped to disk, significantly decreasing
throughput.

Related Information

-w mlsrv17 Option [page 96]
-wu mlsrv17 Option [page 98]
-nc mlsrv17 Option [page 66]
MobiLink Server Java API Reference
-w mlsrv17 Option [page 96]
-wu mlsrv17 Option [page 98]
-nc mlsrv17 Option [page 66]

1.3.45 -tc mlsrv17 Option

Sets a timeout threshold for long running SQL scripts.

 Syntax

mlsrv17 -c "connection string" -tc minutes ...

86 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

Remarks

By default, the MobiLink server watches the execution time of each SQL script and issues a warning message
when the execution time of the script reaches 10 minutes. Long running scripts are more likely to cause
contention and blocking in the consolidated database, which can significantly reduce overall throughput.

You can use the -tf option to cancel statements that exceed the threshold.

The default value can be reset to zero or a positive integer and its units are in minutes. When it is set to zero, the
-tc option is disabled and the MobiLink server does not watch any script execution.

When the timeout threshold is a non-zero value, the MobiLink server shows the warning message in an
exponential way. The warning is shown when the execution time first passes the time specified; the warning is
shown again when the execution time passes 2 times the given time, then 4 times the given time, and so on.

The warning message contains the connection ID used for the current synchronization and a context that
includes the following, if they are available: Remote ID, ML User Name, Modified User Name, Transaction, Table
Name, Row Values and Script Version. The timeout warning context is shown regardless of the verbose settings
of the MobiLink server.

When the consolidated database is running on an Oracle database server and the timeout warning message
occurs, a database user with DBA authority may need to check the consolidated database to determine the
cause of the problem. The ServiceName and SERIAL# of the connection used by the synchronization can be
found in the warning message. If the synchronization connection is stopped, the MobiLink server terminates
the current synchronization.

Related Information

-tf mlsrv17 Option [page 87]
-tf mlsrv17 Option [page 87]

1.3.46 -tf mlsrv17 Option

This option is used to let the MobiLink server fail a SQL script if the execution time passes the timeout specified
by -tc. This option is not available when the consolidated database is running on an Oracle server.

 Syntax

mlsrv17 -c "connection string" -tf ...

Remarks

If the SQL script fails, the MobiLink server either skips the row (if the script is an upload script and if the
handle_error script returns 1000) and continues the synchronization, or aborts the synchronization.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 87

The MobiLink server shows a warning message if this option is specified and it is running against an Oracle
server.

This option is ignored if -tc 0 is specified.

1.3.47 -ts mlsrv17 Option

Sets up a MobiLink server tracing session.

 Syntax

mlsrv17 -c "connection-string" -ts session-name(session-option=option-
value[;...])

The session name must be logging.

Session option Option value

events Comma separated list of system trace events. The sup
ported events are Info, Warning, and Error.

targets target-type (target-option = value [;...]) where
target-type can only be file.

The target options are specified as name-value pairs. The target file can have the following options:

Target option name Expected value Description

filename_prefix String An ETD file name prefix with or with
out a path. All ETD files have the ex
tension .etd. This parameter is re
quired.

max_size Integer The maximum size of the file in bytes.
The default is 0, which means there is
no limit on the file size and it grows as
long as disk space is available. Once
the specified size is reached, a new file
is started.

num_files Integer The number of files where event trac
ing information is written, and it is
used only if max_size is set. If all the
files reach the maximum specified
size, the MobiLink server starts over
writing the oldest file.

88 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Target option name Expected value Description

flush_on_write yes, true, no, false A value that controls whether disk buf
fers are flushed for each event that is
logged. The values yes, true, no, and
false are accepted. The default is
false. When this parameter is turned
on, the performance of the MobiLink
server may be reduced if many trace
events are being logged.

compressed yes, true, no, false A value that controls compression of
the ETD file to conserve disk space.
The default is false.

Remarks

All information specified after the -ts logging portion of the option must be specified without any spaces.

Example

Following is an example of the -ts option:

-ts
logging(events=Info,warning,Error;targets=file(filename_prefix=mls_etd;max_size=1
0000000;num_files=10;flush_on_write=true))

Related Information

Event Trace Data (ETD) File Management Utility (dbmanageetd)
Event Trace Data (ETD) File Management Utility (dbmanageetd)

1.3.48 -tx mlsrv17 Option

When using transactional uploads, this option batches groups of transactions and commits them together.

 Syntax

mlsrv17 -c "connection-string" -tx count ...

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 89

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8140be8f6ce21014a7f5f10f7d045b71.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8140be8f6ce21014a7f5f10f7d045b71.html

Remarks

Use this option to improve performance when doing transactional uploads.

count can be any non-negative value. The default is 1, which means commit every transaction separately. Use
a value of zero to perform one commit after all transactions have been uploaded.

The ideal value for count can only be determined through performance testing.

Related Information

-tu dbmlsync Option
-tu dbmlsync Option

1.3.49 -ud mlsrv17 Option

Instructs MobiLink to run as a daemon.

 Syntax

mlsrv17 -c "connection-string" -ud ...

Remarks

This option applies to UNIX and Linux platforms only.

Related Information

MobiLink Server Use Outside the Current Session [page 29]
MobiLink Server Use Outside the Current Session [page 29]

90 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af74856ce2101483b2badcda21c223.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af74856ce2101483b2badcda21c223.html

1.3.50 -ui mlsrv17 Option

For Linux with X window server support, starts the MobiLink server in shell mode if a usable display isn't
available.

 Syntax

mlsrv17 -c "connection-string" -ui ...

Remarks

When -ui is specified, the server attempts to find a usable display. If it cannot find one, for example because the
X window server isn't running, then the MobiLink server starts in shell mode.

1.3.51 -ux mlsrv17 Option

For Linux, opens the MobiLink server messages window where messages are displayed.

 Syntax

mlsrv17 -c "connection-string -ux ...

Remarks

When -ux is specified, the MobiLink server must be able to find a usable display. If it cannot find one, for
example because the DISPLAY environment variable is not set or because the X window server is not running,
the MobiLink server fails to start.

To run the MobiLink server messages window in quiet mode, use -q.

On Windows, the MobiLink server messages window appears automatically.

Related Information

-q mlsrv17 Option [page 79]
-q mlsrv17 Option [page 79]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 91

1.3.52 -v mlsrv17 Option

Allows you to specify what information is logged to the message log file.

 Syntax

mlsrv17 -c "connection-string" -v[levels] ...

Remarks

This option controls the type of messages written to the message log file.

If you specify -v alone, the MobiLink server writes a minimal amount of information about each
synchronization. The more levels specified, the more verbose the output to the message log file.

A high level of verbosity can adversely affect performance and should only be used during development.

The MobiLink server can be set to use different log verbosity for a targeted MobiLink user or remote ID. The
MobiLink server checks the ml_property table every five minutes and looks for verbose settings for a MobiLink
user or remote ID.

When a CHAR, VARCHAR, NCHAR or NVARCHAR column with a byte length of greater than 32767 bytes is
synchronized, the MobiLink server does not display the full contents of the column values in verbosity. Instead,
the first chunk of data, up to 100 bytes in length, is displayed. This applies to the i, q, and r levels.

The available levels are as follows. You can use one or more of these options at once; for example, -vnrsu.

+

Turn on all of the lowercase verbosity levels.
c

Show the content of each synchronization script when it is invoked. This level implies s.
e

Show system event scripts. These system event scripts are used to query and maintain MobiLink system
tables.
F

Show first-read errors. This setting logs errors when load-balancing devices check for server liveness by
making connections that don't send any data. Use this option to verify that the load balancer is properly
performing liveness checks.

See also the TCP/IP ignore option, specified with the -x mlsrv17 option.
h

Show the remote schema being synchronized.
i

Display the column values of each row uploaded. Use this option instead of -vr, which displays the column
values of each row uploaded and downloaded, to reduce the amount of data being logged. Specifying -vi
with -vq is the same as specifying -vr.

92 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

m

Prints the duration of each synchronization and the duration of each synchronization phase to the log
whenever a synchronization completes. The synchronization phases are shown below. They are the same
as those displayed in the MobiLink Profiler. All times are shown in milliseconds (ms).

Synchronization request

The time taken between creating the network connection between the MobiLink client and the
MobiLink server, up to receiving the first bytes of the upload stream.
Receive upload

The time taken from the first bytes of the upload stream being received by the MobiLink server until
the upload stream from the MobiLink client has been completely received. The time may be significant
even for a download-only synchronization. The time depends on the size of the upload stream and the
network bandwidth for the transfer.
Get DB worker

The time taken to acquire a free database worker thread.
Connect

The time taken by the database worker thread to make a database connection if a new database
connection is needed. For example, after an error on the previous connection or if the script version
has changed.
Authenticate user

The time taken to authenticate the user.
Begin synchronization

The time taken for the begin_synchronization event if it is defined, plus the time to fetch the
last_upload_time for each subscription.
Apply upload

The time taken for the uploaded data to be applied to the consolidated database.
Prepare for download

The time taken for the prepare_for_download event.
Fetch download

The time taken to fetch the rows to be downloaded from the consolidated database to create the
download stream. The fetch download phase does not include the time to create the download stream,
which is done in the send download phase. This can take a significant amount of time for large
downloads, when the download cannot fit in memory.
End synchronization

The time taken for the end_synchronization event, after which the database worker thread is released.
This phase occurs before the download stream is sent to the remote database.
Send download

The time taken to send the download stream to the remote database. The time depends on the size of
the download stream and the network bandwidth for the transfer. For an upload-only synchronization,
the download stream is simply an upload acknowledgement.

The send download phase includes the time to create the download stream, which can take a
significant amount of time for large downloads, when the download cannot fit in memory.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 93

Wait for download ack

The time spent waiting for the download to be applied to the remote database and for the remote
database to send the download acknowledgement. This phase is only shown if the MobiLink client has
enabled download acknowledgement.
Get DB worker for download ack

The time spent waiting for a free database worker thread after the download acknowledgement has
been received. This phase is only shown if the MobiLink client has enabled download
acknowledgement.
Connect for download ack

The time required by the database worker thread to make a database connection if a new database
connection is needed. This phase is only shown if the MobiLink client has enabled download
acknowledgement.
Non-blocking download ack

The time required for the publication_nonblocking_download_ack connection and
nonblocking_download_ack connection events. This phase is only shown if the MobiLink client has
enabled download acknowledgement.

Each value is prefixed with "PHASE:" to aid in searching for the values.

The following example is sample output showing the durations for the various synchronization phases:

I. 2008-06-05 14:48:36. <1> PHASE: start_time: 2008-06-05 14:48:36.048 I. 2008-06-05 14:48:36. <1> PHASE: duration: 175
I. 2008-06-05 14:48:36. <1> PHASE: sync_request: 0
I. 2008-06-05 14:48:36. <1> PHASE: receive_upload: 19
I. 2008-06-05 14:48:36. <1> PHASE: get_db_worker: 0
I. 2008-06-05 14:48:36. <1> PHASE: connect: 18
I. 2008-06-05 14:48:36. <1> PHASE: authenticate_user: 51
I. 2008-06-05 14:48:36. <1> PHASE: begin_sync: 69
I. 2008-06-05 14:48:36. <1> PHASE: apply_upload: 0
I. 2008-06-05 14:48:36. <1> PHASE: prepare_for_download: 1
I. 2008-06-05 14:48:36. <1> PHASE: fetch_download: 4
I. 2008-06-05 14:48:36. <1> PHASE: wait_for_download_ack: 0
I. 2008-06-05 14:48:36. <1> PHASE: end_sync: 0
I. 2008-06-05 14:48:36. <1> PHASE: send_download: 10
I. 2008-06-05 14:48:36. <1> PHASE: get_db_worker_for_download_ack: 0
I. 2008-06-05 14:48:36. <1> PHASE: connect_for_download_ack: 0 I. 2008-06-05 14:48:36. <1> PHASE: nonblocking_download_ack: 0

n

Show row-count totals per synchronization.
o

Show SQL passthrough activity. (Deprecated)
p

Show both remote and consolidated progress offsets per synchronization.
q

Display the column values of each row downloaded. Use this option instead of -vr, which displays the
column values of each row uploaded and downloaded, to reduce the amount of data being logged.
Specifying -vi with -vq is the same as specifying -vr.
r

94 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Display the column values of each row uploaded or downloaded. To log only the column values of each row
uploaded, use -vi. To log only the column values of each row downloaded, use -vq.
R

For synchronizations only, show the remote ID in each log message. The MobiLink server adds the prefix
yyyy-mm-dd hh:mm:ss. <sync_id> (remote_id,) to the log entries.

Use this option with the -vU option to also show the user name in the log message.

These two command line options are not affected by the -v+ option, that is, the MobiLink server does not
add the remote ID or the MobiLink user name into its logging messages even if the -v+ option is used.
s

Show the name of each synchronization script as it is invoked.
t

Show the translated SQL that results from scripts that are written in ODBC canonical format. This level
implies c. The following example shows the automatic translation of a statement for SQL Anywhere.

I. 2009-02-11 11:02:14. [102]: begin_upload synch2 { call SynchLogLine(?, ?, 'begin_upload') }
I. 2009-02-11 11:02:14. [102]: Translated SQL: call SynchLogLine(?, ?, 'begin_upload')

The following example shows the translation of the same statement for Microsoft SQL Server.

I. 2009-02-11 11:03:21. [102]: begin_upload synch2 { call SynchLogLine(?, ?, 'begin_upload') }
I. 2009-02-11 11:03:21. [102]: Translated SQL: EXEC SynchLogLine ?, ?, 'begin_upload'

u

Show undefined table scripts. This may help new users understand the synchronization process and the
flow of events.
U

For synchronizations only, shows the user name in each log message. The MobiLink server adds the prefix
yyyy-mm-dd hh:mm:ss. <sync_id> (,user_name) to the log entries.

Use this option with the -vR option to also show the remote ID in the log message.

These two command line options are not affected by the -v+ option, that is, the MobiLink server does not
add the remote ID or the MobiLink user name into its logging messages even if the -v+ option is used.

Related Information

MobiLink Synchronization Statistical Properties [page 267]
ml_add_property System Procedure [page 605]
-x mlsrv17 Option [page 99]
MobiLink Synchronization Statistical Properties [page 267]
ml_add_property System Procedure [page 605]
-x mlsrv17 Option [page 99]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 95

1.3.53 -w mlsrv17 Option

Sets the initial number of concurrent database worker threads, up to the number of threads specified with the -
wm option.

 Syntax

mlsrv17 -c "connection-string" -w count ...

Remarks

Each database worker thread accepts synchronization requests one at a time, but also concurrently with all
other database worker threads.

Each database worker thread uses one connection to the consolidated database. The MobiLink server opens
one additional connection for administrative purposes. So, the minimum number of connections from the
MobiLink server to the consolidated database is count + 1.

The number of database worker threads has a strong influence on MobiLink synchronization throughput, and
you need to run tests to determine the optimum number for your particular synchronization setup. The
number of database worker threads determines how many synchronizations can be active in the consolidated
database simultaneously; the rest gets queued waiting for database worker threads to become available.
Adding database worker threads may increase throughput, but it also increases the possibility of contention
between the active synchronizations. At some point adding more database worker threads decreases
throughput because the increased contention outweighs the benefit of overlapping synchronizations.

The value set for this option is also the default setting for the -wu option, which can be used to limit the number
of threads that can simultaneously upload to the consolidated database. This is useful if the optimum number
of database worker threads for downloading is larger than the optimum number for uploading. The best
throughput may be achieved with a large number of database worker threads (via -w) with a small number
allowed to apply uploads simultaneously (via -wu). In general, the optimum number for -wu depends on the
consolidated database, and is relatively independent of the processing or network speeds for the remote
databases. Therefore, when you increase the number of threads with -w, you may want to use -wu to restrict
the number that can upload simultaneously.

The default number of database worker threads is 5.

Related Information

-wm mlsrv17 Option [page 97]
-wu mlsrv17 Option [page 98]
-sm mlsrv17 Option [page 85]
-cn mlsrv17 Option [page 55]
-wm mlsrv17 Option [page 97]
-wu mlsrv17 Option [page 98]

96 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

-sm mlsrv17 Option [page 85]
-cn mlsrv17 Option [page 55]

1.3.54 -wm mlsrv17 Option

Sets the maximum number of concurrent database worker threads.

 Syntax

mlsrv17 -c "connection-string" -wm count ...

Remarks

The MobiLink server monitors performance and automatically adjusts the number of database worker threads
as necessary. The MobiLink server uses any value between the initial value, set with the -w option, and the
maximum value, set with the -wm option.

This feature allows deployments to achieve better throughput with less load testing. Given a wide enough range
between -w and -wm, MobiLink server automatically finds the number of database worker threads providing
the best throughput. However, the heuristic used to adjust the number of database worker threads may not
work well in all cases. Also, the best throughput may lie outside the limits set by -w and -wm. Only deployment-
specific load testing can truly establish the number of database worker threads to provide maximum
throughput.

If this value is not set, the maximum number of database worker threads default to the value set in the -w
option. When the -wm option is not used, the number of database worker threads is fixed at the -w value, and
the MobiLink server does not automatically adjust them.

Related Information

Automatic Adjustment of Database Worker Threads [page 187]
-w mlsrv17 Option [page 96]
-wu mlsrv17 Option [page 98]
-sm mlsrv17 Option [page 85]
-cn mlsrv17 Option [page 55]
Automatic Adjustment of Database Worker Threads [page 187]
-w mlsrv17 Option [page 96]
-wu mlsrv17 Option [page 98]
-sm mlsrv17 Option [page 85]
-cn mlsrv17 Option [page 55]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 97

1.3.55 -wn mlsrv17 Option

Sets the number of network worker threads the MobiLink server uses for concurrent processing of network
streams.

 Syntax

mlsrv17 -c "connection-string" -wn count ...

Remarks

The default value is 1.

Having multiple network worker threads can improve performance, particularly when using CPU-intensive
network stream options, like encryption or compression, with either large synchronizations or many small
synchronizations. Each request in the system can be active on one network stream thread, at most.

1.3.56 -wu mlsrv17 Option

Sets the maximum number of database worker threads that can apply uploads to the consolidated database
simultaneously.

 Syntax

mlsrv17 -c "connection-string" -wu count ...

Remarks

Use the -wu option to limit the number of database worker threads that can simultaneously apply uploads to
the consolidated database. When the limit is reached, a database worker thread that is ready to apply its
upload to the consolidated database must wait until another finishes its upload.

The most common cause of contention in the consolidated database is having too many database worker
threads applying uploads simultaneously. Downloads usually cause far less contention, so they are limited only
by the mlsrv17 -w option. For this reason, the -w setting must be greater than or equal to the -wu setting.

By default, all database worker threads can apply uploads simultaneously. The number of database worker
threads that are used is set by the -w option. The default is 5.

If -wu is not specified, uploads may be applied concurrently on any or all database worker threads. If -wu is
specified, uploads are only applied concurrently on the specified number of database worker threads. This may
temporarily increase contention as the MobiLink server increases the number of database worker threads in an
attempt to increase throughput. When this condition is detected, the thread count is decreased.

98 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Setting -wu is recommended in high-load environments where uploads are constantly intermixed with
download-only synchronizations.

Example

In a pilot setup using a LAN and remote databases on PCs, you find that the optimum number of database
worker threads is approximately 10 for both upload-only and download-only synchronizations, and that
corresponds to 100% CPU utilization on the consolidated database. With fewer database worker threads you
find that throughput is less and the CPU utilization for the consolidated database is lower. With more database
worker threads, throughput does not increase because the consolidated database is already processing as fast
as it can with 10 workers.

Related Information

-w mlsrv17 Option [page 96]
-wm mlsrv17 Option [page 97]
-sm mlsrv17 Option [page 85]
-w mlsrv17 Option [page 96]
-wm mlsrv17 Option [page 97]
-sm mlsrv17 Option [page 85]

1.3.57 -x mlsrv17 Option

Sets network protocol options used by the MobiLink server to listen for synchronization requests.

 Syntax

mlsrv17 -c "connection-string" -x protocol[protocol-options] [-x
protocol[protocol-options] ...] ...

protocol : tcpip | tls | http | https

protocol-options : (option=value; ...)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 99

Remarks

The -x option must be specified for each protocol being used. For example, to have MobiLink listen for both
TCP/IP and HTTP, you would specify something like the following:

mlsrv17 -x tcpip(port=1234) -x http(port=2222)

The default is tcpip with port 2439.

Parameters

The allowed values of protocol are as follows:

tcpip

Accept connections using TCP/IP.
tls

Accept connections using TCP/IP and Transport Layer Security (TLS).
http

Accept connections using the standard HTTP web protocol.
https

Accept connections using a variant of HTTP that handles secure transactions. The HTTPS protocol
implements HTTP over TLS using RSA encryption.

You can also specify the following network protocol options, in the form option = value. You must separate
multiple options with semicolons.

TCP/IP options

If you specify the tcpip protocol, you can optionally specify the following protocol options (these options
are case sensitive):

TCP/IP protocol option Description

collect_network_data={ yes | no } Enables synchronization scripts to read network informa
tion from each synchronization.

host= hostname The host name or IP number on which the MobiLink server
should listen. The default value is localhost.

100 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

TCP/IP protocol option Description

ignore= hostname A host name or IP number that gets ignored by the Mobi
Link server if it makes a connection. This option allows you
to ignore requests from load balancers at the lowest possi
ble level, preventing excessive output in the MobiLink
server log and MobiLink Profiler output files. You can spec
ify multiple hosts to ignore; for example -x
tcpip(ignore=lb1;ignore=123.45.67.89). If
you specify multiple instances of -x on a command line,
the host is ignored on all instances; for example, if you
specify -x tcpip(ignore=1.1.1.1) -x http,
then connections for 1.1.1.1 are ignored on both the TCP/IP
and the HTTP streams.

port= portnumber The socket port number on which the MobiLink server
should listen. The default port is 2439, which is the IANA
registered port number for the MobiLink server.

Options for TCP/IP with transport layer security

If you specify the tls protocol, which is TCP/IP with transport layer security, you can optionally specify the
following protocol options (these options are case sensitive):

TLS protocol options Description

collect_network_data={ yes | no } Enables synchronization scripts to read network informa
tion from each synchronization.

e2ee_private_key= file The PEM or DER encoded file containing the RSA private
key. This option is required for end-to-end encryption to
take effect.

PEM and DER encoded files are created using the create
key utility.

e2ee_private_key_password= password The password to the private key file. This option is re
quired for end-to-end encryption to take effect.

When this option is specified, the e2ee_private_key pa
rameter must also be specified.

To avoid making this password visible in the MobiLink
server command line, use the dbfhide utility.

fips={yes|no} If you are using the TLS protocol with RSA, you can spec
ify fips=yes to accept connections using the TCP/IP proto
col and FIPS-certified encryption algorithms. FIPS-certi
fied connections use separate FIPS 140-2 certified soft
ware. Servers using RSA encryption without FIPS-certified
encryption are compatible with clients using RSA that
have the fips option enabled. Servers using RSA with the
fips option enabled are compatible with clients using RSA
that do not have the fips option enabled.

host= hostname The host name or IP number on which the MobiLink server
should listen. The default value is localhost.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 101

TLS protocol options Description

identity= identity-file The path and file name of the identity file that is to be used
for server authentication.

identity_password= password An optional parameter that specifies a password for the
identity file.

When this option is specified, the identity option must also
be specified.

To avoid making this password visible in the MobiLink
server command line, use the dbfhide utility.

ignore= hostname A host name or IP number that gets ignored by the Mobi
Link server if it makes a connection. This option allows you
to ignore requests from load balancers at the lowest possi
ble level, preventing excessive output in the MobiLink
server log and MobiLink Profiler output files. You can spec
ify multiple hosts to ignore; for example -x
tcpip(ignore=lb1;ignore=123.45.67.89).

min_tls_version=ver Specify min_tls_version to use TLS version 1. The sup
ported values for ver are 1.0, 1.1, and 1.2 (the default).

port= portnumber The socket port number on which the MobiLink server
should listen. The default port is 2439, which is the IANA
registered port number for the MobiLink server.

trusted_certificates= certificate_file Use this option to ensure the client certificate is valid, then
use the NetworkData.ClientCertificates API to further au
thenticate the certificate in the authenticate_user script.
The trusted_certificates parameter takes the name of a
file that contains a list of PEM-encoded X.509 trusted root
certificates.

HTTP options

If you specify the http protocol, you can optionally specify the following protocol options (these options are
case sensitive):

HTTP options Description

buffer_size= number The maximum body size for an HTTP message sent from
MobiLink server, in bytes. Changing the option decreases
or increases the amount of memory allocated for sending
HTTP messages. The default is 65536 bytes.

collect_network_data={ yes | no } Enables synchronization scripts to read network informa
tion from each synchronization.

header_limit= number The maximum amount of header data that can be sent in
an HTTP request. If a request exceeds the value specified,
the server returns an HTTP error code and aborts the re
quest. For example, -x
http(header_limit=200000) raises the limit to
200000 bytes. The default value is 64000 bytes.

102 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

HTTP options Description

host= hostname The host name or IP number on which the MobiLink server
should listen. The default value is localhost.

log_bad_request={ yes | no } When set to yes, the MobiLink server prints an error if it
receives an incomplete or unexpected HTTP request.
These errors are analogous to those printed by the -vf op
tion. The default is no.

port= portnumber The socket port number on which the MobiLink server
should listen. The default port is 80.

version= http-version The MobiLink server automatically detects the HTTP ver
sion used by a client. This parameter is a string specifying
the default version of HTTP to use if the server cannot de
tect the version used by the client. You have a choice of 1.0
or 1.1. The default value is 1.1.

HTTPS options

The HTTPS protocol uses RSA digital certificates for transport layer security. If you specify FIPS
encryption, the protocol uses separate FIPS 140-2 certified software that is compatible with HTTPS.

If you specify the https protocol, you can optionally specify the following protocol options (these options
are case sensitive):

HTTPS options Description

buffer_size= number The maximum body size for an HTTPS message sent from
MobiLink server, in bytes. Changing the option decreases
or increases the amount of memory allocated for sending
HTTPS messages. The default is 65536 bytes.

collect_network_data={ yes | no } Enables synchronization scripts to read network informa
tion from each synchronization.

e2ee_private_key= file The PEM or DER encoded file containing the RSA private
key. This option is required for end-to-end encryption to
take effect.

PEM and DER encoded files are created using the create
key utility.

e2ee_private_key_password= password The password to the private key file. This option is re
quired for end-to-end encryption to take effect.

When this option is specified, the e2ee_private_key option
must also be specified.

To avoid making this password visible in the MobiLink
server command line, use the dbfhide utility.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 103

HTTPS options Description

fips={yes|no} If you are using the TLS protocol with RSA, you can spec
ify fips=yes to accept connections using the TCP/IP proto
col and FIPS-certified encryption algorithms. FIPS-certi
fied connections use separate FIPS 140-2 certified soft
ware. Servers using RSA encryption without FIPS-certified
encryption are compatible with clients using RSA that
have the fips option enabled. Servers using RSA with the
fips option enabled are compatible with clients using RSA
that do not have the fips option enabled.

header_limit= number The maximum amount of header data that can be sent in
an HTTPS request. If a request exceeds the value speci
fied, the server returns an error code and aborts the re
quest. For example, -x
https(header_limit=200000) raises the limit to
200000 bytes. The default value is 64000 bytes.

host= hostname The host name or IP number on which the MobiLink server
should listen. The default value is localhost.

identity= server-identity The path and file name of the identity file that is to be used
for server authentication.

identity_password= password An optional parameter that specifies a password for the
identity file.

When this option is specified, the identity option must also
be specified.

To avoid making this password visible in the MobiLink
server command line, use the dbfhide utility.

log_bad_request={ yes | no } When set to yes, the MobiLink server prints an error if it
receives an incomplete or unexpected HTTP request.
These errors are analogous to those printed by the -vf op
tion. The default is no.

min_tls_version=ver Specify min_tls_version to use TLS version 1. The sup
ported values for ver are 1.0, 1.1, and 1.2 (the default).

port= portnumber The socket port number on which the MobiLink server
should listen. The port number must match the port the
MobiLink server is set up to monitor. The default port is
443.

trusted_certificates= certificate_file Use this option to ensure the client certificate is valid, then
use the NetworkData.ClientCertificates API to further au
thenticate the certificate in the authenticate_user script.
The trusted_certificates parameter takes the name of a
file that contains a list of PEM-encoded X.509 trusted root
certificates.

104 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

HTTPS options Description

version= http-version The MobiLink server automatically detects the HTTP ver
sion used by a client. This parameter is a string specifying
the default version of HTTP to use if the server cannot de
tect the version used by the client. You have a choice of 1.0
or 1.1. The default value is 1.1.

Example

The following command line sets the TCP/IP port to 12345:

mlsrv17 -c "DSN=SQL Anywhere 17 CustDB;UID=DBA;PWD=sql" -x tcpip(port=12345)

The following example specifies the type of security (RSA), the server identity file, and the identity password
protecting the server's private key:

mlsrv17 -c "DSN=my_cons" -x tls(identity=c:\test\serv_rsa1.crt;identity_password=pwd)

The following example is similar to the previous, except that there is a space in the identity file name:

mlsrv17 -c "DSN=my_cons" -x "tls(identity=c:\Program Files\test\serv_rsa1.crt;identity_password=pwd)"

The following example shows the use of end-to-end encryption over HTTPS:

mlsrv17 -c "DSN=my_cons" -x https(identity=my_identity.id; identity_password=my_id_pwd;e2ee_private_key=my_pk.pem; e2ee_private_key_password=my_pk_pwd)

trusted_certificates example for Java

The following example shows how to use the NetworkData interface to retrieve certificate information from a
secure synchronization.

public class OrderProcessor { DBConnectionContext _cc;
 public OrderProcessor(DBConnectionContext cc) {
 _cc = cc;
 }
 // The method used for the authenticate_user event.
 public void AuthUser() {
 NetworkData nd = _cc.getNetworkData();
 if(nd != null) {
 if(nd.isTLS()) {
 CertPath certs = nd.getCertificateChain();
 if(certs != null) {
 System.out.println(" client-side cert:");
 int n = 1;
 for(Certificate c : certs.getCertificates()) {
 System.out.println(" cert " + n++);

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 105

 X509Certificate c509 = (X509Certificate) c;
 System.out.println(" Subject: " +
c509.getSubjectX500Principal().getName());
 System.out.println(" Issuer: " +
c509.getIssuerX500Principal().getName());
 }
 } else {
 System.out.println(" no client cert");
 }
 }
 }
 } }

Execute the following SQL statement to register the Java method.

ml_add_java_connection_script(<version>, 'authenticate_user',
'OrderProcessor.AuthUser')

The following two examples show the options to add to the MobiLink command line. The first example is for
HTTPS and the second example is for TLS.

mlsrv17 -c <connection_string> -x
https(collect_network_data=1;trusted_certificates=<certificate_file>) -sl java

mlsrv17 -c <connection_string> -x
tls(collect_network_data=1;trusted_certificates=<certificate_file>) -sl java

trusted_certificates example for .NET

The following example shows how to use the NetworkData interface to retrieve certificate information from a
secure synchronization.

public class OrderProcessor { DBConnectionContext _cc;
 public OrderProcessor(DBConnectionContext cc) {
 _cc = cc;
 }
 public void AuthUser() {
 NetworkData nd = _cc.NetworkData;
 if(nd != null) {
 if(nd.IsTLS) {
 X509Certificate2Collection certs = nd.ClientCertificates;
 if(certs != null) {
 PrintLn(" client-side cert:");
 int n = 1;
 foreach(X509Certificate2 x509 in certs) {
 PrintLn(" cert " + n++);
 PrintLn(" Subject: " + x509.SubjectName.Name);
 PrintLn(" Issuer: " + x509.IssuerName.Name);
 }
 }
 }
 }
 } }

106 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Execute the following SQL statement to register the .NET method.

ml_add_dnet_connection_script(<version>, 'authenticate_user',
'OrderProcessor.AuthUser')

The following two examples show the options to add to the MobiLink command line. The first example is for
HTTPS and the second example is for TLS.

mlsrv17 -c <connection_string> -x
https(collect_network_data=1;trusted_certificates=<certificate_file>) -sl dnet

mlsrv17 -c <connection_string> -x
tls(collect_network_data=1;trusted_certificates=<certificate_file>) -sl dnet

Related Information

Transport Layer Security
Starting the MobiLink Server with Transport Layer Security [page 197]
Key Pair Generator Utility (createkey)
File Hiding Utility (dbfhide)
-v mlsrv17 Option [page 92]
Transport Layer Security
Starting the MobiLink Server with Transport Layer Security [page 197]
Key Pair Generator Utility (createkey)
File Hiding Utility (dbfhide)
-v mlsrv17 Option [page 92]

1.3.58 -zf mlsrv17 Option

Causes the MobiLink server to check for script changes at the beginning of each synchronization.

 Caution
Running the MobiLink server with the -zf option has a negative impact on MobiLink server performance and
should be avoided whenever possible.

 Syntax

mlsrv17 -c "connection-string" -zf

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 107

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bc8c0bd6c5f1014890fd9779dc6da50.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813596d76ce21014a0268cd5b79c4b77.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bc8c0bd6c5f1014890fd9779dc6da50.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813596d76ce21014a0268cd5b79c4b77.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html

Remarks

Unless the -zf option is used, the MobiLink server assumes that no script changes have been made and does
not check for script changes after it is started.

1.3.59 -zp mlsrv17 Option

Adjusts the precision of timestamp comparisons for the purpose of conflict detection.

 Syntax

mlsrv17 -c "connection-string" -zp

Remarks

This option causes MobiLink server to use the highest timestamp resolution representable in both remote and
consolidated databases when comparing timestamps for conflict detection purposes. The option is useful
when timestamps in the consolidated database are more precise than in the remote, as updated timestamps
on the remote database can cause spurious conflicts in the next synchronization. This option allows MobiLink
to ignore these conflicts. When there is a precision mismatch and -zp is not used, a per synchronization and a
schema sensitive per table warning are written to the log to advertise the -zp option. Another per
synchronization warning is also added to tell users to adjust the timestamp precision on the remote database
where possible.

1.3.60 -zs mlsrv17 Option

Specifies a MobiLink server name for mlstop.

 Syntax

mlsrv17 -c "connection-string" -zs name

Remarks

The default name is <default>.

The name that is specified may include ASCII letters and numbers, but no other characters.

108 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

When mlstop is used to shut down a MobiLink server started with the -zs option, you must specify the server
name on the mlstop command line. For example, mlstop myMLserver. Shutdown may only be initiated from
the computer where the MobiLink server is installed.

Related Information

MobiLink Stop Utility (mlstop) [page 648]
MobiLink Stop Utility (mlstop) [page 648]

1.3.61 -zt mlsrv17 Option

Specifies the maximum number of processors used to run the MobiLink server.

 Syntax

mlsrv17 -c "connection-string" -zt number

Remarks

This option may be required for some ODBC drivers. It also gives you fine control of processor resources.

This option can only be used on Windows and Linux operating systems. The default is the number of
processors on the computer.

1.3.62 -zu mlsrv17 Option

Controls the automatic addition of users when the authenticate_user and authenticate_user_hashed scripts
are undefined.

 Syntax

mlsrv17 -c "connection-string" -zu{ + | - } ...

Remarks

If this is supplied as -zu+, then unrecognized MobiLink user names are added automatically to the ml_user
table if there is no user authentication script or if the user authentication scripts returned an auth_value of less

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 109

than 2999. If the argument is supplied as -zu-, or not supplied, the user is only added to the ml_user table if
there is at least one user authentication script and the user is authenticated by the user authentication scripts.

The -zu- option cannot be specified with the -zup option.

The -zu+ option is useful during development to register users automatically. The -zu+ option should only be
used in production if your authentication mechanism is the sole arbiter of which users can synchronize.

Related Information

Synchronizations from New Users
MobiLink Users in a Synchronization System
MobiLink User Authentication Utility (mluser) [page 649]
authenticate_user Connection Event [page 354]
Synchronizations from New Users
MobiLink Users in a Synchronization System
MobiLink User Authentication Utility (mluser) [page 649]
authenticate_user Connection Event [page 354]

1.3.63 -zup mlsrv17 Option

Specifies the default user authentication policy to be used to authenticate a user against the LDAP server.

 Syntax

mlsrv17 -c "connection-string" -zup name

Remarks

When a policy name is specified on the MobiLink server command line with this option, new MobiLink users
that are not in the ml_user table are first authenticated against the LDAP server by using the specified default
policy. Then optionally, the user authentication scripts are called if the ldap_failover_to_std property for the
default policy is configured with a value of 1 or 2.

If the user is fully authenticated, then it is added into the ml_user table and the same user authentication policy
is then used to subsequently authenticate this user.

This option cannot be used with -zu-. The MobiLink server issues an error if both -zup and -zu- are specified
together.

 Note
The given default user authentication policy name must exist in the ml_user_auth_policy table; otherwise,
the MobiLink server issues an error message and does not start.

110 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac5d876ce21014881ca61f3b95df5e.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac5d876ce21014881ca61f3b95df5e.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html

Related Information

Synchronizations from New Users
MobiLink Users in a Synchronization System
ml_add_user_auth_policy System Procedure [page 611]
MobiLink User Authentication Utility (mluser) [page 649]
authenticate_user Connection Event [page 354]

1.3.64 -zus mlsrv17 Option

Causes the MobiLink server to invoke upload scripts for a table even when no rows are uploaded for the table.

 Syntax

mlsrv17 -c "connection-string" -zus ...

Remarks

By default, if no rows are uploaded for a table, the MobiLink server does not invoke upload scripts for that table,
even if they are defined. This option overrides the default behavior and causes the MobiLink server to call
upload scripts for a table even if no rows are uploaded.

1.3.65 -zw mlsrv17 Option

Controls which levels of warning message to display.

 Syntax

mlsrv17 -c "connection-string" -zw levels

Remarks

MobiLink has five levels of warning messages:

Level Description

0 Suppress all warning messages

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 111

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac5d876ce21014881ca61f3b95df5e.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html

Level Description

1 Server and high ODBC level: warning messages when the
MobiLink server starts

2 Synchronization and user level: warning messages when a
synchronization starts

3 Schema level: warning messages when a MobiLink server is
processing a client schema

4 Script and lower ODBC level: warning messages when a Mo
biLink server fetches, prepares, or executes scripts

5 Table or row level: warning messages when a MobiLink
server performs table operations in an upload or download

To specify the level of warning messages you want reported, you can separate levels with a comma, or separate
a range with two dots. For example, -zw 1..3,5 is the same as -zw 1,2,3,5.

The reporting of messages has a slight impact on performance. Levels with a higher number tend to produce
more messages.

If -zw is used more than once in the same command line, MobiLink recognizes only the last instance. If settings
of -zw, -zwd, and -zwe conflict, MobiLink gives priority to -zwe, then -zwd, then -zw.

The default is 1,2,3,4,5, which indicates that all levels of warning message should be displayed.

1.3.66 -zwd mlsrv17 Option

Disables specific warning codes.

 Syntax

mlsrv17 -c "connection-string" -zwd code, ...

Remarks

You can disable specific warning codes so that they do not get reported, even though other codes of the same
level are reported.

If -zwd is used more than once in the same command line, MobiLink accumulates the settings. If settings of -
zw, -zwd, and -zwe conflict, MobiLink gives priority to -zwe, then -zwd, then -zw.

Related Information

MobiLink Server Warning Messages

112 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/8534f27c56354283bd00fc8f77adaf94/17.0.01/en-US/80c032506ce2101486c7e75dfea44407.html

MobiLink Server Warning Messages

1.3.67 -zwe mlsrv17 Option

Enables specific warning codes.

 Syntax

mlsrv17 -c "connection-string" -zwe code, ...

Remarks

You can enable specific warning codes so that they are reported even though you have disabled other codes of
the same level using -zw.

If -zwe is used more than once on the same command line, MobiLink accumulates the settings. If settings of -
zw, -zwd, and -zwe conflict, MobiLink gives priority to -zwe, then -zwd, then -zw.

Related Information

MobiLink Server Warning Messages
MobiLink Server Warning Messages

1.4 Synchronization Techniques

Adding synchronization functionality to an application adds a degree of complexity to your application. While
the added complexity is almost always manageable, you need to be aware of it.

The entire synchronization system, from the remotes through to the consolidated database, including other
consolidated database applications, has many parts and each requires attention. The following tips may be
useful.

When you are adding synchronization to a prototype application, it can be difficult to see which components
are causing problems, so start with a prototype without synchronization. Once your prototype is working
correctly, only then do you enable synchronization.

Start with straightforward synchronization techniques. Operations such as a simple upload or download
require only one or two scripts. Once those are working correctly, you can introduce more advanced
techniques, such as timestamps, primary key pools, conflict resolution, and arbitrary business logic.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 113

https://help.sap.com/viewer/8534f27c56354283bd00fc8f77adaf94/17.0.01/en-US/80c032506ce2101486c7e75dfea44407.html
https://help.sap.com/viewer/8534f27c56354283bd00fc8f77adaf94/17.0.01/en-US/80c032506ce2101486c7e75dfea44407.html
https://help.sap.com/viewer/8534f27c56354283bd00fc8f77adaf94/17.0.01/en-US/80c032506ce2101486c7e75dfea44407.html

MobiLink and primary keys

In a synchronization system, the primary key is the only way to identify the same row in different databases
(remote and consolidated) and the only way to detect conflicts. Therefore, MobiLink applications must adhere
to the following rules:

• Every table that is to be synchronized must have a primary key.
• Never update the values of primary keys in synchronized tables.
•

In this section:

Implementing Timestamp-based Downloads [page 115]
The timestamp method is the most useful general technique for efficient downloads. This technique
involves tracking the last time that each user synchronized and only downloading rows that have
changed since then.

Snapshot Synchronization [page 119]
Snapshot synchronization of a table is a complete download of all relevant rows in the table, even if they
have been downloaded before. This is the simplest synchronization method, but can involve
unnecessarily large data sets being exchanged, which can limit performance and could also cost more
in telecom charges.

Partitioned Rows Among Remote Databases [page 121]
Each MobiLink remote database can contain a different subset of the data in the consolidated
database. You can write your synchronization scripts so that data is partitioned among remote
databases.

Upload-only and Download-only Synchronizations [page 125]
By default, synchronization is bi-directional: data is both uploaded and downloaded. However, you can
choose to do only an upload or only a download.

Unique Primary Keys [page 126]
Every table that is to be synchronized must have a primary key, and for each synchronized table the
primary key must be unique across all synchronized databases. The values of primary keys should not
be updated.

Conflict Handling Overview [page 133]
Conflicts can arise during the upload of rows to the consolidated database and are not the same as
errors. When conflicts can occur, you should define a process to compute the correct values, or at least
to log the conflict. Conflict handling is an integral part of a well-designed application.

Deletes [page 142]
When rows are deleted from the consolidated database, there needs to be a record of the row so it can
be explicitly selected by a download_delete_cursor and removed from any remote databases that have
the row.

Failed Downloads [page 144]
Bookkeeping information about what is downloaded must be maintained in the nonblocking download
acknowledgement transaction. This information should be updated in the
publication_nonblocking_download_ack or nonblocking_download_ack scripts which is called after the
remote database successfully applies the download.

Download Acknowledgement [page 147]

114 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Download acknowledgement is an optional component of synchronization where the client
immediately informs MobiLink server when the download is successfully applied at the remote
database.

Result Sets from Stored Procedure Calls [page 147]
You can download a result set from a stored procedure call.

Self-referencing Tables [page 149]
Some tables are self-referencing. For example, an employee table may contain a column that lists
employees and a column that lists the manager of each employee, and there may be a hierarchy of
managers managing managers.

MobiLink Isolation Levels [page 149]
MobiLink connects to a consolidated database at the most optimal isolation level it can, given the
isolation levels enabled on the RDBMS. The default isolation levels are chosen to provide the best
performance while ensuring data consistency.

1.4.1 Implementing Timestamp-based Downloads

The timestamp method is the most useful general technique for efficient downloads. This technique involves
tracking the last time that each user synchronized and only downloading rows that have changed since then.

Context

MobiLink maintains a TIMESTAMP value indicating when each MobiLink user last downloaded data. This value
is called the last download time.

Procedure

1. To implement timestamp-based synchronization for a table, at the consolidated database, add a
last_modified column that holds the most recent time the row was modified. The column is typically
declared as follows:

DBMS last modified column

Adaptive Server Enterprise datetime

IBM DB2 LUW

 Note
Support for IBM DB2 consolidated databases is dep
recated.

timestamp NOT NULL GENERATED ALWAYS FOR
EACH ROW ON UPDATE AS ROW CHANGE
TIMESTAMP

Microsoft SQL Server datetime

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 115

DBMS last modified column

MySQL timestamp default CURRENT_TIMESTAMP ON
UPDATE CURRENT_TIMESTAMP

Oracle timestamp

SQL Anywhere timestamp DEFAULT timestamp

2. In scripts for the download_cursor and download_delete_cursor events, compare the first parameter to the
value in the TIMESTAMP column.

Results

The timestamp-based synchronization is implemented.

Example

The following example, taken from the MobiLink Contact sample, is an illustration of how you can implement a
timestamp-based download.

• Table definition:

CREATE TABLE "DBA"."Customer"("cust_id" integer NOT NULL DEFAULT GLOBAL AUTOINCREMENT,
 "name" char(40) NOT NULL,
 "rep_id" integer NOT NULL,
 "last_modified" timestamp NULL DEFAULT timestamp,
 "active" bit NOT NULL, PRIMARY KEY ("cust_id"))

• download_cursor script:

SELECT cust_id, Customer.name, Customer.rep_id FROM Customer KEY JOIN SalesRep
WHERE Customer.last_modified >= {ml s.last_table_download}
 AND SalesRep.ml_username = {ml s.username} AND Customer.active = 1

In this section:

Last Download Times in Scripts [page 117]
The last download timestamp is provided as a parameter to many MobiLink events.

Daylight Savings Time Solutions [page 119]
Daylight savings time can cause problems, even data loss, in a distributed database system if data is
synchronized during the hour that the time changes. This is only an issue in the autumn when the time
goes back and there is a one-hour period that can be ambiguous.

116 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

Synchronization of Contacts in the Contact Sample
Synchronization Logic Source Code

1.4.1.1 Last Download Times in Scripts

The last download timestamp is provided as a parameter to many MobiLink events.

The last download timestamp is the value obtained from the consolidated database during the last successful
synchronization immediately before the download phase. If the current MobiLink user has never synchronized,
or has never synchronized successfully, this value is set to 1900-01-01.

If you have multiple publications and have synchronized them at different times, then you can have several
different last download timestamps. For this reason, there are two script parameter names for last download
timestamps:

last_table_download

is the last download timestamp for the current table being synchronized.
last_download

is the last time all tables were synchronized. It is the earliest last_table_download value for any table being
synchronized.

When you use question marks instead of named parameters in MobiLink scripts, the correct value is always
used, based on the event. Using question marks in SQL scripts has been deprecated. Use named parameters
instead.

 Caution
The column holding the last modified information should not be synchronized. If your remote databases
require such a column, a different column name should be used. Otherwise, the TIMESTAMP value may be
overridden by the uploaded value, and would not contain the time that the row was last modified in the
consolidated database.

Example

SELECT cust_id, Customer.name, Customer.rep_id FROM Customer KEY JOIN SalesRep
WHERE Customer.last_modified >= {ml s.last_table_download}
 AND SalesRep.ml_username = {ml s.username} AND Customer.active = 1

In this section:

How Download Timestamps Are Generated and Used [page 118]
MobiLink generates and uses a timestamp for timestamp-based downloads based on the following
criteria.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 117

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5cb7d6ce21014b2fb97b0fd66508e.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcab9f6ce21014a7a7d6e30775450c.html

Related Information

Script Parameters [page 294]

1.4.1.1.1 How Download Timestamps Are Generated and
Used

MobiLink generates and uses a timestamp for timestamp-based downloads based on the following criteria.

• After an upload is committed and immediately before invoking the prepare_for_download event, the
MobiLink server fetches the current time from the consolidated database and saves the value. This
TIMESTAMP value represents the start time of the current download; the next synchronization should only
download data that changes after this time.

 Note
If the consolidated database supports snapshot isolation, then the download timestamp is the
minimum of:
• the current time
• the start of the oldest open transaction

• The MobiLink server sends this TIMESTAMP value as part of the download, and the client stores it.
• The next time the client synchronizes, it uses the TIMESTAMP value for the last_download_timestamp that

it sends with the upload.
• The MobiLink server passes the last_download_timestamp that the client just uploaded into your download

scripts. Your scripts can then select changes with timestamps that are newer or equal to the last
last_download_timestamp to ensure that only new changes are downloaded.

Where the Last Download Time is Stored

The last download time is stored on the remote database. This is the appropriate place because only the
remote database knows if the download has been successfully applied.

For SQL Anywhere remotes, the last download time is stored per subscription and can be viewed using the
SYSSYNC system view.

For UltraLite remotes, the last download time is stored per publication in the syspublication system table.

Changing the Last Download Time

In some rare circumstances you may want to modify the last_download_timestamp. For example, if you
accidentally delete all the data on a remote database, you can download it again by defining a
modify_last_download_timestamp connection script to reset the value for the last download timestamp. There

118 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

are other events, called generate_next_last_download_timestamp and
modify_next_last_download_timestamp, which you can use to set the timestamp not for the current
synchronization but for the next synchronization. For example, if you wanted to use a UTC TIMESTAMP value to
compare to UTC values in the last_modified columns of your tables.

UltraLite also provides functionality to change the last download time from the remote with the following
methods:

• ULResetLastDownloadTime method [UltraLite Embedded SQL]
• ULConnection.ResetLastDownloadTime method [UltraLite C++]
• ULConnection.ResetLastDownloadTime method [UltraLite.NET]

Related Information

SYSSYNC System View
syspublication System Table
modify_last_download_timestamp Connection Event [page 457]
generate_next_last_download_timestamp Connection Event [page 435]
modify_next_last_download_timestamp Connection Event [page 460]

1.4.1.2 Daylight Savings Time Solutions

Daylight savings time can cause problems, even data loss, in a distributed database system if data is
synchronized during the hour that the time changes. This is only an issue in the autumn when the time goes
back and there is a one-hour period that can be ambiguous.

To deal with daylight savings time, choose from the following solutions:

• Ensure that the consolidated database server is using UTC time.
• Turn off daylight savings time on the consolidated database server.
• Shut down for an hour when the time changes.
• Use UTC timestamps in your download TIMESTAMP columns and use either a

generate_next_last_download_timestamp or modify_next_last_download_timestamp script to provide a
UTC timestamp for the next last download timestamp.

1.4.2 Snapshot Synchronization

Snapshot synchronization of a table is a complete download of all relevant rows in the table, even if they have
been downloaded before. This is the simplest synchronization method, but can involve unnecessarily large data
sets being exchanged, which can limit performance and could also cost more in telecom charges.

You can use snapshot synchronization for downloading all the rows of the table, or with a partitioning of the
rows.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 119

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/3bea4dd76c5f1014b9938f9b6fbaf40f.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826c233b6ce21014b865bba27121b202.html

When to Use Snapshot Synchronization

The snapshot method is typically most useful for tables that have both the following characteristics.

Relatively few rows

When there are few rows, the overhead for downloading all rows is small.
Rows that change frequently

When most rows in a table change frequently, there is little to be gained by explicitly excluding those that
have not changed since the last synchronization.

A table that holds a list of exchange rates could be suited to this approach because there are relatively few
currencies, but the rates of most change frequently. Depending on the nature of the business, a table that
holds prices, a list of interest rates, or current news items could all be candidates.

Implementation of Snapshot-Based Synchronization

Keep the following in mind when implementing snapshot-based synchronization.

• Leave the upload scripts undefined unless remote users update the values.
• If the table may have rows deleted, write a download_delete_cursor script that deletes all the rows from the

remote table, or at least all rows no longer required. For the latter approach, do not delete the rows from
the consolidated database; rather, mark them for deletion. You must know the row values to delete them
from the remote database.

• Write a download_cursor script that selects all the rows you want to include in the remote table.

Deleting Rows When Using Snapshot Synchronization

Rather than deleting rows from the consolidated database, mark them for deletion. You must know the row
values to delete them from the remote database. Select only unmarked rows in the download_cursor script and
only marked rows in the download_delete_cursor script.

The download_delete_cursor script is executed before the download_cursor script. If a row is to be included in
the download, you need not include a row with the same primary key in the delete list. When a downloaded row
is received at the remote location, it replaces a pre-existing row with the same primary key.

An Alternative Deletion Technique

Rather than delete rows from the remote database using a download_cursor script, you can allow the remote
application to delete the rows. For example, immediately following synchronization, you could allow the
application to execute SQL statements that delete the unnecessary rows.

120 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Rows deleted by the application are ordinarily uploaded to the MobiLink server upon the next synchronization,
but you can prevent this upload using the STOP SYNCHRONIZATION DELETE statement. For example:

STOP SYNCHRONIZATION DELETE; DELETE FROM table-name
 WHERE expiry_date < CURRENT TIMESTAMP;
COMMIT; START SYNCHRONIZATION DELETE;

Snapshot Example

The ULProduct table in the sample application is maintained by snapshot synchronization. The table contains
relatively few rows, and for this reason, there is little overhead in using snapshot synchronization.

1. There is no upload script. This reflects a business decision that products cannot be added at remote
databases.

2. There is no download_delete_cursor, reflecting an assumption that products are not removed from the list.
3. The download_cursor script selects the product identifier, price, and name of every current product. If the

product is pre-existing, the price in the remote table is updated. If the product is new, a row is inserted in
the remote table.

SELECT prod_id, price, prod_name FROM ULProduct

For another example of snapshot synchronization in a table with very few rows, see the MobiLink Contact
sample.

Related Information

Partitioned Rows Among Remote Databases [page 121]
download_delete_cursor Scripts [page 327]
Scripts to Download Rows [page 324]
Synchronization of Sales Representatives in the Contact Sample

1.4.3 Partitioned Rows Among Remote Databases

Each MobiLink remote database can contain a different subset of the data in the consolidated database. You
can write your synchronization scripts so that data is partitioned among remote databases.

The partitioning can be disjoint, or it can contain overlaps. For example, if each employee has their own set of
customers, with no shared customers, the partitioning is disjoint. If there are shared customers who appear in
more than one remote database, the partitioning contains overlaps.

Partitioning is implemented in the download_cursor and download_delete_cursor scripts for the table, which
define the rows to be downloaded to the remote database. Each of these scripts takes a MobiLink user name as

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 121

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bbd1dc6ce210149f77d512ce4ffb10.html

a parameter. By defining your scripts using this parameter in the WHERE clause, each user gets the
appropriate rows.

In this section:

Disjoint Partitioning with MobiLink [page 122]
Partitioning is controlled by the download_cursor and download_delete_cursor scripts for each table
involved in synchronization. These scripts make use of two parameters, a last download timestamp and
the MobiLink user name supplied in the call to synchronize.

Partitions with Overlaps [page 123]
Some tables in your consolidated database may have rows that belong to many remote databases.
Each remote database has a subset of the rows in the consolidated database and the subset overlaps
with other remote databases. This is frequently the case with a customer table.

Partitioned Foreign Key Tables [page 124]
Some tables in your remote database may have disjoint subsets or overlapping subsets, but do not
contain a column that determines the subset. These are foreign key tables that usually have a foreign
key (or a series of foreign keys) referencing another table.

1.4.3.1 Disjoint Partitioning with MobiLink

Partitioning is controlled by the download_cursor and download_delete_cursor scripts for each table involved
in synchronization. These scripts make use of two parameters, a last download timestamp and the MobiLink
user name supplied in the call to synchronize.

To partition a table among remote databases, follow these guidelines:

• Include in the table definition a column containing the synchronization user name in the consolidated
database. You need not download this column to remote databases.

• Include a condition in the WHERE clause of the download_cursor and download_delete_cursor scripts
requiring this column to match the script parameter.
The script parameter is represented by a named parameter in the script. For example, the following
download_cursor script partitions the Contact table by employee ID.

SELECT id, contact_name FROM Contact
WHERE last_modified >= {ml s.last_table_download} AND emp_id = {ml s.username}

Example

The primary key pool tables in the CustDB sample application are used to supply each remote database with
its own set of primary key values. This technique is used to avoid duplicate primary keys.

A necessary feature of the method is that primary key-pool tables must be partitioned among remote
databases in a disjoint fashion.

122 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

One key-pool table is ULCustomerIDPool, which holds primary key values for each user to use when they add
customers. The table has three columns:

pool_cust_id

A primary key value for use in the ULCustomer table. This is the only column downloaded to the remote
database.
pool_emp_id

The employee who owns this primary key.
last_modified

This table is maintained using the timestamp technique, based on the last_modified column.

The download_cursor script for this table is as follows.

SELECT pool_cust_id FROM ULCustomerIDPool
WHERE last_modified >= {ml s.last_table_download} AND pool_emp_id = {ml s.username}

Related Information

Primary Key Pools [page 131]
Synchronization of Customers in the Contact Sample
Synchronization of Contacts in the Contact Sample
Implementing Timestamp-based Downloads [page 115]
download_cursor Table Event [page 393]
download_delete_cursor Table Event [page 396]

1.4.3.2 Partitions with Overlaps

Some tables in your consolidated database may have rows that belong to many remote databases. Each
remote database has a subset of the rows in the consolidated database and the subset overlaps with other
remote databases. This is frequently the case with a customer table.

In this case, there is a many-to-many relationship between the table and the remote databases and there is
usually a table to represent the relationship. The scripts for the download_cursor and download_delete_cursor
events need to join the table being downloaded to the relationship table.

Example

The CustDB sample application uses this technique for the ULOrder table. The ULEmpCust table holds the
many-to-many relationship information between ULCustomer and ULEmployee.

Each remote database receives only those rows from the ULOrder table for which the value of the emp_id
column matches the MobiLink user name.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 123

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5d4526ce21014a447c1d69824017a.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5cb7d6ce21014b2fb97b0fd66508e.html

The SQL Anywhere version of the download_cursor script for ULOrder in the CustDB application is as follows:

SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc, o.quant, o.notes, o.status
FROM ULOrder o , ULEmpCust ec
WHERE o.cust_id = ec.cust_id
 AND ec.emp_id = {ml s.username}
 AND (o.last_modified >= {ml s.last_table_download}
 OR ec.last_modified >= {ml s.last_table_download})
 AND (o.status IS NULL
 OR o.status != 'Approved') AND (ec.action IS NULL)

This script is fairly complex. It illustrates that the query defining a table in the remote database can include
more than one table in the consolidated database. The script downloads all rows in ULOrder for which the
following are all true:

• the cust_id column in ULOrder matches the cust_id column in ULEmpCust
• the emp_id column in ULEmpCust matches the synchronization user name
• the last modification of either the order or the employee-customer relationship was later than the most

recent synchronization time for this user
• the status is anything other than Approved

The action column on ULEmpCust is used to mark columns for delete. When NULL, the row is deemed to be
fully active (not deleted).

The download_delete_cursor script is as follows.

 SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc, o.quant, o.notes,
o.status
 FROM ULOrder o, dba.ULEmpCust ec
 WHERE o.cust_id = ec.cust_id
 AND ((o.status = ''Approved'' AND o.last_modified >= {ml
s.last_table_download})
 OR (ec.action = ''D'')) AND ec.emp_id = {ml s.username}

This script deletes all approved rows from the remote database.

1.4.3.3 Partitioned Foreign Key Tables

Some tables in your remote database may have disjoint subsets or overlapping subsets, but do not contain a
column that determines the subset. These are foreign key tables that usually have a foreign key (or a series of
foreign keys) referencing another table.

The referenced table has a column that determines the correct subset. In this case, the download_cursor script
and the download_delete_cursor script need to join the referenced tables and have a WHERE clause that
restricts the rows to the correct subset.

For an example, see the Customer table's download scripts in the MobiLink Contact sample.

124 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

Synchronization of Contacts in the Contact Sample
Partitions with Overlaps [page 123]

1.4.4 Upload-only and Download-only Synchronizations

By default, synchronization is bi-directional: data is both uploaded and downloaded. However, you can choose
to do only an upload or only a download.

 Note
You can also specify upload-only or download-only if you create a synchronization model in SQL Central.

SQL Anywhere Remote Databases

Upload

To perform upload-only synchronization, use the -uo dbmlsync option or the UploadOnly (uo) extended
option.
Download

To perform download-only synchronization, use the -ds dbmlsync option or the DownloadOnly (ds)
extended option.

SQL Anywhere remote databases can also use download-only publications. This approach to downloads is
different from download-only synchronizations.

UltraLite Remote Databases

Upload

To perform upload-only synchronization, use the Upload Only synchronization parameter.
Download

To perform download-only synchronization, use the Download Only synchronization parameter.

Related Information

Download-only Publications
-uo dbmlsync Option
UploadOnly (uo) Extended Option

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 125

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5cb7d6ce21014b2fb97b0fd66508e.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a759d46ce21014a555ec58a1e4db0b.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81afa2066ce21014bcd9c1076fe4744d.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aa5dbf6ce21014a0f2d0a29927c2ce.html

-ds dbmlsync Option
DownloadOnly (ds) Extended Option
Upload Only Synchronization Parameter
Download Only Synchronization Parameter

1.4.5 Unique Primary Keys

Every table that is to be synchronized must have a primary key, and for each synchronized table the primary
key must be unique across all synchronized databases. The values of primary keys should not be updated.

It is often convenient to use a single column as the primary key for tables. For example, each customer should
be assigned a unique identification value. If all the sales representatives work in an environment where they can
maintain a direct connection to the database, assigning these numbers is easily accomplished. Whenever a
new customer is inserted into the customer table, automatically add a new primary key value that is greater
than the last value.

In a disconnected environment, assigning unique values for primary keys when new rows are inserted is not as
easy. When a sales representative adds a new customer, she is doing so to a remote copy of the Customer
table. You must prevent other sales representatives, working on other copies of the Customer table, from using
the same customer identification value.

Following are some solutions for generating unique primary keys across all synchronized databases:

• composite keys
• UUIDs
• GLOBAL AUTOINCREMENT
• primary key pools

In this section:

Composite Keys [page 127]
The MobiLink remote ID uniquely defines a remote database within a synchronization system.
Therefore, an easy way to create a unique primary key is to create a composite primary key that
includes the MobiLink remote ID as part of its value.

UUIDs [page 127]
On the clients, you can ensure that primary keys are unique by using the NEWID function to create
universally unique values for your primary key. The resulting UUIDs can be converted to a string using
the UUIDTOSTR function, and converted back to binary using the STRTOUUID function.

GLOBAL AUTOINCREMENT [page 128]
In SQL Anywhere and UltraLite databases, you can set the default column value to be GLOBAL
AUTOINCREMENT. You can use this default for any column in which you want to maintain unique
values, but it is particularly useful for primary keys.

Primary Key Pools [page 131]
One efficient means of solving the problem of unique primary keys is to assign each user of the
database a pool of primary key values that can be used as the need arises.

126 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a6808a6ce2101497d6fd6fadea5d78.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aa188f6ce21014a6df98679365799a.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/827545eb6ce2101490fc8d7f4a0b1d0e.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826a57766ce21014aaa59d8882699fdc.html

1.4.5.1 Composite Keys

The MobiLink remote ID uniquely defines a remote database within a synchronization system. Therefore, an
easy way to create a unique primary key is to create a composite primary key that includes the MobiLink
remote ID as part of its value.

If you maintain unique MobiLink user names, you could use the user name instead of the remote ID.

Related Information

Remote IDs

1.4.5.2 UUIDs

On the clients, you can ensure that primary keys are unique by using the NEWID function to create universally
unique values for your primary key. The resulting UUIDs can be converted to a string using the UUIDTOSTR
function, and converted back to binary using the STRTOUUID function.

UUIDs, also known as GUIDs, are unique across all computers. However, the values are completely random and
so cannot be used to determine when a value was added, or the order of values. UUID values are also
considerably larger than the values required by other methods (including global autoincrement), and require
more table space in both the primary and foreign key tables. Indexes on tables using UUIDs are also less
efficient.

Example

The following SQL Anywhere CREATE TABLE statement creates a primary key that is universally unique:

CREATE TABLE customer (cust_key UNIQUEIDENTIFIER NOT NULL
 DEFAULT NEWID(),
 rep_key VARCHAR(5), PRIMARY KEY(cust_key))

Related Information

The NEWID Default
Primary Key Uniqueness in UltraLite
UNIQUEIDENTIFIER Data Type
NEWID Function [Miscellaneous]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 127

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abecb96ce210149cfae8b41cb3ae74.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/818bf2ff6ce21014bbead52d80641185.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826fd9716ce21014864887b4b61bc3dd.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81ff6f916ce210149fd9b113da825ca0.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/ff49c7e72f79470188b65e80508f61b9.html

1.4.5.3 GLOBAL AUTOINCREMENT

In SQL Anywhere and UltraLite databases, you can set the default column value to be GLOBAL
AUTOINCREMENT. You can use this default for any column in which you want to maintain unique values, but it
is particularly useful for primary keys.

GLOBAL AUTOINCREMENT values are partitioned among remote databases in contiguous ranges of values.
The set of possible values is finite, so the larger the size of the each range, the fewer ranges are available. Care
must be taken to set the correct size of the range for your needs. Exhausting a range is possible, but you can
detect this and assign a new range.

In this section:

Using GLOBAL AUTOINCREMENT Columns [page 128]
You can set the default column value to be GLOBAL AUTOINCREMENT to maintain unique values.

DEFAULT GLOBAL AUTOINCREMENT [page 129]
You can set default values in your database by selecting the column properties in SQL Central, or by
including the DEFAULT GLOBAL AUTOINCREMENT phrase in a CREATE TABLE or ALTER TABLE
statement.

Global Database IDs [page 130]
When deploying an application, you must assign a different identification number to each database.

1.4.5.3.1 Using GLOBAL AUTOINCREMENT Columns

You can set the default column value to be GLOBAL AUTOINCREMENT to maintain unique values.

Context

Care must be taken to set the correct size of the range for your needs. Exhausting a range is possible, but you
can detect this and assign a new range.

Procedure

1. Declare the column as a GLOBAL AUTOINCREMENT column.

When you specify DEFAULT GLOBAL AUTOINCREMENT, the domain of values for that column is
partitioned. Each partition contains the same number of values. For example, if you set the partition size
for an integer column in a database to 1000, one partition extends from 1001 to 2000, the next from 2001
to 3000, and so on.

2. Set the global_database_id value.

SQL Anywhere and UltraLite databases supply default values in a database only from the partition uniquely
identified by that database's number. For example, if you assign a database the identity number 10 and the

128 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

partition size is 1000, the default values in that database would be chosen in the range 10001-11000.
Another copy of the database, assigned the identification number 11, would supply default value for the
same column in the range 11001-12000.

Results

The column is set as a GLOBAL AUTOINCREMENT column.

Related Information

DEFAULT GLOBAL AUTOINCREMENT [page 129]
Global Database IDs [page 130]

1.4.5.3.2 DEFAULT GLOBAL AUTOINCREMENT

You can set default values in your database by selecting the column properties in SQL Central, or by including
the DEFAULT GLOBAL AUTOINCREMENT phrase in a CREATE TABLE or ALTER TABLE statement.

Optionally, the partition size can be specified in parentheses immediately following the AUTOINCREMENT
keyword. The partition size may be any positive integer, although the partition size is generally chosen so that
the supply of numbers within any one partition is rarely, if ever, exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216 = 65536; for columns of other types
the default partition size is 232 = 4294967296. Since these defaults may be inappropriate, especially if your
column is not of type INT or BIGINT, it is best to specify the partition size explicitly.

For example, the following SQL statement creates a simple table with two columns: an integer that holds a
customer identification number and a character string that holds the customer's name. The partition size is set
to 5000, which would be appropriate for an application database where few new rows are inserted in each
remote database.

CREATE TABLE customer (id INT DEFAULT GLOBAL AUTOINCREMENT (5000),
 name VARCHAR(128) NOT NULL,
 PRIMARY KEY (id))

Related Information

CREATE TABLE Statement
CREATE TABLE Statement [UltraLite]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 129

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/816ce9fb6ce210148da3ff81f8580ad0.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8273108a6ce21014becdb6433a537938.html

1.4.5.3.3 Global Database IDs

When deploying an application, you must assign a different identification number to each database.

You can create and distribute the identification numbers by a variety of means. One method is to place the
values in a table and download the correct row to each database based on some other unique property, such as
remote ID.

Set the global database identification number

In SQL Anywhere, you set the global ID of a database by setting the value of the public option
global_database_id. The identification number must be a non-negative integer.

In UltraLite, you set the global ID of a database by setting the global_id option.

How Default Values are Chosen

The global database ID is set with the public option global_database_id in SQL Anywhere, and with the
global_id option in UltraLite.

The global database id option in each database must be set to a unique, non-negative integer. The range of
default values for a particular database is pn + 1 to p(n + 1), where p is the partition size and n is the value of the
global database ID. For example, if the partition size is 1000 and global database ID is set to 3, then the range is
from 3001 to 4000.

SQL Anywhere and UltraLite choose default values by applying the following rules:

• If the column contains no values in the current partition, the first default value is pn + 1, where p is the
partition size and n is the value of the global database ID.

• If the column contains values in the current partition, but all are less than p(n + 1), the next default value is
one greater than the previous maximum value in this range.

• Default column values are not affected by values in the column outside the current partition; that is, by
numbers less than pn + 1 or greater than p(n + 1). Such values may be present if they have been replicated
from another database via MobiLink synchronization.

If the global database ID is set to the default value of 2147483647, a null value is inserted into the column.
Should null values not be permitted, the attempt to insert the row causes an error. This situation arises, for
example, if the column is contained in the table's primary key.

Because the global database ID cannot be set to negative values, the values chosen are always positive. The
maximum identification number is restricted only by the column data type and the partition size.

Null default values are also generated when the supply of values within the partition has been exhausted. In this
case, a new unique global database ID value should be assigned to the database to allow default values to be
chosen from another partition. Attempting to insert the null value causes an error if the column does not
permit nulls. To detect that the supply of unused values is low and handle this condition in SQL Anywhere
databases, you can create an event of type GlobalAutoincrement.

Should the values in a particular partition become exhausted, you can assign a new global database ID to that
database. You can assign new database ID numbers in any convenient manner. However, one possible
technique is to maintain a pool of unused database ID values. This pool is maintained in the same manner as a
pool of primary keys.

130 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

You can set an event handler to automatically notify the database administrator (or perform some other
action) when the partition is nearly exhausted.

Example

In a SQL Anywhere database, the following statement sets the database identification number to 20.

SET OPTION PUBLIC.global_database_id = 20

If the partition size for a particular column is 5000, default values for this database are selected from the range
100001-105000.

Related Information

Primary Key Pools [page 131]
Trigger Conditions for Events
global_database_id Option
UltraLite global_database_id Option

1.4.5.4 Primary Key Pools

One efficient means of solving the problem of unique primary keys is to assign each user of the database a pool
of primary key values that can be used as the need arises.

For example, you can assign each sales representative 100 new identification values. Each sales representative
can freely assign values to new customers from his or her own pool.

Following is an overview of how to implement a primary key pool.

1. Add a new table to the consolidated database and to each remote database to hold the new primary key
pool. Apart from a column for the unique value in the consolidated database, these tables should contain a
column for a user name, to identify who has been given the right to assign the value.

2. In the consolidated database, write a stored procedure to ensure that each user is assigned enough new
identification values. Assign more new values to remote users who insert many new entries or who
synchronize infrequently.

3. Write a download_cursor script to select the new values assigned to each user and download them to the
remote database.

4. Modify the application that uses the remote database so that when a user inserts a new row, the
application uses one of the values from the pool. The application must then delete that value from the pool
so it is not used a second time.

5. Write an upload_delete script to upload the deleted keys. The MobiLink server then deletes rows from the
consolidated pool of values that a user has deleted from his personal value pool in the remote database.

6. Write an end_upload script to call the stored procedure that maintains the pool of values. Doing so has the
effect of adding more values to the user's pool to replace those deleted during upload.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 131

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bca4b536c5f1014866598ac975843a0.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8141eafe6ce21014b3cfc99bd4edc572.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826d61296ce2101480bfbc0eb48eb493.html

Example

The CustDB sample application allows remote users to add customers. It is essential that each new row has a
unique primary key value, and yet each remote database is disconnected when data entry is occurring.

The ULCustomerIDPool holds a list of primary key values that can be used by each remote database. In
addition, the ULCustomerIDPool_maintain stored procedure tops up the pool as values are used up. The
maintenance procedures are called by a table-level end_upload script, and the pools at each remote database
are maintained by download_cursor and upload_delete scripts.

1. The ULCustomerIDPool table in the consolidated database holds the pool of new customer identification
numbers. It has no direct link to the ULCustomer table.

2. The ULCustomerIDPool_maintain procedure updates the ULCustomerIDPool table in the consolidated

database. The following sample code is for a SQL Anywhere consolidated database.

CREATE PROCEDURE ULCustomerIDPool_maintain (IN syncuser_id INTEGER) BEGIN
 DECLARE pool_count INTEGER;
 -- Determine how may ids to add to the pool
 SELECT COUNT(*) INTO pool_count
 FROM ULCustomerIDPool
 WHERE pool_emp_id = syncuser_id;

 -- Top up the pool with new ids
 WHILE pool_count < 20 LOOP
 INSERT INTO ULCustomerIDPool (pool_emp_id)
 VALUES (syncuser_id);
 SET pool_count = pool_count + 1;
 END LOOP; END

This procedure counts the numbers that are currently assigned to the current user, and inserts new rows
so that this user has enough customer identification numbers.
This procedure is called at the end of the upload, by the end_upload table script for the ULCustomerIDPool
table. The script is as follows:

CALL ULCustomerIDPool_maintain({ml s.username})

3. The download_cursor script for the ULCustomerIDPool table downloads new numbers to the remote
database.

SELECT pool_cust_id FROM ULCustomerIDPool
WHERE pool_emp_id = {ml s.username} AND last_modified >= {ml s.last_table_download}

132 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

4. To insert a new customer, the application using the remote database must select an unused identification
number from the pool, delete this number from the pool, and insert the new customer information using
this identification number. The following Embedded SQL function for an UltraLite application retrieves a
new customer number from the pool.

bool CDemoDB::GetNextCustomerID(void) /*************************************/
{
 short ind;
 EXEC SQL SELECT min(pool_cust_id)
 INTO :m_CustID:ind FROM ULCustomerIDPool;
 if(ind < 0) {
 return false;
 }
 EXEC SQL DELETE FROM ULCustomerIDPool
 WHERE pool_cust_id = :m_CustID;
 return true; }

Related Information

Implementing Timestamp-based Downloads [page 115]

1.4.6 Conflict Handling Overview

Conflicts can arise during the upload of rows to the consolidated database and are not the same as errors.
When conflicts can occur, you should define a process to compute the correct values, or at least to log the
conflict. Conflict handling is an integral part of a well-designed application.

 Caution
Never update primary keys in synchronized tables. Updating primary keys defeats the purpose of a primary
key because the key is the only way to identify the same row in different databases (remote and
consolidated) and the only way to detect conflicts.

By default,

• If an attempt to insert a row finds that the row has already been inserted, an error is generated.
• If an attempt to delete a row finds that the row has already been deleted, the second attempt to delete is

ignored.

If you need different behavior, you can implement it by defining one or more of the other upload events that are
described.

During the download stage of a synchronization, no conflicts arise in the remote database. If a downloaded row
contains a new primary key, the values are inserted into a new row. If the primary key matches that of a pre-
existing row, the values in the row are updated.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 133

Example

User1 starts with an inventory of ten items, and then sells three and updates the Remote1 inventory value to
seven items. User2 sells four items and updates the Remote2 inventory to six. When Remote1 synchronizes,
the consolidated database is updated to seven. When Remote2 synchronizes, a conflict is detected because
the value of the inventory is no longer ten. To resolve this conflict programmatically, you need three row values:

1. The current value in the consolidated database.
2. The new row value that Remote2 uploaded.
3. The old row value that Remote2 obtained during the last synchronization.

In this case, the business logic could use the following to calculate the new inventory value and resolve the
conflict:

current consolidated - (old remote - new remote) -> 7 - (10-6) = 3

In this section:

Conflict Detection [page 134]
When a MobiLink client sends an updated row to the MobiLink server, it includes the new updated
values (the post-image), and also a copy of the old row values (the pre-image) obtained either in the
last download or from the row values existing before the first upload of this row.

Conflict Resolution [page 137]
You have several options for resolving conflicts.

Related Information

Synchronization of Products in the Contact Sample

1.4.6.1 Conflict Detection

When a MobiLink client sends an updated row to the MobiLink server, it includes the new updated values (the
post-image), and also a copy of the old row values (the pre-image) obtained either in the last download or from
the row values existing before the first upload of this row.

When the pre-image does not match the current values in the consolidated database, a conflict is detected.

The MobiLink server detects conflicts only if an upload_fetch or upload_fetch_column_conflict script is applied.
When you use upload_fetch, conflicting updates are flagged as a conflict. When you use
upload_fetch_column_conflict, only conflicts on updates to the same column are flagged.

You can also set up arbitrary conflict detection and resolution using a stored procedure for upload_update.
Conflict detection and resolution is completely controlled by the script so MobiLink does not trigger a conflict.

In this section:

134 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bba0d86ce21014ad0cfcfdcc9bdd70.html

Conflict Detection with upload_fetch or upload_fetch_column_conflict Scripts [page 135]
If you define an upload_fetch or upload_fetch_column_conflict script for a table, the MobiLink server
compares the pre-image of an uploaded update to the values of the row returned by the script with the
same primary key values.

Conflict Detection with upload_update Scripts [page 137]
You do not define scripts for upload_fetch, upload_fetch_column_conflict, upload_old_row_insert,
upload_new_row_insert, and resolve_conflict. Instead, you create a stored procedure to handle the
conflict detection and resolution and you call it in the upload_update script.

1.4.6.1.1 Conflict Detection with upload_fetch or
upload_fetch_column_conflict Scripts

If you define an upload_fetch or upload_fetch_column_conflict script for a table, the MobiLink server compares
the pre-image of an uploaded update to the values of the row returned by the script with the same primary key
values.

The MobiLink server detects a conflict if values in the pre-image do not match the current consolidated values.
The server calls the upload_old_row_insert and upload_new_row_insert scripts followed by the resolve_conflict
script when a conflict is detected.

 Note
An error occurs if the upload_old_row_insert and upload_new_row_insert scripts are not defined during a
conflict. Define these scripts as ignored using the --{ml_ignore} statement if they are not required for the
synchronization table.

The difference between upload_fetch and upload_fetch_column_conflict scripts is in the criterion the MobiLink
server uses to detect a conflict. With an upload_fetch script any difference between the fetched row and pre-
image row is treated as a conflict. With an upload_fetch_column_conflict script, only the columns updated by
the remote database are compared between the fetched row and the pre-image row. In other words,
upload_fetch provides row-based conflict detection, and upload_fetch_column_conflict provides column-based
conflict detection.

The upload_fetch script selects a single row of data from a consolidated database table corresponding to the
row being updated. There are two ways to use this script. The first way is to select the row with the same
primary key(s) and same column values as the uploaded pre-image. If no row is returned, MobiLink server
detects a conflict. This method of using the script has the following syntax (where pk1, pk2, ... are
primary key columns and col1, col2, ... are non-primary columns):

SELECT pk1, pk2, ...col1, col2, ... FROM table-name WHERE pk1 = {ml r.pk1} AND pk2 = {ml r.pk2} ... AND col1 = {ml o.col1} AND col2 = {ml o.col2} ...

 Note
This method of conflict detection cannot be used with synchronized tables that have large binary columns
such as BLOB and CLOB.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 135

The second way is to select the row with the same primary key, letting MobiLink server compare the fetched
row against the uploaded pre-image. If any columns differ, the MobiLink server detects a conflict. This
approach works with all synchronizable column types:

SELECT pk1, pk2, ...col1, col2, ... FROM table-name WHERE pk1 = {ml r.pk1} AND pk2 = {ml r.pk2} ...

The upload_fetch_column_conflict event is the same as upload_fetch, except that with it the MobiLink server
only detects a conflict for a row when the same column was updated on the remote database and the
consolidated database since the last synchronization. Different users can update the same row without
generating a conflict, as long as they don't update the same column. The upload_fetch_column_conflict event
can only be applied to synchronization tables that have no BLOBs.

When using an upload_fetch_column_conflict script and no conflict is detected, the row values passed to your
upload_update script come from either the remote database's upload or the current consolidated values from
your upload_fetch_column_conflict script. The remote database's value is used for columns that were updated
on the remote database, otherwise the current consolidated value is used. In other words, only the columns
that were updated on the remote database are updated in the consolidated.

You can have only one upload_fetch or upload_fetch_column_conflict script for each table in the remote
database.

Locking the row on the consolidated database

A row on the consolidated database might change after the upload_fetch script detects a conflict and before
the conflict resolution is completed. To avoid this problem, which could result in incorrect data, you can
implement the upload_fetch or upload_fetch_column_conflict scripts with a row lock.

In SQL Anywhere consolidated databases, you can use either the UPDLOCK or HOLDLOCK keywords, but
UPDLOCK is better for concurrency. For example:

SELECT column-names from table-name WITH (UPDLOCK) WHERE where-clause

For Microsoft SQL Server, use HOLDLOCK. For example:

SELECT column-names FROM table-name WITH (HOLDLOCK) WHERE where-clause

For Adaptive Server Enterprise, use HOLDLOCK. For example:

SELECT column-names FROM table-name HOLDLOCK WHERE where-clause

Example

You define an upload_fetch script. The MobiLink server uses the script to retrieve the current row in the
consolidated database and compares this row to the pre-image of the updated row. If the two rows contain

136 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

identical values, there is no conflict. If the two rows differ, then a conflict is detected and MobiLink calls the
upload_old_row_insert and upload_new_row_insert scripts, followed by resolve_conflict.

Related Information

Conflict Resolution with resolve_conflict Scripts [page 138]
upload_fetch Table Event [page 502]
upload_fetch_column_conflict Table Event [page 504]

1.4.6.1.2 Conflict Detection with upload_update Scripts

You do not define scripts for upload_fetch, upload_fetch_column_conflict, upload_old_row_insert,
upload_new_row_insert, and resolve_conflict. Instead, you create a stored procedure to handle the conflict
detection and resolution and you call it in the upload_update script.

Related Information

Conflict Resolution with upload_update Scripts [page 139]

1.4.6.2 Conflict Resolution

You have several options for resolving conflicts.

• Resolve conflicts as they occur using temporary or permanent tables and a resolve_conflict script.
• Resolve conflicts as they occur using an upload_update script.
• Resolve all conflicts at once using a table's end_upload script.

In this section:

Conflict Resolution with resolve_conflict Scripts [page 138]
When the MobiLink server detects a conflict using an upload_fetch script, a number of events take
place.

Conflict Resolution with upload_update Scripts [page 139]
Instead of using the resolve_conflict script for conflict resolution, you can call a stored procedure in the
upload_update script. With this technique, you must both detect and resolve conflicts
programmatically.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 137

Related Information

end_upload Table Event [page 426]

1.4.6.2.1 Conflict Resolution with resolve_conflict Scripts

When the MobiLink server detects a conflict using an upload_fetch script, a number of events take place.

• The MobiLink server inserts old row values uploaded from the remote database as defined by the
upload_old_row_insert script. Typically, the old values are inserted into a temporary table.

• The MobiLink server inserts the new row values uploaded from the remote database as defined by the
upload_new_row_insert script. Typically, the new values are inserted into a temporary table.

• The MobiLink server executes the resolve_conflict script. In this script you can either call a stored
procedure, or define a sequence of steps to resolve the conflict using the new and old row values.

Example

In the following example, you create scripts for six events and then you create a stored procedure.

• In the begin_synchronization script, you create two temporary tables called contact_new and contact_old.
(You could also do this in the begin_connection script.)

• The upload_fetch script detects the conflict.
• When there is a conflict, the upload_old_row_insert and upload_new_row_insert scripts populate the two

temporary tables with the new and old data uploaded from the remote database.
• The resolve_conflict script calls the stored procedure MLResolveContactConflict to resolve the conflict.

Event Script

begin_synchronization CREATE TABLE #contact_new(id INTEGER,
 location CHAR(36),
 contact_date DATE);
CREATE TABLE #contact_old(
 id INTEGER,
 location CHAR(36), contact_date DATE)

upload_fetch SELECT id, location, contact_date FROM contact WHERE id = {ml r.id}

upload_old_row_insert INSERT INTO #contact_new(id,
location, contact_date) VALUES ({ml r.id}, {ml
r.location}, {ml r.contact_date})

138 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Event Script

upload_new_row_insert INSERT INTO #contact_old(id,
location, contact_date) VALUES ({ml r.id}, {ml
r.location}, {ml r.contact_date})

resolve_conflict CALL MLResolveContactConflict()

end_synchronization DROP TABLE #contact_new; DROP TABLE #contact_old

The stored procedure MLResolveContactConflict is as follows:

CREATE PROCEDURE MLResolveContactConflict() BEGIN
 --update the consolidated database only if the new contact date
 --is later than the existing contact date
 UPDATE contact c
 SET c.contact_date = cn.contact_date
 FROM #contact_new cn
 WHERE c.id = cn.id
 AND cn.contact_date > c.contact_date;
 --cleanup
 DELETE FROM #contact_new;
 DELETE FROM #contact_old; END

Related Information

upload_old_row_insert Table Event [page 510]
upload_new_row_insert Table Event [page 508]
resolve_conflict Table Event [page 483]

1.4.6.2.2 Conflict Resolution with upload_update Scripts

Instead of using the resolve_conflict script for conflict resolution, you can call a stored procedure in the
upload_update script. With this technique, you must both detect and resolve conflicts programmatically.

The stored procedure must accept all columns, including both the new (post-image) and old (pre-image)
values.

The upload_update script could be as follows:

{CALL UpdateProduct({ml o.id}, {ml o.name}, {ml o.desc}, {ml r.name}, {ml r.desc}
) }

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 139

The UpdateProduct stored procedure could be:

CREATE PROCEDURE UpdateProduct(@id INTEGER,
 @preName VARCHAR(20),
 @preDesc VARCHAR(200),
 @postName VARCHAR(20),
 @postDesc VARCHAR(200))
BEGIN
 UPDATE product
 SET name = @postName, description = @postDesc
 WHERE id = @id
 AND name = @preName
 AND description = @preDesc
 IF @@rowcount=0 THEN
 // A conflict occurred: handle resolution here.
 END IF END

This approach is often easier to maintain than resolving conflicts with resolve_conflict scripts because there is
only one script to maintain and all the logic is contained in one stored procedure. However, the code of the
stored procedure may be complicated if the tables columns are nullable or if they contain BLOBs or CLOBs.
Also, some RDBMSs that are supported MobiLink consolidated databases have limitations on the size of values
that can be passed to stored procedures.

Example

The following stored procedure, sp_update_my_customer, contains logic for conflict detection and resolution.
It accepts old column values and new column values. This example uses SQL Anywhere features. The script
could be implemented as follows.

{CALL sp_update_my_customer({ml o.cust_1st_pk},
 {ml o.cust_2nd_pk},
 {ml o.first_name},
 {ml o.last_name},
 {ml o.nullable_col},
 {ml o.last_modified},
 {ml r.first_name},
 {ml r.last_name},
 {ml r.nullable_col},
 {ml r.last_modified}
)}
CREATE PROCEDURE sp_update_my_customer(
 @cust_1st_pk INTEGER,
 @cust_2nd_pk INTEGER,
 @old_first_name VARCHAR(100),
 @old_last_name VARCHAR(100),
 @old_nullable_col VARCHAR(20),
 @old_last_modified DATETIME,
 @new_first_name VARCHAR(100),
 @new_last_name VARCHAR(100),
 @new_nullable_col VARCHAR(20),
 @new_last_modified DATETIME
)
BEGIN
DECLARE @current_last_modified DATETIME;
// Detect a conflict by checking the number of rows that are
// affected by the following update. The WHERE clause compares
// old values uploaded from the remote database to current values in

140 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

// the consolidated database. If the values match, there is
// no conflict. The COALESCE function returns the first non-
// NULL expression from a list, and is used in this case to
// compare values for a nullable column.
UPDATE my_customer
SET first_name = @new_first_name,
 last_name = @new_last_name,
 nullable_col = @new_nullable_col,
 last_modified = @new_last_modified
WHERE cust_1st_pk = @cust_1st_pk
 AND cust_2nd_pk = @cust_2nd_pk
 AND first_name = @old_first_name
 AND last_name = @old_last_name
 AND nullable_col IS NOT DISTINCT FROM @old_nullable_col
 AND last_modified = @old_last_modified;
...
// Use the @@rowcount global variable to determine
// the number of rows affected by the update. If @@rowcount=0,
// a conflict has occurred. In this example, the database with
// the most recent update wins the conflict. If the consolidated
// database wins the conflict, it retains its current values
// and no action is taken.
IF(@@rowcount = 0) THEN
// A conflict has been detected. To resolve it, use business
// logic to determine which values to use, and update the
// consolidated database with the final values.
 SELECT last_modified INTO @current_last_modified
 FROM my_customer WITH(HOLDLOCK)
 WHERE cust_1st_pk=@cust_1st_pk
 AND cust_2nd_pk=@cust_2nd_pk;
 IF(@new_last_modified > @current_last_modified) THEN
 // The remote database has won the conflict: use the values it
 // uploaded.

 UPDATE my_customer
 SET first_name = @new_first_name,
 last_name = @new_last_name,
 nullable_col = @new_nullable_col,
 last_modified = @new_last_modified
 WHERE cust_1st_pk = @cust_1st_pk
 AND cust_2nd_pk = @cust_2nd_pk;

 END IF;
END IF; END;

Related Information

Conflict Detection with upload_update Scripts [page 137]
Conflict Resolution with resolve_conflict Scripts [page 138]
SQL Variables
upload_update Table Event [page 522]
COALESCE Function [Miscellaneous]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 141

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81701ea56ce21014a58cbd85d49dfac9.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/81f4a26b6ce21014959b96490ac5f8fe.html

1.4.7 Deletes

When rows are deleted from the consolidated database, there needs to be a record of the row so it can be
explicitly selected by a download_delete_cursor and removed from any remote databases that have the row.

Use one of the following strategies to record deleted rows:

Logical deletes

With this method, the row is not deleted. Data that is no longer required is marked as inactive in a status
column. The WHERE clause of the download_cursor and download_delete_cursor and most application
queries must refer to the status of the row.

This technique is used in the CustDB sample application, in which the ULEmpCust.action column holds a D
for Delete. The scripts use this value to delete records from the remote database, and delete records from
the consolidated database at the end of the synchronization. CustDB also uses this technique for the
ULOrder table, and the Contact sample uses the technique on the Customer, Contact, and Product tables.

The MobiLink synchronization model support for logical deletes assumes that a logical delete column is
only on the consolidated database and not on the remote. When copying a consolidated schema to a new
remote schema, leave out any columns that match the logical delete column in the model's
synchronization settings. For a new model, the default column name is deleted.

To add the logical delete column name to the remote schema:

1. In the Create Synchronization Model Wizard, on the Download Deletes page, click Use logical deletes.
2. Rename the logical delete column so that it does not match any column names in the consolidated.
3. When the wizard is finished, update the remote schema and keep the default table selection. The

logical delete column name appears in the schema change list and be added to remote schema.

 Note
You need to set the column mapping for the remote's logical delete column to the consolidated's logical
delete column.

Shadow tables

With this method, you create a shadow table that stores the primary key values of deleted rows. When a
row is deleted, a trigger can populate the shadow table. The download_delete_cursor can use the shadow
table to remove rows from remote databases. The shadow table only needs to contain the primary key
columns from the real table.

In this section:

Temporarily Stopping the Synchronization of Deletes [page 143]
Use the STOP SYNCHRONIZATION DELETE statement to temporarily stop the automatic logging of
changes to tables or columns that are part of a publication with a synchronization subscription, which
are normally uploaded to the consolidated database during the next synchronization.

Related Information

download_delete_cursor Scripts [page 327]

142 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.4.7.1 Temporarily Stopping the Synchronization of
Deletes

Use the STOP SYNCHRONIZATION DELETE statement to temporarily stop the automatic logging of changes to
tables or columns that are part of a publication with a synchronization subscription, which are normally
uploaded to the consolidated database during the next synchronization.

Context

When a STOP SYNCHRONIZATION DELETE statement is executed, none of the delete operations subsequently
executed on that connection are synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed. The effects do not nest; that is, subsequent executions of STOP
SYNCHRONIZATION DELETE after the first have no additional effect.

This feature can be used to make unusual corrections, but should be used with caution as it effectively disables
part of the automatic synchronization functionality. This technique is a practical alternative to deleting the
necessary rows using a download_delete_cursor script.

Procedure

1. Issue the following statement to stop automatic logging of deletes.

STOP SYNCHRONIZATION DELETE

2. Delete rows from the synchronized table(s), as required, using the DELETE statement. Commit these
changes.

3. Restart logging of deletes using the following statement.

START SYNCHRONIZATION DELETE

Results

The deleted rows are not sent up to the MobiLink server and are not deleted from the consolidated database.

Related Information

STOP SYNCHRONIZATION DELETE Statement [MobiLink]
STOP SYNCHRONIZATION DELETE Statement [UltraLite]
START SYNCHRONIZATION DELETE Statement [MobiLink]
START SYNCHRONIZATION DELETE Statement [UltraLite]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 143

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817b1fad6ce21014a04bf481ba9650af.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8273bd896ce210148dcdb13ce62a80ae.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817acb5c6ce210148550f3669ed6259f.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8273b4566ce21014ad08a4ed2f8a576a.html

1.4.8 Failed Downloads

Bookkeeping information about what is downloaded must be maintained in the nonblocking download
acknowledgement transaction. This information should be updated in the
publication_nonblocking_download_ack or nonblocking_download_ack scripts which is called after the remote
database successfully applies the download.

If a failure occurs or SendDownloadAck is OFF, these non-blocking download acknowledgement scripts are not
called and the download timestamp in the consolidated database is not updated. When testing your
synchronization scripts you should artificially cause failed downloads to ensure that your scripts can handle a
failed download.

Using Blocking Download Acknowledgement

Support for blocking download acknowledgement has been discontinued. All download acknowledgements are
handled as non-blocking.

In this section:

Resumption of Failed Downloads [page 144]
Download failure is caused by a communication error during the download or a remote user canceling
the download. The MobiLink server holds download data that has not been received by the client so it
can be used for a restartable download.

Related Information

SendDownloadAck (sa) Extended Option
Send Download Acknowledgement Synchronization Parameter

1.4.8.1 Resumption of Failed Downloads

Download failure is caused by a communication error during the download or a remote user canceling the
download. The MobiLink server holds download data that has not been received by the client so it can be used
for a restartable download.

The MobiLink server does not release download data until one of the following occurs:

• The user successfully completes the download.
• The user comes back with a new synchronization request without attempting to resume.
• The cache is needed for new downloads. The oldest unsuccessful download is cleared first.

MobiLink has functionality that can assist with download failure recovery, and prevent retransmission of the
entire download. This functionality has separate implementations for SQL Anywhere and UltraLite remote

144 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ab67096ce21014a3c2a1eb5b8c399b.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8270dff66ce21014afaf975243962456.html

databases. The -ds mlsrv17 option can be used with restartable downloads to specify the maximum amount of
data on disk that the MobiLink server can use to store all restartable downloads.

 Note
For a resumable download attempt to succeed, the remote database must connect to the same MobiLink
server. If the remote database connects to a different MobiLink server or if the download has been pushed
out of the same MobiLink server, the attempted resume will fail.

When Should You Resume Failed Downloads?

The need for resumable downloads increases as network quality deteriorates and download sizes increase. If
you only do small synchronizations or if you synchronize on a LAN or WLAN, then you likely do not need to
resume downloads.

SQL Anywhere remote databases

When synchronization fails during a download, the downloaded data is not applied to the remote database,
however, the successfully transmitted portions of the download are stored in a temporary file on the remote
device. Dbmlsync uses this file to avoid lengthy retransmission of data, and to recover from download failure.

There are three ways to implement this functionality. For all options, dbmlsync aborts and the resumed
download fails if there is any new data to be uploaded.

-dc

After a download fails, use -dc the next time you start dbmlsync to resume the download. If part of the
failed download was transmitted, the MobiLink server only transmits the remainder of the download.
ContinueDownload (cd) extended option

When used on the dbmlsync command line, the cd extended option works just like the -dc option. You can
also store this option in the database, or use sp_hook_dbmlsync_set_extended_options to set this option
in a single synchronization.
sp_hook_dbmlsync_end hook

You can use the restart parameter to cause a download to resume. You know a download is resumable if the
restartable download parameter is set to true. You can also create logic in the hook to resume a download if
a download file exists and is a certain size, by using the restartable download size.

UltraLite Remote Databases

You can control the behavior of UltraLite applications following a failed download as follows:

• If you set the Keep Partial Download synchronization parameter to true when you synchronize, and the
download fails before completion, then UltraLite applies that portion of the changes that were downloaded.
UltraLite also sets the Partial Download Retained synchronization parameter to true.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 145

The UltraLite database might be in an inconsistent state at this point. Depending on your application, you
may want to ensure that synchronization completes successfully or is rolled back before you allow changes
to the data.

• To resume the download, set the Resume Partial Download synchronization parameter to true and
synchronize again.
The restarted synchronization does not perform an upload, and downloads only those changes that would
have been downloaded by the failed download. That is, it completes the failed download but does not
synchronize changes made since the previous attempt. To get those changes, you need to synchronize
again once the failed download has completed, or call Rollback Partial Download and synchronize with
Resume Partial Download set to false.
When you restart the download, many of the synchronization parameters from the failed synchronization
are used again automatically. For example, the publications parameter is ignored: the synchronization
downloads those publications requested on the initial download. The only parameters that must be set are
the Resume Partial Download parameter (which must be set to true) and the User Name parameter. In
addition, settings for the following parameters are obeyed, if set:
• Keep Partial Download
• DisableConcurrency
• Observer
• User Data

• To roll back the changes from the failed download without resuming synchronization, call the appropriate
method or function to roll back the changes. This function is ULRollbackPartialDownload function for
Embedded SQL. For UltraLite components, it is a method on the Connection object.

UltraLite.NET

ULConnection.RollbackPartialDownload method [UltraLite.NET]
Embedded SQL

ULRollbackPartialDownload method [UltraLite Embedded SQL]

You may want to roll back the changes from a failed download if synchronization cannot be completed, for
example if the server or network is unavailable, and you want to maintain a consistent set of data while
letting the end user continue to work.

 Note
If the send_download_ack synchronization parameter is set to true, the setting is ignored for the resumed
download.

Related Information

-ds mlsrv17 Option [page 58]
-dc dbmlsync Option
ContinueDownload (cd) Extended Option
sp_hook_dbmlsync_set_extended_options
sp_hook_dbmlsync_end
Keep Partial Download Synchronization Parameter
Partial Download Retained Synchronization Parameter
Resume Partial Download Synchronization Parameter

146 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a6483b6ce21014ac94ce82688044be.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a9fca56ce210148b978189ec2363eb.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af1a8b6ce21014b048fd01892d337c.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aed8e36ce21014bdeb910b9d0eeb97.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/82704f026ce21014a5519e93d88f4f7a.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/827057e56ce210149c70d23ca47dbd99.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/827060cc6ce21014bbef9d16822c5e14.html

1.4.9 Download Acknowledgement

Download acknowledgement is an optional component of synchronization where the client immediately
informs MobiLink server when the download is successfully applied at the remote database.

Download acknowledgement is recommended for deployments whose business logic must act as soon as
possible when remote receipt of a download is received. It is not required to ensure that your data is received at
the remote.

There are two modes of download acknowledgement: blocking, which has been discontinued, and non-
blocking. All download acknowledgements are now handled as non-blocking.

To use download acknowledgements, there are settings on both the client and server.

On the client, you specify download acknowledgement with the dbmlsync extended option SendDownloadAck
or the UltraLite synchronization parameter Send Download Acknowledgement.

On the server, there are two connection events that you can use to record the last successful download time in
your consolidated database when using non-blocking download acknowledgement,
publication_nonblocking_download_ack connection event, and nonblocking_download_ack connection event.

 Note
Download acknowledgement cannot be used with resumable downloads.

Related Information

Resumption of Failed Downloads [page 144]
publication_nonblocking_download_ack Connection Event [page 472]
nonblocking_download_ack Connection Event [page 466]
SendDownloadAck (sa) Extended Option
Send Download Acknowledgement Synchronization Parameter

1.4.10 Result Sets from Stored Procedure Calls

You can download a result set from a stored procedure call.

For example, you might currently have a download_cursor for the following table:

CREATE TABLE MyTable (pk INTEGER PRIMARY KEY NOT NULL,
 col1 VARCHAR(100) NOT NULL,
 col2 VARCHAR(20) NOT NULL,
 employee VARCHAR(100) NOT NULL,
 last_modified TIMESTAMP NOT NULL DEFAULT TIMESTAMP)

The download_cursor table script might look as follows:

SELECT pk, col1, col2

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 147

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ab67096ce21014a3c2a1eb5b8c399b.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8270dff66ce21014afaf975243962456.html

 FROM MyTable
 WHERE last_modified >= {ml s.last_table_download} AND employee = {ml s.username}

If you want your downloads to MyTable to use more sophisticated business logic, you can now create your
script as follows, where DownloadMyTable is a stored procedure taking two parameters (last-download
timestamp and MobiLink user name) and returning a result set. (This example uses an ODBC calling
convention for portability.):

{call DownloadMyTable({ml s.last_table_download}, {ml s.username})}

The following are some simple examples for each supported consolidated database. Consult the
documentation for your consolidated database for full details.

The following example works with SQL Anywhere, Adaptive Server Enterprise, Microsoft Azure, and Microsoft
SQL Server.

CREATE PROCEDURE DownloadMyTable @last_dl_ts DATETIME,
 @u_name VARCHAR(128)
AS
BEGIN
 SELECT pk, col1, col2
 FROM MyTable
 WHERE last_modified >= @last_dl_ts
 AND employee = @u_name END

For Oracle, the result set can be returned by a REF CURSOR defined in a stored procedure. However, when
using the SQL Anywhere 17 - Oracle ODBC driver, the REF CURSOR parameter should be defined as the last
one in the parameter list of the stored procedure. The REF CURSOR parameter can be defined as OUT or IN
OUT. The following stored procedure works with Oracle.

create or replace procedure DownloadMyTable(v_last_dl_ts IN TIMESTAMP,
 v_user_name IN VARCHAR,
 v_ref_crsr OUT SYS_REF_CURSOR) As
Begin
 Open v_ref_crsr For
 select pk, col1, col2
 from MyTable
 where last_modified >= v_last_dl_ts
 and employee = v_user_name; End DownloadMyTable;

Next, use the ml_add_table_script stored procedure to define a call to DownloadMyTable as the
download_cursor script for the synchronization table MyTable:

CALL ml_add_table_script('v1',
 'MyTable',
 'download_cursor',
 '{CALL DownloadMyTable(
 {ml s.last_table_download},{ml s.username})}');

For Oracle, the DownloadMyTable stored procedure only takes two parameters, not three, and the MobiLink
server fetches the result set through the REF CURSOR. The REF CURSOR is defined as the last parameter in
the stored procedure definition.

148 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following example works with IBM DB2 LUW.

 Note
Support for IBM DB2 consolidated databases is deprecated.

CREATE PROCEDURE DownloadMyTable(IN last_dl_ts TIMESTAMP,
 IN u_name VARCHAR(128))
 LANGUAGE SQL
 MODIFIES SQL DATA
 COMMIT ON RETURN NO
 DYNAMIC RESULT SETS 1
 BEGIN
 DECLARE C1, cursor WITH RETURN FOR
 SELECT pk, col1, col2 FROM MyTable
 WHERE last_modified >= last_dl_ts AND employee = u_name;
 OPEN C1; END;

1.4.11 Self-referencing Tables

Some tables are self-referencing. For example, an employee table may contain a column that lists employees
and a column that lists the manager of each employee, and there may be a hierarchy of managers managing
managers.

Self-referencing tables can pose a challenge to synchronization because the MobiLink default behavior is to
coalesce all data updates on the remote database, which is efficient but which loses the order of transactions.

There are two techniques for handling this situation:

• If you are using a SQL Anywhere remote database, you can use the dbmlsync -tu option to specify that
each transaction on the remote database should be sent as a separate transaction.

• Add a mapping table, mapping employees to managers, so the order of transactions in the formerly self-
referencing table no longer matters.

Related Information

-tu dbmlsync Option

1.4.12 MobiLink Isolation Levels

MobiLink connects to a consolidated database at the most optimal isolation level it can, given the isolation
levels enabled on the RDBMS. The default isolation levels are chosen to provide the best performance while
ensuring data consistency.

In general, MobiLink uses the isolation level SQL_TXN_READ_COMMITTED for uploads, and if possible, it uses
snapshot isolation for downloads. If snapshot isolation is not available MobiLink uses

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 149

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af74856ce2101483b2badcda21c223.html

SQL_TXN_READ_COMMITTED for downloads. A download using SQL_TXN_READ_COMMITTED isolation has
the potential to block until another transaction completes. Such blocking can significantly decrease the
throughput of synchronizations. When a download transaction performs no updates, which is recommended,
snapshot isolation eliminates the problem of downloads being directly blocked by other transactions.

Snapshot isolation can result in duplicate data being downloaded (if, for example, a long-running transaction
causes the same snapshot to be used for a long time), but MobiLink clients automatically handle this, so the
only penalty is transmission time and the processing effort at the remote. Nevertheless, avoiding long-running
transactions is recommended.

Isolation level 0 (READ UNCOMMITTED) is generally unsuitable for synchronization and can lead to
inconsistent data.

The isolation level is set immediately after a connection to the consolidated database occurs. Some other
connection setup also occurs at that time, and then the transaction is committed. The COMMIT is required by
most RDBMSs so that the isolation level (and perhaps other settings) can take effect.

SQL Anywhere Consolidated Databases

SQL Anywhere version 10 and later supports snapshot isolation. By default, MobiLink uses the
SQL_TXN_READ_COMMITTED isolation level for uploads, and snapshot isolation for downloads.

MobiLink can only use snapshot isolation if you enable it in your SQL Anywhere consolidated database. If
snapshot isolation is not enabled, MobiLink uses the default SQL_TXN_READ_COMMITTED.

Enabling snapshot isolation for SQL Anywhere is recommended to avoid the improbable scenario of missing
rows on download, especially if you expect to have uncommitted changes during synchronization that are later
rolled back. For example, at SQL_TXN_READ_COMMITTED isolation level, SQL Anywhere does not block
queries on rows where an uncommitted change to the row would change it from being selected to not being
selected. If such a change is uncommitted during a synchronization with a remote database, thereby causing
the row to be missed by the download cursor, and the change is subsequently rolled back, the row may never
be downloaded to that remote database.

Enabling a database to use snapshot isolation can affect performance because copies of all modified rows
must be maintained, regardless of the number of transactions that use snapshot isolation.

You can enable snapshot isolation for upload with the mlsrv17 -esu option, and disable snapshot isolation with
the mlsrv17 -dsd option. If you need to change the MobiLink default isolation level in a connection script, you
should do so in the begin_upload or begin_download scripts. If you change the default isolation level in the
begin_connection script, your setting may be overridden at the start of the upload and download transactions.

SQL Anywhere Versions Earlier Than Version 10 Consolidated Databases

If you are using a version of SQL Anywhere earlier than version 10, the default MobiLink isolation level is
SQL_TXN_READ_COMMITTED. You can change the default for the entire MobiLink session in the
begin_connection script, or change it for the upload and download in the begin_upload and begin_download
scripts, respectively.

150 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Adaptive Server Enterprise Consolidated Databases

For Adaptive Server Enterprise, the default MobiLink isolation level is SQL_TXN_READ_COMMITTED. You can
change the default for the entire MobiLink session in the begin_connection script, or change it for the upload
and download in the begin_upload and begin_download scripts, respectively.

By default, the MobiLink server assumes datarows locking, which is non-blocking, so it uses the oldest open
transaction start time for the next last download timestamp to not miss rows on download. If datarows locking
is not used, then you can use the -dr mlsrv17 option.

Oracle Consolidated Databases

Oracle supports snapshot isolation, but calls it READ COMMITTED. By default, MobiLink uses the snapshot/
READ COMMITTED isolation level for upload and download.

You can change the default for the entire MobiLink session in the begin_connection script, or change it for the
upload and download in the begin_upload and begin_download scripts, respectively.

For the MobiLink server to make the most effective use of snapshot isolation, the Oracle account used by the
MobiLink server must have permission for the GV_$TRANSACTION Oracle system view. If it does not, a
warning is issued and rows may be missed on download. Only SYS can grant this access. The Oracle syntax for
granting this access is:

grant select on SYS.GV_$TRANSACTION to user-name;

Microsoft SQL Server Consolidated Databases

Microsoft SQL Server supports snapshot isolation. By default, MobiLink uses the
SQL_TXN_READ_COMMITTED isolation level for uploads, and snapshot isolation for download.

MobiLink can only use snapshot isolation if you enable it in your Microsoft SQL Server consolidated database. If
snapshot is not enabled, MobiLink uses the default SQL_TXN_READ_COMMITTED. See your Microsoft SQL
Server documentation for details.

You can enable snapshot isolation for upload with the mlsrv17 -esu option, and disable snapshot isolation with
the mlsrv17 -dsd option. If you need to change the MobiLink default isolation level in a connection script, you
should do so in the begin_upload or begin_download scripts. If you change the default isolation level in the
begin_connection script, your setting may be overridden at the start of the upload and download transactions.

In Microsoft Azure consolidated databases, by default, uncommitted operations (inserts, updates, and deletes)
do not prevent other connections from accessing the same tables. Because of this behavior, do not use the -
dsd option (disable snapshot isolation for download) when you use timestamp-based download logic for your
synchronization. Doing so can cause data inconsistencies.

To use snapshot isolation on Microsoft SQL Server, the user ID that you use to connect the MobiLink server to
the database must have permission to access the Microsoft SQL Server system table
SYS.DM_TRAN_ACTIVE_TRANSACTIONS. If this permission is not granted, MobiLink uses the default level
SQL_TXN_READ_COMMITTED.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 151

If your consolidated database is running on a Microsoft SQL Server that is also running other databases, and if
you are using snapshot isolation for uploads or downloads, and if your upload or download scripts do not
access any other databases on the server, you should specify the MobiLink server -dt option. This option
makes MobiLink ignore all transactions except ones within the current database, and potentially increases
throughput and reduces duplication of rows that are downloaded.

Related Information

How to Enable Snapshot Isolation
The Synchronization Process
Isolation Levels and Consistency
Snapshot Isolation
-dsd mlsrv17 Option [page 59]
-esu mlsrv17 Option [page 62]
-dr mlsrv17 Option [page 58]
-dt mlsrv17 Option [page 60]

1.5 MobiLink Consolidated Databases

Your consolidated database holds system objects that are required by MobiLink. Usually, it also holds your
application data, but you can hold all or part of your application data in other forms as well.

MobiLink supports consolidated databases for Windows and Linux. Your consolidated database can be one of
the following ODBC-compliant RDBMSs:

• SAP SQL Anywhere
• SAP Adaptive Server Enterprise
• IBM DB2 LUW (deprecated)
• Microsoft SQL Server
• MySQL
• Oracle
• SAP HANA
• SAP IQ

Your SQL Anywhere installation includes a MobiLink setup script for each type of RDBMS. You must run the
appropriate setup script to use that RDBMS with MobiLink. The setup script adds tables and stored procedures
that are required by MobiLink.

Synchronizing to Other Data Sources

Your MobiLink environment must have a database that has been set up as a consolidated database. However,
you can use direct row handling to synchronize data sources other than the consolidated database. The other

152 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/3bf04a196c5f101480e0ed1aac277ffa.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5f7de6ce21014abd0ed7492e3b5da.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/3bf0ef526c5f1014b372935839b121fc.html
https://help.sap.com/viewer/e38b2f6217f24bdb90a3ff8ae57b1dd5/17.0.01/en-US/3bf0656e6c5f1014bb32fe2f7ce00302.html

data sources can be almost anything: a text file, web service, non-relational database, spreadsheet, and so on.
You can:

• Synchronize to only a consolidated database.
• Synchronize to only another data source.
• Create a hybrid application in which you synchronize to both a consolidated database and some other data

source.

Restrictions on Modifying Your Consolidated Database

Some users have limited ability to change the schema of their consolidated database. For these situations,
MobiLink provides solutions, where possible, to keep changes to the consolidated database to a minimum. For
example, MobiLink offers a variety of solutions for maintaining unique primary keys across the synchronization
system, some of which have minimal impact on the consolidated database schema.

In addition, you can avoid almost all impact on your consolidated database by putting your MobiLink system
objects in a separate database.

In this section:

How Remote Tables Relate to Consolidated Tables [page 154]
Your synchronization design specifies mappings between tables and columns in the remote databases
with tables and columns in the consolidated database. Typically, tables and columns in remote
databases either exactly match the tables and columns in the consolidated database or are subsets of
them.

Consolidated Database Setup [page 155]
To set up a database so that it can be used as a MobiLink consolidated database, you must run a setup
script. Your SQL Anywhere installation includes a script for each of the supported RDBMSs. These
scripts are all located in %SQLANY17%\MobiLink\setup.

RDBMS-Dependent Synchronization Scripts [page 157]
MobiLink uses synchronization scripts to define the rules you use to synchronize data.

Synchronization of Spatial Data [page 158]
The MobiLink server supports synchronization of tables containing columns with spatial data types.

Adaptive Server Enterprise Consolidated Database [page 163]
MobiLink supports Adaptive Server Enterprise consolidated databases.

IBM DB2 LUW Consolidated Database [page 165]
MobiLink supports IBM DB2 LUW for Linux and Windows.

Microsoft SQL Server and Microsoft Azure Consolidated Databases [page 168]
MobiLink supports Microsoft SQL Server and Microsoft Azure consolidated databases.

MySQL Consolidated Database [page 170]
The MobiLink server supports MySQL Community and Enterprise servers 5.1.3 or later.

Oracle Consolidated Database [page 173]
MobiLink supports Oracle consolidated databases.

SAP HANA Consolidated Database [page 179]
MobiLink supports SAP HANA consolidated databases.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 153

SQL Anywhere Consolidated Database [page 181]
MobiLink supports SQL Anywhere consolidated databases.

SAP IQ Consolidated Database [page 182]
MobiLink supports SAP IQ consolidated databases.

Related Information

Supported Platforms
Recommended ODBC Drivers For MobiLink
SAP SQL Anywhere Supported Platforms and Engineering Support Status

1.5.1 How Remote Tables Relate to Consolidated Tables

Your synchronization design specifies mappings between tables and columns in the remote databases with
tables and columns in the consolidated database. Typically, tables and columns in remote databases either
exactly match the tables and columns in the consolidated database or are subsets of them.

Arbitrary Relationships Permitted

Tables in a remote database need not be identical to those in the consolidated database. Synchronized data in
one remote application table can be distributed between columns in different tables. You specify these
relationships using synchronization scripts.

Direct Relationships Are Simple

The simplest and most common design uses a table structure in the remote database that is a subset of that in
the consolidated database. Using this design, every table in the remote database exists in the consolidated
database. Corresponding tables have the same structure and foreign key relationships as those in the
consolidated database.

The consolidated database frequently contains columns and tables that are not synchronized. Some of these
columns or tables can be used to assist synchronization. For example, a TIMESTAMP column can identify new
or updated rows in the consolidated database; or a shadow table can be used to track deletes. Non-
synchronized columns or tables in the consolidated database can also hold information that is not required at
remote sites.

Remote databases also frequently contain tables or columns that aren't synchronized.

154 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/8155387d6ce21014937df18c3511be8f.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-6337
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-35654

Related Information

MobiLink Data Mappings Between Remote and Consolidated Databases [page 662]

1.5.2 Consolidated Database Setup

To set up a database so that it can be used as a MobiLink consolidated database, you must run a setup script.
Your SQL Anywhere installation includes a script for each of the supported RDBMSs. These scripts are all
located in %SQLANY17%\MobiLink\setup.

The MobiLink setup script adds MobiLink system tables, stored procedures, triggers, and views to your
database. These tables and procedures are required for MobiLink synchronization.

 Note
The database user who runs the setup scripts is expected to be the same one used to update the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to configure
MobiLink.

For instructions on how to run the setup scripts, see the section for your RDBMS.

ODBC Connection

The MobiLink server needs an ODBC connection to your consolidated database. You must install the
appropriate ODBC driver for your RDBMS and create an ODBC data source for the database on the computer
where your MobiLink server is running.

In this section:

MobiLink System Database [page 156]
In some rare cases, you may want to split your consolidated database into two: one database for data
and one for the MobiLink system information.

MobiLink Server System Tables [page 156]
MobiLink system tables store information about MobiLink users, subscriptions, tables, scripts, script
versions, and other information. They are required for MobiLink synchronization. Although you can
modify the MobiLink system tables, you usually do not need to.

Related Information

MobiLink System Setup
MobiLink Server System Procedures [page 582]
Required Privileges for MobiLink Server [page 23]
ODBC Drivers for MobiLink [page 710]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 155

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html

Adaptive Server Enterprise Consolidated Database [page 163]
IBM DB2 LUW Consolidated Database [page 165]
Microsoft SQL Server and Microsoft Azure Consolidated Databases [page 168]
MySQL Consolidated Database [page 170]
Oracle Consolidated Database [page 173]
SAP IQ Consolidated Database [page 182]
SQL Anywhere Consolidated Database [page 181]

1.5.2.1 MobiLink System Database

In some rare cases, you may want to split your consolidated database into two: one database for data and one
for the MobiLink system information.

When you do this you do not have to add MobiLink system objects to your consolidated database. All MobiLink
system objects can be stored in a separate database called the MobiLink system database.

 Note
This setup requires a distributed transaction coordinator. Currently the only one supported by MobiLink is
Microsoft Distributed Transaction Coordinator (MS DTC), which only runs on Windows.

Your MobiLink system database can be any database that is supported as a consolidated database. It does not
have to be the same RDBMS as your consolidated database.

It is easy to set up a MobiLink system database. Simply apply MobiLink setup scripts to a database other than
your consolidated database. When you start the MobiLink server, connect to both databases using -c for the
consolidated database and -cs for the system database.

Notes

• If you are using a separate system database, you can only run the MobiLink server on Windows using
Microsoft Distributed Transaction Coordinator.

• You cannot use a MobiLink system database with the MobiLink Deploy Synchronization Model Wizard.
• There is a performance penalty for storing MobiLink system objects in a separate database.

1.5.2.2 MobiLink Server System Tables

MobiLink system tables store information about MobiLink users, subscriptions, tables, scripts, script versions,
and other information. They are required for MobiLink synchronization. Although you can modify the MobiLink
system tables, you usually do not need to.

MobiLink system tables are created when you run the MobiLink setup script for your consolidated database.
They must be stored on your consolidated database, and are always prefixed with ml_. The database user who
runs the setup script is the owner of the MobiLink system tables that are created by the script.

156 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.5.3 RDBMS-Dependent Synchronization Scripts

MobiLink uses synchronization scripts to define the rules you use to synchronize data.

Synchronization scripts define:

• How data uploaded from the remote database is to be applied to the consolidated database.
• What data should be downloaded from the consolidated database to the remote database.

For specific information about each type of consolidated database, see the section for your RDBMS.

.NET and Java Synchronization Scripts

You can write your synchronization logic in the version of the SQL language used by your database. You can
also write more portable and powerful scripts using Java or .NET. Both Java and .NET offer flexibility beyond
what each RDBMS provides via SQL, while also providing full SQL compatibility. When you use Java or .NET
synchronization logic, you can hold session-wide variables, create user-defined procedures, integrate
authentication to external servers, and so on.

Invoking Procedures from Scripts

Some databases, such as Microsoft SQL Server, require that procedure calls with parameters be written using
the ODBC syntax.

{ CALL procedure_name({ml param1}, {ml param2}, ...) }

You can return values by defining the parameters as OUT or INOUT in the procedure definition.

CHAR Columns

In many other RDBMSs, CHAR data types are fixed length and blank-padded to the full length of the string. In
SQL Anywhere or UltraLite remote MobiLink databases, CHAR is the same as VARCHAR: values are not blank-
padded to a fixed width. If you are not using SQL Anywhere as your consolidated database, It is strongly
recommended that you use VARCHAR in the consolidated database rather than CHAR. If you must use CHAR,
the mlsrv17 -b command line option can be used to remove trailing blanks from strings during synchronization.
This option is important for string comparisons used to detect conflicts.

Data Conversion

For information about the conversion of data that must take place when a MobiLink server communicates with
a consolidated database that isn't SQL Anywhere, see the documentation for MobiLink data mappings.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 157

Related Information

Synchronization Scripts [page 288]
Java Synchronization Logic [page 528]
Synchronization Scripts in Microsoft .NET [page 541]
MobiLink Data Mappings Between Remote and Consolidated Databases [page 662]
Synchronization Events [page 332]
SQL Anywhere Consolidated Database [page 181]
Adaptive Server Enterprise Consolidated Database [page 163]
IBM DB2 LUW Consolidated Database [page 165]
Microsoft SQL Server and Microsoft Azure Consolidated Databases [page 168]
MySQL Consolidated Database [page 170]
Oracle Consolidated Database [page 173]
SAP IQ Consolidated Database [page 182]
-b mlsrv17 Option [page 51]

1.5.4 Synchronization of Spatial Data

The MobiLink server supports synchronization of tables containing columns with spatial data types.

The following types of consolidated databases are supported for spatial data synchronization:

• SQL Anywhere
• Oracle
• Microsoft Azure
• Microsoft SQL Server
• IBM DB2 LUW

 Note
Support for IBM DB2 consolidated databases is deprecated.

• MySQL

The MobiLink server uses a Well Known Binary (WKB) representation of spatial data along with its Spatial
Reference Identifier (SRID) to upload data from remote databases to a consolidated database. It also uses
WKB and SRID for downloading spatial data from the consolidated database to the remote databases.
Therefore, the upload and download table scripts must be able to handle spatial data in the WKB format.

Dimensional Restrictions

The MobiLink server is able to synchronize two-dimensional, three-dimensional and four-dimensional spatial
data between the consolidated and remote databases if the consolidated database is running on a SQL
Anywhere server. However, the MobiLink server is only able to synchronize two-dimensional data between the
consolidated and remote databases if the consolidated database is one of the other supported RDBMS types.

158 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

If an upload stream contains three-dimensional and/or four-dimensional spatial data and the consolidated
database is running on a non-SQL Anywhere database server, the MobiLink server generates a warning
message and then drops the third and/or fourth dimension value before sending the spatial data to the
consolidated database.

SRID Requirements

The MobiLink server does not automatically find a mapping between the SRIDs used in the consolidated and
remote databases. You must make sure that either the SRIDs used in the remote databases match those
defined in the consolidated databases, or user defined upload and download table scripts must be able to
convert the SRIDs back and forth between the SRIDs defined in the consolidated and remote databases.

Named Parameters

Upload table scripts can be written using named parameters or question marks (?). The use of question marks
for SQL scripts is deprecated. Use named parameters instead. If question marks are used, each spatial column
must contain two questions marks. The first one is for the WKB value and the second is for the SRID value.

If named parameters are used, the named parameters must have the following convention:

{ml r.column_name:data}

{ml r.column_name:srid}

The first named parameter represents the WKB value and the second named parameter is for the SRID.

Oracle Considerations

When downloading spatial data from Oracle, keep the following in mind:

• Oracle server does not generate Well-Known-Binary (WKB) values if a geometry value is entered into an
Oracle database using the Oracle native format. The following example shows a work-around.
For data entered in the native Oracle spatial format, like this:

CREATE TABLE cola_markets (mkt_id NUMBER PRIMARY KEY,
 name VARCHAR2(32),
 shape SDO_GEOMETRY);
INSERT INTO cola_markets VALUES(
 1,
 'cola_a',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right) with

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 159

 -- Cartesian-coordinate data
));

The download cursor must be written as follows or the default download cursor returns 1 instead of the
actual binary value:

COLA_MARKETS (SCOTT): download_cursor SELECT t.MKT_ID,
 t.NAME,

SDO_UTIL.TO_WKBGEOMETRY(SDO_UTIL.FROM_WKTGEOMETRY(SDO_UTIL.TO_WKTGEOMETRY(t.SH
APE))),
 t.SHAPE.sdo_srid
FROM SCOTT.COLA_MARKETS t

• The default download script works correctly if the data has been entered in WKT format, as follows:

INSERT INTO cola_markets VALUES(1,
 'cola_a',
 SDO_GEOMETRY('polygon ((1 1, 5 1, 5 7, 1 7, 1 1))',4326));
INSERT INTO SCOTT.cola_markets VALUES(
 2,
 'cola_b',
 SDO_GEOMETRY('polygon ((5 1, 8 1, 8 6, 5 7, 5 1))',4326));
INSERT INTO SCOTT.cola_markets VALUES(
 3,
 'cola_c', SDO_GEOMETRY('polygon ((3 3, 6 3, 6 5, 4 5, 3 3))',4326));

• Oracle does not have a SRID of 0, so all flat Cartesian plane data should be entered using a SRID of 4326.

In this section:

Upload and Download Scripts [page 161]
When a table contains spatial columns, the upload and download scripts may vary greatly depending
on the type of consolidated database being used. The following examples show some sample upload
and download scripts for spatial data for the consolidated databases currently supported by the
MobiLink server.

Related Information

Spatial Data
Named Script Parameters [page 294]
User-defined Named Parameters [page 310]

160 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/38dd8ef2e6264ea5a637d3ff464ffe5b/17.0.01/en-US/3c2041856c5f101484e4e281f9326114.html

1.5.4.1 Upload and Download Scripts

When a table contains spatial columns, the upload and download scripts may vary greatly depending on the
type of consolidated database being used. The following examples show some sample upload and download
scripts for spatial data for the consolidated databases currently supported by the MobiLink server.

For the examples below, the synchronization table is assumed to be as follows:

create table test (c1 int not null primary key, c2 st_geometry)

SQL Anywhere Sample Scripts

The following is a sample upload_insert script for SQL Anywhere:

INSERT INTO test VALUES({ml r.c1}, ST_Geometry::ST_GeomFromBinary({ml
r.c2:data},{ml r.c2:srid}))

The following is a sample download_cursor script for SQL Anywhere:

SELECT c1, c2.ST_AsBinary(), c2.ST_SRID() FROM test

Microsoft SQL Server Sample Scripts

The following is a sample upload_insert script for Microsoft SQL Server:

BEGIN DECLARE @c1 INTEGER
 DECLARE @v1 VARBINARY(max)
 DECLARE @s1 INTEGER
 DECLARE @g1 geometry
 SELECT @c1 = {ml r.c1}
 SELECT @v1 = {ml r.c2:data}
 SELECT @s1 = {ml r.c2:srid}
 IF @v1 IS NULL
 SELECT @g1 = NULL
 ELSE
 SELECT @g1 = Geometry::STGeomFromWKB(@v1,@s1)
 INSERT INTO test VALUES(@c1, @g1) END

The following is a sample download_cursor script for Microsoft SQL Server:

SELECT c1, c2.STAsBinary(), c2.STSrid FROM test

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 161

Oracle Sample Scripts

The following is a sample upload_insert script for Oracle:

DECLARE v_c1 INTEGER;
 v_v1 sdo_geometry;
 v_s1 INTEGER;
 v_u1 blob;
BEGIN
 v_c1 := {ml r.c1};
 v_u1 := {ml r.c2:data};
 v_s1 := {ml r.c2:srid};
 IF v_u1 IS NULL THEN
 v_v1 := NULL;
 ELSE
 v_v1 := sdo_geometry(v_u1, v_s1);
 END IF;
 INSERT INTO test VALUES(v_c1, v_v1); END;

The following is a sample download_cursor script for Oracle:

SELECT c1, g.c2.Get_WKB(), g.c2.sdo_srid FROM test g

IBM DB2 Sample Scripts (Deprecated)

 Note
Support for IBM DB2 consolidated databases is deprecated.

The following is a sample upload_insert script for IBM DB2:

BEGIN ATOMIC DECLARE v_c1 INTEGER;
 DECLARE v_v1 BLOB(10m);
 DECLARE v_s1 INTEGER;
 SET v_c1 = {ml r.c1}; SET v_v1 = {ml r.c2:data}; SET v_s1 = {ml r.c2:srid};
 INSERT INTO test VALUES(v_c1, ST_Geometry(v_v1, v_s1)); END

The following is a sample download_cursor script for IBM DB2:

SELECT c1, ST_AsBinary(c2), ST_SRID(c2) FROM test

MySQL Sample Scripts

The following is a sample upload_insert script for MySQL:

INSERT INTO test VALUES({ml r.c1}, GeometryFromWKB({ml r.c2:data},{ml
r.c2:srid}))

162 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following is a sample download_cursor script for MySQL:

SELECT c1, AsBinary(c2), SRID(c2) FROM test

Related Information

SQL Anywhere Consolidated Database [page 181]
Microsoft SQL Server and Microsoft Azure Consolidated Databases [page 168]
MySQL Consolidated Database [page 170]
Oracle Consolidated Database [page 173]
SAP IQ Consolidated Database [page 182]

1.5.5 Adaptive Server Enterprise Consolidated Database

MobiLink supports Adaptive Server Enterprise consolidated databases.

Prerequisites

Before running the setup script, you should be aware of the following requirements:

• The database user who runs the setup script is expected to be the same one used to update the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to
configure MobiLink applications.

• The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to
use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT * from
ml_user).

• The MobiLink server login ID must have a SELECT privilege on MASTER..SYSTRANSACTIONS.
• The MobiLink server login ID must have the dtm_tm_role role, if the -cs option for mlsrv17 is used.
• You must use the sp_dboption option to set the SELECT INTO option to true. For example, run the following

script in Interactive SQL to set the SELECT INTO privilege to true on your-database-name:

sp_dboption your-database-name, "SELECT INTO", true go

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 163

Setting up Adaptive Server Enterprise as a Consolidated Database

To set up Adaptive Server Enterprise to work as a MobiLink consolidated database, you must run a setup
procedure that adds MobiLink system tables, stored procedures, triggers, and views that are required for
MobiLink synchronization. There are multiple ways you can do this:

• Run the syncase.sql setup script, located in %SQLANY17%\MobiLink\Setup.
• Check and update the MobiLink system setup from SQL Central.

ODBC Driver

You must set up an ODBC DSN for your Adaptive Server Enterprise consolidated database using the ODBC
driver that is provided with your Adaptive Server Enterprise database.

Adaptive Server Enterprise considerations

Enable functionality group configuration parameter

When the enable functionality group configuration parameter is enabled on the SAP Adaptive Server
Enterprise 15.7 server, the MobiLink server uses the "select ... for update" feature to lock remote IDs to
prevent redundant synchronizations for the same remote ID simultaneously. If you turn off the enable
functionality group parameter, you must restart any MobiLink servers currently connected to the SAP
Adaptive Server Enterprise server to avoid failure of synchronization requests.

Except for the begin_connection_autocommit event, events are run in chained transaction mode so that
the MobiLink server can control transactions. Any called stored procedures must be defined as chained or
anymode by sp_procxmode.
Data type mapping

The data types of columns must map correctly between your consolidated and remote database.
CHAR columns

In Adaptive Server Enterprise, CHAR data types are fixed length and blank-padded to the full length of the
string. In MobiLink remote databases (SQL Anywhere or UltraLite), CHAR is the same as VARCHAR: values
are not blank-padded to a fixed width. It is strongly recommended that you use VARCHAR in the
consolidated database rather than CHAR. If you must use CHAR, the mlsrv17 -b command line option can
be used to remove trailing blanks from strings during synchronization. This option is important for string
comparisons used to detect conflicts.
BLOB sizes

To download BLOB data with a data size greater than 32 KB (the default), do the following:

• On Windows, set Text Size on the Advanced page of the Adaptive Server Enterprise ODBC Driver
Configuration window to be greater than the largest expected BLOB.

• On Linux, set the TextSize entry in the .obdc.ini file to be greater than the largest expected BLOB.
Restrictions on VARBIT

164 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

MobiLink does not support synchronizing 0 length (empty) VARBIT or LONG VARBIT values to an Adaptive
Server Enterprise consolidated database. Adaptive Server Enterprise does not support a VARBIT type so
these types would normally be synchronized to a VARCHAR or TEXT column in the Adaptive Server
Enterprise database. On Adaptive Server Enterprise, empty string values are converted into a single space.
A space is not allowed in a VARBIT column on SQL Anywhere, so an attempt to download these values
causes an error on the remote database.

Page size

The page size of the Adaptive Server Enterprise database on which you are creating the MobiLink system
tables must by 4K or greater. The MobiLink system tables cannot be created on an Adaptive Server
Enterprise database with a 2K page size.

Related Information

Required Privileges for MobiLink Server [page 23]
MobiLink Server System Tables [page 156]
MobiLink System Setup
MobiLink Isolation Levels [page 149]
Adaptive Server Enterprise Data Mapping [page 663]
-b mlsrv17 Option [page 51]

1.5.6 IBM DB2 LUW Consolidated Database

MobiLink supports IBM DB2 LUW for Linux and Windows.

Prerequisites

Before running the setup script, you should be aware of the following requirements:

• The database user who runs the setup script is expected to be the same one used to update the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to
configure MobiLink applications.

• The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to
use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT * from
ml_user).

Setting up IBM DB2 LUW as a Consolidated Database

To set up IBM DB2 to work as a MobiLink consolidated database, you must run a setup procedure that adds
MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink synchronization.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 165

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html

1. To install MobiLink system tables using the setup script, the targeted IBM DB2 LUW tablespace must use a
minimum of 8 KB pages. If a tablespace does not use 8 KB pages, complete the following steps:
• Verify that at least one of your buffer pools has 8 KB pages. If not, create a buffer pool with 8 KB pages.
• Create a new tablespace and temporary tablespace that use the buffer pool with 8 KB pages.

For more information, consult your IBM DB2 LUW documentation.
• You can also check and update the MobiLink system setup from SQL Central.

2. Customize syncdb2.sql with your connection information:
1. Copy syncdb2.sql to a new location where it can be modified and stored.
2. The syncdb2.sql script contains a default connection statement, connect to DB2Database

connect to DB2Database user userid using password ~

where DB2Database, userid, and password are names you provide. (The syncdb2.sql script uses
the tilde character (~) as a command delimiter.). Alter this line to connect to your IBM DB2 database.
Use the following syntax:

3. Run syncdb2.sql:

db2 -c -ec -td~ +s -v -f syncdb2.sql

ODBC Driver

You must set up an ODBC DSN for your IBM DB2 consolidated database using the ODBC driver that is provided
with your IBM DB2 database.

IBM DB2 LUW Considerations

Lock escalation

To maintain data consistency between the consolidated and remote databases, the MobiLink server issues
the following query through the ml_lock_rid stored procedure to lock the remote ID in every
synchronization phase.

SELECT sync_key into p_sync_key FROM ml_database WHERE rid =
a_given_remote_id WITH RR USE AND KEEP EXCLUSIVE LOCKS;

This query exclusively locks the remote ID to prevent any concurrent synchronizations using the same
remote ID.

. Alter this line to conneIf you experience any MobiLink remote ID locking errors when there are no
concurrent synchronizations for the same remote ID, for example, if MobiLink error code -10341 is in the
MobiLink server log, you may need to adjust the DB2 maxlocks and locklist configuration parameters to
prevent lock escalation. Consult the DB2 documentation for full details.
Data type mapping

The data types of columns must map correctly between your consolidated and remote database.
CHAR columns

166 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

In IBM DB2 LUW, CHAR data types are fixed length and blank-padded to the full length of the string. In
MobiLink remote databases (SQL Anywhere or UltraLite) CHAR is the same as VARCHAR: values are not
blank-padded to a fixed width. It is strongly recommended that you use VARCHAR in the consolidated
database rather than CHAR. If you must use CHAR, the mlsrv17 -b command line option can be used to
remove trailing blanks from strings during synchronization. This option is important for string comparisons
used to detect conflicts.
Tablespace capacity

A tablespace and temporary tablespace of any IBM DB2 LUW database that you want to use as a
consolidated database must use at least 8 KB pages.

In addition, there are columns that require a LONG tablespace. If there is no default LONG tablespace, the
creation statements for the tables containing these columns must be qualified appropriately, as in the
following example:

CREATE TABLE ... (...) IN tablespace LONG IN long-tablespace

For an example using the sample application, refer to the CustDB sample for MobiLink.
Double up the quotation marks in system procedure calls

When you use a MobiLink system procedure to add scripts to your IBM DB2 consolidated database, you
need to double up the quotation marks. For example, if the script you are adding with ml_add_table_script
includes the line SET "DELETED"=''Y'' for any other consolidated database, for IBM DB2 you would
have to write this as SET "DELETED" = ''''Y''''.
Restrictions for tables created with a column store

Any tables involved in synchronization with MobiLink must be created with a row store if the
synchronization logic requires timestamp-based downloads. This is because when tables are created with
a column store, queries cannot be requested to be blocked by any uncommitted transactions for tables.
This restriction would prevent the MobiLink server from providing a timestamp-based synchronization for
any tables with a column store, in order to maintain data consistency.

For synchronization logic with snapshot-based downloads, synchronization tables can be created either
with a column store or a row store, but the MobiLink server must be started with command line option -
hwp- (which sets the MobiLink server to skip requesting the blocking behavior for generating a download
for any client). Otherwise, the DB2 10.5 database server issues an error when the MobiLink server tries to
generate a download for the client.

Related Information

Required Privileges for MobiLink Server [page 23]
MobiLink Server System Tables [page 156]
MobiLink System Setup
CustDB Sample for MobiLink
MobiLink Isolation Levels [page 149]
IBM DB2 LUW Data Mapping (Deprecated) [page 671]
-b mlsrv17 Option [page 51]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 167

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b90f576ce21014975d83610206f34a.html

1.5.7 Microsoft SQL Server and Microsoft Azure Consolidated
Databases

MobiLink supports Microsoft SQL Server and Microsoft Azure consolidated databases.

Prerequisites

Before running the setup script, you should be aware of the following requirements:

• The database user that runs the setup script must be able to create tables, triggers, and stored
procedures, so must have the db_owner role.

• The database user who runs the setup script is expected to be the same one used to update the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to
configure MobiLink applications.

• The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to
use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT * from
ml_user).

• The MobiLink server login ID must have VIEW SERVER STATE permission. This permission can be granted
using the following SQL statement within the master database of a Microsoft SQL server:

grant view server state to user_name

• The MobiLink server login ID must have SELECT privilege on sys.databases SYS.DM_TRAN_LOCKS,
SYS.PARTITIONS, and SYS.SYSPROCESSES.

Setting up Microsoft SQL Server or Microsoft Azure as a Consolidated
Database

To set up Microsoft SQL Server or Microsoft Azure to work as a MobiLink consolidated database, you must run
a setup procedure that adds MobiLink system tables, stored procedures, triggers, and views that are required
for MobiLink synchronization. There are two ways you can do this:

• Run the syncmss.sql setup script, located in %SQLANY17%\MobiLink\Setup.
• (Microsoft SQL Server only) Check and update the MobiLink system setup from SQL Central.

ODBC Driver

You must set up an ODBC DSN for your Microsoft SQL Server consolidated database using the ODBC driver
that is provided with your Microsoft SQL Server database.

168 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Microsoft SQL Server Considerations

Data type mapping

The data types of columns must map correctly between your consolidated and remote database.
BLOB columns

Due to restrictions of the Microsoft SQL Server ODBC driver, place all BLOB columns at the end of the list
of columns when you define a synchronization table, especially when the download_cursor script for the
table must be written as a stored procedure call or a batch of SQL statements. This restriction can be
ignored if the download_cursor script for a synchronization table that contains BLOB columns is written as
a single SELECT statement.
CHAR columns

In Microsoft SQL Server, CHAR data types are fixed length and blank-padded to the full length of the string.
In MobiLink remote databases (SQL Anywhere or UltraLite) CHAR is the same as VARCHAR: values are not
blank-padded to a fixed width. Use VARCHAR in the consolidated database rather than CHAR. If you must
use CHAR, the mlsrv17 -b command line option can be used to remove trailing blanks from strings during
synchronization. This option is important for string comparisons used to detect conflicts.
SET NOCOUNT ON

For Microsoft SQL Server, you should specify SET NOCOUNT ON as the first statement in all stored
procedures or SQL batches executed via ODBC.
Procedure calls

Microsoft SQL Server requires that procedure calls with parameters be written using the ODBC syntax:

{ CALL procedure_name({ml param1}, {ml param2}, ...) }

Sample database uses computer columns

The Microsoft SQL Server AdventureWorks sample database contains computed columns. You cannot
upload to a computed column. You can set the column to be download-only, or you can exclude the column
from synchronization.
Implementing conflict detection in an upload_update script

For Microsoft SQL Server, you must perform conflict detection and resolution in the upload_update script.
Transaction durability

When using the transaction durability feature in Microsoft SQL Server 2014, the DELAYED_DURABILITY
database option should never be set to FORCED because the MobiLink server requires its transactions to
be fully durable.

Considerations when using Microsoft Azure as a Consolidated Database

The following differences exist between Microsoft Azure consolidated databases and Microsoft SQL Server
consolidated databases:

• To set up Microsoft Azure to work as a MobiLink consolidated database, run the setup procedure that adds
MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink
synchronization. Run the syncmss.sql setup script, located in %SQLANY17%\MobiLink\Setup.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 169

• The recommended ODBC driver for Microsoft Azure is ODBC Driver 13 for SQL Server. You can download
this ODBC driver can be downloaded from the Microsoft download site. The other SQL Server ODBC
drivers are not tested and are not recommended.

• In most cases, MobiLink supports the same functionality for Microsoft Azure as it does for Microsoft SQL
Server. The following exceptions apply:

MobiLink plug-in

The MobiLink plug-in for SQL Central does not support Microsoft Azure consolidated databases.
Blocking behavior

By default, uncommitted operations (inserts, updates, and deletes) do not prevent other connections
from accessing the same tables in Microsoft Azure. This behavior may differ from Microsoft SQL
Server. Because of this behavior, do not use the -dsd option (disable snapshot isolation for download)
when you use timestamp-based download logic for your synchronization. Doing so can cause data
inconsistencies.
Column default values

Default values support only literals and constants in Microsoft Azure. Non-deterministic expressions or
functions, such as GETDATE or CURRENT_TIMESTAMP, are not supported.

Related Information

Required Privileges for MobiLink Server [page 23]
MobiLink Server System Tables [page 156]
MobiLink System Setup
Conflict Resolution with upload_update Scripts [page 139]
MobiLink Isolation Levels [page 149]
Recommended ODBC Drivers For MobiLink
Microsoft SQL Server Data Mapping [page 679]
-b mlsrv17 Option [page 51]

1.5.8 MySQL Consolidated Database

The MobiLink server supports MySQL Community and Enterprise servers 5.1.3 or later.

Prerequisites

Before running the setup script, you should be aware of the following requirements:

• The database user who runs the setup script is expected to be the same one used to update the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to
configure MobiLink applications.

170 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-63337

• The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to
use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT * from
ml_user).

• Your MySQL user ID must have privileges to create tables, procedures, functions, views, and triggers.

Storage Engine

The MobiLink server requires the default storage engine to be ACID compliant. If the default storage engine is
not ACID compliant, make sure that all MobiLink server tables are created using an ACID compliant storage
engine, such as InnoDB and Falcon. Failure to do so may cause data inconsistencies.

If necessary, before applying the file against your MySQL database, edit the syncmys.sql script file to add the
following two lines after the line delimiter //, where engine_name is an ACID compliant storage engine.

set storage_engine = [engine_name] //

Setting up MySQL as a Consolidated Database

To set up MySQL to work as a MobiLink consolidated database, you must run a setup procedure that adds
MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink synchronization.
There are two ways you can do this:

• Using the MySQL command line tool or the MySQL Query Browser, run the syncmys.sql setup script,
located in %SQLANY17%\MobiLink\Setup.

• Check and update the MobiLink system setup from SQL Central.

ODBC Driver

You must set up an ODBC DSN for your MySQL consolidated database using the ODBC driver that is provided
on the MySQL web site. The MobiLink server supports MySQL ODBC driver 5.1.6 or later.

To specify your ODBC configuration file in UNIX or Linux, do one of the following,

• Place the ODBC.INI file into the home directory of the current user.
• Create an ODBCINI environment variable and set it to the directory location of the ODBC.INI file.

MySQL Considerations

Data type mappings

The types of columns must map correctly between your consolidated and remote databases.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 171

Stored procedures prior to version 5.6.20

Versions of MySQL prior to 5.6.20 do not support the use of INOUT or OUT parameters in stored procedure
calls. Procedures that require these parameters must be implemented as functions that return an OUT
value.

Server events that require INOUT parameters, such as authenticate_user and modify_user, must be
implemented as functions and run using a SELECT statement instead of a CALL statement.
Stored procedures in version 5.6.20 or later

INOUT parameters are supported in stored procedure calls. Output parameters for synchronization scripts
that are written in stored procedure calls can be retrieved through INOUT parameters or returned by a
result set.
Named parameters

User-defined named parameters are not supported with MySQL prior to version 5.6.20.
Cursor Scripts

The events upload_fetch, download_cursor, and download_delete_cursor must be called using a SELECT
statement, which the MobiLink server runs using a read-committed isolation level. A bug in the MySQL
ODBC driver causes the server to read uncommitted operations, such as INSERT, UPDATE, and DELETE
statements, which results in inconsistent data between the consolidated database and the remote
database.

To work around this problem, affix a LOCK IN SHARE MODE clause to your SELECT statements. For
example:

SELECT column1 FROM table1 WHERE id > 0 LOCK IN SHARE MODE

This clause protects the SELECT statement from uncommitted operations.
Bulk upload

The MySQL ODBC driver does not currently support bulk upload correctly.
MLSD

The MySQL ODBC driver does not currently support MSDTC, so a separate MLSD is not supported.
MySQL Server Configuration

The MobiLink synchronization scripts are stored in the ml_script table as TEXT and are retrieved when
needed. You may need to set max_allowed_packet equal to 16m or greater in the my.ini file.
Conflict detection

The scripts generated for conflict resolution with a MySQL consolidated database have multiple
statements. If you are using conflict detection, you must enable the Allow Multiple Statements checkbox on
the Flags 3 page of the MySQL Connector/ODBC Data Source Configuration window when you configure a
DSN for the MobiLink server to make connections to your MySQL database.
Multiple statements

If any of your synchronization scripts contain batched SQL commands separated by semicolons, you may
need to select the Allow Multiple Statements checkbox on the Flags 3 page of the MySQL Connector/ODBC
Data Source Configuration window when you configure a DSN for the MobiLink server to make connections
to your MySQL database.
Fractional part of a second

172 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

MySQL 5.6.20 and later supports a fractional part of a second. The number of digits in the fractional part
can be a value between 0 and 6. The MySQL server rounds the fractional second into its nearest integer
that can be stored into the column properly. For instance, if a timestamp column was defined as
timestamp(3), the server rounds 4.1234 seconds to 4.123 seconds and 4.1235 seconds to 4.124 before
storing the value into the table.

In order to keep data consistency for a timestamp based download, the MobiLink server automatically
subtracts one second from the next_last_download_timestamp generated in the prepare_for_download
transaction before sending it to the client, if there is no user-defined
generate_next_last_download_timestamp connection script.

Related Information

Required Privileges for MobiLink Server [page 23]
MobiLink Server System Tables [page 156]
MobiLink System Setup
MobiLink Isolation Levels [page 149]
Recommended ODBC Drivers For MobiLink
MySQL Data Mapping [page 686]

1.5.9 Oracle Consolidated Database

MobiLink supports Oracle consolidated databases.

Prerequisites

Before running the setup script, you should be aware of the following requirements:

• The database user who runs the setup script is expected to be the same one used to update the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to
configure MobiLink applications.

• The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to
use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT * from
ml_user).
The RDBMS user must also have SELECT privilege on GV$TRANSACTION, GV$SESSION, V$SESSION, GV
$LOCK, DBA_OBJECTS, and EXECUTE privileges on DBMS_UTILITY. You cannot grant permission directly
for the GV$TRANSACTION, GV$SESSION, V$SESSION and GV$LOCK synonyms; you must instead grant
permission on the underlying GV_$TRANSACTION, GV_$SESSION, V_$SESSION, and GV_$LOCK
dynamic performance views. You must connect as SYS to grant this access. The Oracle syntax for granting
this access is:

grant select on SYS.GV_$TRANSACTION to user-name;

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 173

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-63337

grant select on SYS.GV_$SESSION to user-name;

grant select on SYS.V_$SESSION to user-name;

grant select on SYS.GV_$LOCK to user-name;

grant select on SYS.DBA_OBJECTS to user-name;

grant execute on SYS.DBMS_UTILITY to user-name;

Setting up Oracle as a Consolidated Database

To set up Oracle to work as a MobiLink consolidated database, you must run a setup procedure that adds
MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink synchronization.
There are multiple ways you can do this:

• Run the syncora.sql setup script, located in %SQLANY17%\MobiLink\Setup.
• Check and update the MobiLink system setup from SQL Central.

ODBC Driver

You must set up an ODBC DSN for your Oracle consolidated database.

Oracle Considerations

MobiLink synchronization and timestamp-based downloads with an Oracle Real Application Cluster

Rows in the consolidated database running on an Oracle RAC may be missed if the clocks of the Oracle
cluster nodes differ by more than the time elapsed between the MobiLink server fetching the next last
download timestamp and fetching the rows to be downloaded. This problem is unlikely on a RAC system
with synchronized node clocks, but the likelihood increases with larger node clock differences. A
workaround is to create either a modify_next_last_download_timestamp or
modify_last_download_timestamp script to subtract the maximum node clock difference.

At least since version 10i, Oracle has recommended using Network Time Protocol (NTP) to synchronize the
clocks on all nodes in a cluster. NTP typically runs by default on UNIX and Linux. With cluster nodes
properly configured to use NTP, their clocks should all be within 200 microseconds to 10 milliseconds
(depending on the proximity of the NTP server). Since Microsoft Windows Server 2003, the Microsoft
Windows Time Service implements the NTP version 3 protocol which runs by default. Also, as of version
11gR2, Oracle Clusterware includes the Oracle Cluster Time Synchronization Service (CTSS) to either
monitor clock synchronization or, if neither NTP or Microsoft Windows Time Service is running, to actively
maintain clock synchronization. However, CTSS and Microsoft Windows Time Service are less accurate
than NTP.

174 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

To avoid missing rows when Oracle RAC node clocks differ by up to one second more than the time
between fetching the next_last_download_timestamp and the rows to be downloaded, the MobiLink server
subtracts one second from the next_last_download_timestamp fetched from the consolidated database if
the following are true:

• the Oracle account used by the MobiLink server has execute privilege for SYS.DBMS_UTILITY
• the consolidated database is an Oracle RAC system
• for MobiLink versions 12.0.0 and up, there is no generate_next_last_download_timestamp script

For Oracle RAC node clocks that may differ by greater amounts, you can avoid the problem by defining a
generate_next_last_download_timestamp, modify_next_last_download_timestamp or
modify_last_download_timestamp script to compensate for the maximum node clock difference.
Data type mapping

The data types of columns must map correctly between your consolidated and remote database.
XMLTYPE data type

Use of the Oracle XMLTYPE data type with SQL Anywhere or UltraLite requires special care.
CHAR columns

In Oracle, CHAR data types are fixed length and blank-padded to the full length of the string. In MobiLink
remote databases (SQL Anywhere or UltraLite), CHAR is the same as VARCHAR: values are not blank-
padded to a fixed width. It is strongly recommended that you use VARCHAR in the consolidated database
rather than CHAR. If you must use CHAR, the mlsrv17 -b command line option can be used to remove
trailing blanks from strings during synchronization. This option is important for string comparisons used to
detect conflicts.
Timestamps

The MobiLink server uses gv$transaction to generate a timestamp for the remote database to be used in
the next synchronization, so the MobiLink server login ID must have a SELECT privilege on gv$transaction.
Oracle does not allow you to grant access to gv$transaction directly; you must instead grant SELECT
privilege on the underlying gv_$transaction view.
Stored procedures

If you are using stored procedures to return result sets or accept VARRAY parameters, you must select the
Procedure returns results or uses VARRAY parameters option for the SQL Anywhere 17 - Oracle ODBC
driver. Also, SQL Central requires procedures to return results to use central administration of remote
databases, so this option needs to be selected when using central administration.
Session-wide variables

You can store session-wide information in variables within Oracle packages. Oracle packages allow
variables to be created, modified and destroyed; these variables may last as long as the Oracle package is
current.
Autoincrement methods

To maintain primary key uniqueness, you can use an Oracle sequence to generate a list of keys similar to
that of a SQL Anywhere autoincrement field. The CustDB sample database provides coding examples,
which can be found in Samples\MobiLink\CustDB\custora.sql. Unlike autoincrement, however, you
must explicitly reference the sequence. SQL Anywhere autoincrement inserts a column value automatically
if the column is not referenced in an INSERT statement.
Oracle does not support empty strings

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 175

In Oracle, an empty string is treated as null. In SQL Anywhere and UltraLite, empty strings have a different
meaning from null. Therefore, you should avoid using empty strings in your client databases when you have
an Oracle consolidated database.

In this section:

Oracle XMLTYPE Data Type [page 176]
The Oracle XMLTYPE data type can be mapped to the SQL Anywhere XML data type or the UltraLite
LONG VARCHAR or VARCHAR(n) data types.

Oracle VARRAY [page 178]
The SQL Anywhere 17 - Oracle ODBC driver supports the use of Oracle VARRAY in stored procedures.

Related Information

Required Privileges for MobiLink Server [page 23]
SQL Anywhere 17 - Oracle ODBC Driver [page 710]
MobiLink System Setup
MobiLink Isolation Levels [page 149]
Recommended ODBC Drivers For MobiLink
Oracle Data Mapping [page 691]
-b mlsrv17 Option [page 51]

1.5.9.1 Oracle XMLTYPE Data Type

The Oracle XMLTYPE data type can be mapped to the SQL Anywhere XML data type or the UltraLite LONG
VARCHAR or VARCHAR(n) data types.

It is important to be aware that the Oracle database server validates the data before storing it into an XMLTYPE
column but SQL Anywhere and UltraLite do not, so you must ensure that XML documents to be uploaded
contain valid XML.

Small XML documents with a length of less than or equal to 32 KB can be uploaded into and downloaded from
an Oracle database with Oracle PL/SQL statements. When the length of XML documents is greater than 32 KB,
the upload XML documents may need to be uploaded into a global temporary table using the upload_insert
and upload_update scripts. The upload data can then be converted and stored into the actual synchronization
table using the end_upload_rows or end_upload script.

The following examples provide sample upload and download scripts to upload and download XMLTYPE
objects between an Oracle consolidated database and SQL Anywhere remote databases. In these examples,
the upload table is defined in the Oracle consolidated database as:

create table test (pk int not null primary key, c1 XMLTYPE)

The upload table is defined in the SQL Anywhere remote database as:

create table test (pk int not null primary key, c1 XML)

176 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-63337

When all XML documents are less than or equal to 32KB long, the upload and download scripts can be
written as follows

upload_insert

declare v_pk integer; v_c1 clob; x_c1 xmltype; begin
 v_pk := {ml r.pk};
 v_c1 := {ml r.c1};
 x_c1 := XMLTYPE.createXML(v_c1);
 insert into test values(v_pk, x_c1); end;

download_cursor

select pk, XMLSERIALIZE(content c1) from test

This upload_insert script works well when the XML data length is less than or equal to 32 KB. However, if
the XML data length is greater than 32 KB, the Oracle server may issue an error.
If there are any XML documents greater than 32 KB long, the upload XML data needs to be uploaded
in a global temporary table

The upload_insert script uploads the XML documents into a global temporary table in the Oracle
consolidated database. The global temporary table is defined as:

create global temporary table tmp_test (pk int, c1 CLOB)

Then the upload_insert script can written as follows:

insert into tmp_test values({ml r.pk}, {ml r.c1})

 Note
The c1 column in the temporary table must have the CLOB data type.

The end_upload_rows script retrieves the XML documents from the global temporary table, converts them
to XML documents, and then stores the XML data into the test table. Following is the end_upload_rows
script:

insert into test (pk, c1) (select pk, XMLTYPE.createXML(c1) from tmp_test

Related Information

Required Privileges for MobiLink Server [page 23]
Oracle Data Mapping [page 691]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 177

1.5.9.2 Oracle VARRAY

The SQL Anywhere 17 - Oracle ODBC driver supports the use of Oracle VARRAY in stored procedures.

Using VARRAY in upload scripts (upload_insert, upload_update, and upload_delete) that are written in stored
procedures may improve performance of the MobiLink server, compared with upload scripts written in stored
procedures that do not use VARRAY.

Simple SQL statements such as INSERT, UPDATE and DELETE without stored procedures usually offer the best
performance. However using stored procedures, including the VARRAY technique, provides an opportunity to
apply business logic that the simple statements do not.

VARRAY Restrictions

The following restrictions apply when using VARRAY in stored procedures:

• The ODBC data source must have the Enable Microsoft distributed transactions checkbox cleared.
• BLOB and CLOB VARRAYs are not supported.
• If VARRAY is a data type of CHAR, VARCHAR, NCHAR or NVARCHAR, the user-defined VARRAY type must

be twice as big as the length specified for the table column.
• The number of rows in the VARRAY that are sent by the MobiLink server to the Oracle consolidated

database is set by the -s option, not the size of the VARRAY declared in the VARRAY type. The -s option
must not be bigger than the smallest VARRAY type size in use by synchronization scripts. If it is bigger, the
MobiLink server issues an error.

Example

1. Create a table called my_table that contains 3 columns.

create table my_table (pk integer primary key, c1 number(20), c2
varchar2(4000))

2. Create user-defined collection types using VARRAYs.

create type my_integer is varray(100) of integer; create type my_number is varray(100) of number(20); create type my_varchar is varray(100) of varchar2(8000);

my_varchar is defined as a VARRAY that contains 100 elements and each element is a data type of
varchar2 and width of 8000. The width is required to be twice as big as that specified for my_table.

3. Create stored procedures for insert.

create or replace procedure my_insert_proc(pk_v my_integer, c1_v my_number,
c2_v my_varchar) is
c2_value my_varchar;
begin
 c2_value := c2_v; -- Work around an Oracle bug
 FORALL i in 1 .. pk_v.COUNT

178 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 insert into my_table (pk, c1, c2) values(pk_v(i), c1_v(i),
c2_value(i));
end;

Related Information

-s mlsrv17 Option [page 81]

1.5.10 SAP HANA Consolidated Database

MobiLink supports SAP HANA consolidated databases.

Prerequisites

Before running the setup script, you should be aware of the following requirements:

• The database user who runs the setup script is expected to be the same one used to access the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to
configure MobiLink applications.

• The database user that the MobiLink server uses to connect to the consolidated database must be able to
use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT * from
ml_user).

• The database user must also have the CATALOG READ privilege.

Setting up SAP HANA as a Consolidated Database

To set up SAP HANA to work as a MobiLink consolidated database, you must run a setup procedure that adds
MobiLink system tables, stored procedures, and views that are required for MobiLink synchronization. Use the
following method to set up SAP HANA.

• Run the synchana.sql setup script with SAP HANA Studio or SAP HANA cockpit. The script file is located
in %SQLANY17%\MobiLink\Setup.

ODBC Driver

The MobiLink server must use the SAP HANA ODBC driver from SAP that is called HDBODBC.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 179

SAP HANA Considerations

MobiLink System Database (MLSD)

The MobiLink server does not support MLSD for SAP HANA.
MobiLink server system objects

Use the ml_add_connection_script and ml_add_table_script system procedures to add, modify, or delete
connection and table scripts, and the ml_add_user and ml_add_database system procedures to add
MobiLink users and remote databases. Do not directly insert any rows into the MobiLink server system
tables.
Timestamp-based downloads

Because SAP HANA supports snapshot isolation, the MobiLink server uses the start time of the oldest
open transaction under the current user as the next last_download_timestamp so that the
download_cursor and download_delete_cursor scripts can use the last modified column information to
generate a timestamp-based download stream. Following is an example.

1. Create a synchronization table in SAP HANA.

create COLUMN table test (pk int primary key, c1 int, last_modified
timestamp generated always as CURRENT_UTCTIMESTAMP)

The clause generated always as CURRENT_UTCTIMESTAMP causes the SAP HANA server to update
the last_modified column with the current UTC timestamp, whenever this row is inserted or updated.

2. The download_cursor script can be written as follows.

select pk,c1 from test where last_modified > {ml s.last_table_download}

Similarly, the download_delete_cursor can be implemented by querying a deletion-tracking table
populated from a delete trigger on the base table.

Alternatively, the download_cursor and download_delete_cursor scripts can be written based on the
hidden columns $validto$ and $validfrom$ when the table is created with the HISTORY COLUMN clause
and the next last_download_timestamp can be generated by the generate_next_last_download_timestamp
script.

If the download_cursor and/or download_delete_cursor scripts access any tables owned by database
users other than the user used by the MobiLink server to log in to the SAP HANA database, then you need
to grant CATALOG READ privilege to the MobiLink server login user using the following statement:

GRANT CATALOG READ TO synchronization_server_login_user_name

This permission enables the MobiLink server login user to see all the open transactions in the database,
and not just open transactions for the current user, when trying to get the oldest open transaction of the
database.
Data type mapping

The data types of columns must map correctly between your consolidated and remote databases.

180 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

Required Privileges for MobiLink Server [page 23]
MobiLink Server System Tables [page 156]
MobiLink System Setup
MobiLink Isolation Levels [page 149]
Recommended ODBC Drivers For MobiLink
SAP HANA Data Mapping [page 701]

1.5.11 SQL Anywhere Consolidated Database

MobiLink supports SQL Anywhere consolidated databases.

Prerequisites

Before running the setup script, you should be aware of the following requirements:

• The database user who runs the setup script is expected to be the same one used to update the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to
configure MobiLink applications.

• The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to
use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT * from
ml_user).

Setting up SQL Anywhere as a Consolidated Database

To set up SQL Anywhere to work as a MobiLink consolidated database, you must run a setup procedure that
adds MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink
synchronization. There are multiple ways you can do this:

• Run the syncsa.sql setup script, located in %SQLANY17%\MobiLink\Setup.
• Check and update the MobiLink system setup from SQL Central.

Setting up the ODBC Driver

You must set up an ODBC DSN for your SQL Anywhere consolidated database. The ODBC driver for SQL
Anywhere is installed with SQL Anywhere.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 181

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-63337

Related Information

Required Privileges for MobiLink Server [page 23]
MobiLink Server System Tables [page 156]
MobiLink System Setup
ODBC Data Sources
MobiLink Isolation Levels [page 149]

1.5.12 SAP IQ Consolidated Database

MobiLink supports SAP IQ consolidated databases.

Prerequisites

Before running the setup script, you should be aware of the following requirements:

• The database user who runs the setup script is expected to be the same one used to update the MobiLink
system tables during synchronization. This user must be used to start the MobiLink server and to
configure MobiLink applications.

• The RDBMS user that the MobiLink server uses to connect to the consolidated database must be able to
use the MobiLink system tables, procedures, and so on, without any qualifiers (for example, SELECT * from
ml_user).

• The MobiLink server login ID must have EXECUTE privilege on the SP_IQTRANSACTION system procedure
for SAP IQ.

Setting up SAP IQ as a Consolidated Database

To set up SAP IQ to work as a MobiLink consolidated database, you must run a setup procedure that adds
MobiLink system tables, stored procedures, triggers, and views that are required for MobiLink synchronization.
There are multiple ways you can do this:

• Run the synciq.sql setup script, located in %SQLANY17%\MobiLink\Setup.
• Check and update the MobiLink system setup from SQL Central.

Setting up the ODBC Driver

You must set up an ODBC DSN for your SAP IQ consolidated database. The ODBC driver for SAP IQ is installed
with SAP IQ.

For information about the ODBC driver for SAP IQ, see the SAP IQ documentation.

182 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8130cf866ce21014b24a818f17898b1a.html

SAP IQ Considerations

With row-level versioning

• With the SAP IQ 16 row-level versioning (RLV) feature more than one user can modify the same table
concurrently, users can wait for transaction locks instead of having to retry, and a hybrid storage
model optimizes data write-access, without sacrificing read-access performance. In order to get better
upload performance, we recommend that all synchronization tables be RLV enabled.

Without row-level versioning or if you are using SAP IQ 15.4

• If uploads contain upload data that modifies any synchronization tables that were defined on the SAP
IQ store, and if the MobiLink server is running with more than one concurrent database worker thread,
all the uploads must be serialized because SAP IQ server allows only a single connection to modify a
given table on the SAP IQ store at any given time.
This requirement can be achieved, if the begin_upload connection script is written to include or to use
the following SQL statement:

LOCK TABLE table_name IN WRITE MODE WAIT time_string

where table_name is the name of a table that is defined on the SAP IQ store and the time_string gives
the maximum time period to lock the table. The table can be as simple as one defined as follows:

create table coordinate_upload (c1 int)

The table is not required to have any data.
• All transactions that modify SAP IQ tables must be serialized, whether they occur on MobiLink server

connections or on other connections to the SAP IQ database. For MobiLink server transactions, the
same logic outlined above can be used. This technique is more efficient than having the MobiLink
server automatically retry on each transaction and results in better performance.

• When creating a synchronization model for an SAP IQ consolidated database, the table mappings
default to download-only for SAP IQ tables. If you change any mappings to bi-directional or upload-
only, you must ensure that changes to those SAP IQ tables are serialized. For example, by adding a
begin_upload event as described above.

Related Information

Required Privileges for MobiLink Server [page 23]
MobiLink Server System Tables [page 156]
MobiLink System Setup
MobiLink Isolation Levels [page 149]

1.6 MobiLink Performance

The following is a list of suggestions to help you get the best performance out of MobiLink.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 183

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b705106ce21014b4a9d5f09edd8a6f.html

In this section:

Test to Improve Performance [page 186]
The following all contribute to the throughput of your synchronization system:

Avoid Contention [page 186]
Avoid contention and maximize concurrency in your synchronization scripts.

Use Multithreaded Network Processing [page 187]
The MobiLink server supports multiple network worker threads processing its network streams
concurrently.

Use an Optimal Number of Database Worker Threads [page 187]
You can either choose a fixed number of MobiLink database worker threads or let the MobiLink server
automatically adjust the number.

Automatic Adjustment of Database Worker Threads [page 187]
The MobiLink server can automatically adjust the number of database worker threads based on load,
with the goal of maximizing throughput.

Use Smaller Upload Transactions [page 188]
Smaller uploads reduce blocking and contention, and may significantly improve throughput.

Avoid Synchronizing Unnecessary BLOBs [page 188]
It is inefficient to include a BLOB in a row that is synchronized frequently while the BLOB remains
unchanged. To avoid this, you can create a table that contains BLOBs and a BLOB ID, and reference the
ID in the table that needs to be synchronized.

Set the Maximum Number of Database Connections [page 188]
Set the maximum number of MobiLink database connections to be your number of synchronization
script versions times the number of MobiLink database worker threads, plus one. This reduces the
need for MobiLink to close and create database connections. You set the maximum number of
connections with the mlsrv17 -cn option.

Have Enough Physical Memory [page 188]
Ensure that the computer running the MobiLink server has enough physical memory to accommodate
the cache in addition to its other memory requirements.

Use Enough Processing Power [page 189]
You should dedicate enough processing power to MobiLink so that the MobiLink server processing is
not a bottleneck.

Optimize Script Execution [page 189]
The performance of your scripts in the consolidated database is an important factor. It may help to
create indexes on your tables so that the upload and download cursor scripts can efficiently locate the
required rows. However, too many indexes may slow uploads.

Use Minimum Logging Verbosity [page 189]
Use the minimum logging verbosity that is compatible with your business needs. By default, verbose
logging is off, and MobiLink does not write its log to disk. You can control logging verbosity with the -v
option, and enable logging to a file with the -o or -ot options.

Plan for Operating System Limitations [page 189]
Operating systems restrict the number of concurrent connections a server can support over TCP/IP.

Java or .NET vs. SQL Synchronization Logic [page 190]

184 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

No significant throughput difference has been found between using Java or .NET synchronization logic
vs. SQL synchronization logic. However, Java and .NET synchronization logic have some extra overhead
per synchronization and require more memory.

Priority Synchronization [page 190]
If you have some tables that you need to synchronize more frequently than others, create a separate
publication and subscription for them.

Download Only the Rows You Need [page 191]
Take care to download only the rows that are required, for example by using timestamp synchronization
instead of snapshot. Downloading unnecessary rows is wasteful and adversely affects synchronization
performance.

Only Synchronize When You Need to [page 191]
Overly frequent synchronization can create an unnecessary burden on the MobiLink synchronization
system. Carefully decide how often you need to synchronize. Test thoroughly to ensure performance
expectations can be within the production environment.

For Large Uploads, Estimate the Number of Rows [page 191]
For SQL Anywhere clients, you can significantly improve the speed of uploading a large number of rows
by providing dbmlsync with an estimate of the number of rows that are uploaded. You do this with the
dbmlsync -urc option.

Use Background Synchronization [page 191]
From the remote user's point of view, the more synchronization happens in the background, the less
urgent it is for synchronizations to be as fast as possible. Consider designing your remote application to
use background synchronization so that remote users can continue to work even when synchronizing.

Key Factors Influencing MobiLink Performance [page 191]
The overall performance of any system, including throughput for MobiLink synchronization, is usually
limited by a bottleneck at one point in the system.

MobiLink Performance Monitoring [page 195]
There are a variety of tools available to help you monitor the performance of your synchronizations.

Related Information

Contention [page 193]
Transactions in the Synchronization Process
Number of Database Worker Threads [page 193]
MobiLink Database Connections [page 195]
MobiLink Profiler [page 247]
MobiLink Replay Utility (mlreplay) [page 651]
-wn mlsrv17 Option [page 98]
-wm mlsrv17 Option [page 97]
-w mlsrv17 Option [page 96]
-wu mlsrv17 Option [page 98]
-tu dbmlsync Option
Increment (inc) Extended Option
-tx mlsrv17 Option [page 89]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 185

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcce446ce21014bf5f832a22a38be9.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af74856ce2101483b2badcda21c223.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81aad4486ce21014bab1ccf9bf2a50e3.html

-cn mlsrv17 Option [page 55]
-sm mlsrv17 Option [page 85]
-nc mlsrv17 Option [page 66]
Communication error
-urc dbmlsync Option
-cinit mlsrv17 Option [page 54]

1.6.1 Test to Improve Performance

The following all contribute to the throughput of your synchronization system:

• the type of device running your remote databases
• the schema of remote databases
• the data volume and synchronization frequency of your remotes
• network characteristics (including for HTTP, proxies, web servers, and Relay Servers)
• the hardware where the MobiLink server runs
• your synchronization scripts
• the concurrent volume of synchronizations
• the type of consolidated database you use
• the hardware where your consolidated database runs
• the activity in the consolidated database, including all non-synchronization activity
• the schema of your consolidated database

Testing is extremely important. Before deploying, you should perform testing using the same hardware and
network that you plan to use for production. You should also try to test with the same number of remotes, the
same frequency of synchronization, and the same data volume. The MobiLink replay tool (mlreplay) can help
with such testing.

During this testing you should experiment with the following performance tips.

1.6.2 Avoid Contention

Avoid contention and maximize concurrency in your synchronization scripts.

For example, suppose a begin_download script increments a column in a table to count the total number of
downloads. If multiple users synchronize at the same time, this script would effectively serialize their
downloads. The same counter would be better in the begin_synchronization, end_synchronization, or
prepare_for_download scripts because these scripts are called just before a commit so any database locks are
held for only a short time. An even better approach would be to only count per remote ID and obtain the total
later via a query.

186 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/8534f27c56354283bd00fc8f77adaf94/17.0.01/en-US/80e967296ce210149f6be228e6e38ef6.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81afaae16ce21014a1f0ac8aedb2e5f4.html

1.6.3 Use Multithreaded Network Processing

The MobiLink server supports multiple network worker threads processing its network streams concurrently.

Having multiple network worker threads can improve performance, particularly when using CPU-intensive
network stream options, like encryption or compression, with either large synchronizations or many small
synchronizations. Each request in the system can be active on one network stream thread, at most.

Use the -wn mlsrv17 option to set stream threads.

1.6.4 Use an Optimal Number of Database Worker Threads

You can either choose a fixed number of MobiLink database worker threads or let the MobiLink server
automatically adjust the number.

If you use a fixed number by not using the -wm option, you need to experiment with different values for the -w
option to determine the smallest number that gives you optimum throughput. With automatic adjustment, you
specify the maximum number of database worker threads via the -wm option, and -w is used to specify the
minimum and initial number. If the -w option is not used, the default is 5. For example, if you use -wm 50 and do
not use the -w option, the MobiLink server periodically adjusts the number of active database worker threads
to numbers in the range from 5 to 50.

A larger number of database worker threads may improve throughput by allowing more synchronizations to
access the consolidated database at the same time, but with it comes an increased potential for contention
and blocking.

Keeping the number of database worker threads small reduces the chance of contention in the consolidated
database, the number of connections to the consolidated database, and the memory required for optimal
caching.

1.6.5 Automatic Adjustment of Database Worker Threads

The MobiLink server can automatically adjust the number of database worker threads based on load, with the
goal of maximizing throughput.

To enable this automatic adjustment, use the -w mlsrv17 option to set the initial number of concurrent
database worker threads and the -wm mlsrv17 option to set the maximum number of concurrent database
worker threads. The MobiLink server monitors system performance and adjusts the number of database
worker threads up and down within the parameters set by the -w and -wm options, depending on the
requirements at any given time.

The value set with the -wu mlsrv17 option, which represents the maximum number of database worker threads
that can apply uploads to the consolidated database simultaneously, is not automatically adjusted. If the -wu
option is not specified, uploads may be applied on any or all database worker threads, and the number of
database worker threads is variable. When the MobiLink server increases the number of database worker
threads in an attempt to increase throughput, contention may increase in the short term until it is detected and
the thread-count is eventually decreased.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 187

1.6.6 Use Smaller Upload Transactions

Smaller uploads reduce blocking and contention, and may significantly improve throughput.

Large uploads can cause large transactions in the consolidated database and large transactions lead to more
locks held in a transaction, which increases blocking and contention. This can have a significant adverse impact
on both synchronization throughput and the consolidated database's overall throughput.

In a MobiLink synchronization system with SQL Anywhere remotes, smaller uploads can be sent via dbmlsync
in one of two ways:

• Use the -tu dbmlsync option for transactional uploads. Each transaction is sent separately.
• Use the dbmlsync Increment (inc) extended option for incremental uploads. Each increment contains

coalesced transactions. The bigger the increment, generally the more transactions are coalesced into one
upload.

On the server side, the performance can be tuned by using the -tx mlsrv17 option to batch a number of
transactions from the client together into a single consolidated-side transaction. This option is handy in that
once you set the client-side option, you can simply tune -tx without having to change the clients.

Test and tune these client-side and server-side options for maximum throughput.

1.6.7 Avoid Synchronizing Unnecessary BLOBs

It is inefficient to include a BLOB in a row that is synchronized frequently while the BLOB remains unchanged.
To avoid this, you can create a table that contains BLOBs and a BLOB ID, and reference the ID in the table that
needs to be synchronized.

1.6.8 Set the Maximum Number of Database Connections

Set the maximum number of MobiLink database connections to be your number of synchronization script
versions times the number of MobiLink database worker threads, plus one. This reduces the need for MobiLink
to close and create database connections. You set the maximum number of connections with the mlsrv17 -cn
option.

1.6.9 Have Enough Physical Memory

Ensure that the computer running the MobiLink server has enough physical memory to accommodate the
cache in addition to its other memory requirements.

The number of synchronizations being actively processed is not limited by the number of database worker
threads. The MobiLink server can unpack uploads and send downloads for a large number of synchronizations
simultaneously. Once a server starts swapping to disk, its throughput will fall significantly so it is very important
that the MobiLink server has physical memory to process these synchronizations.

188 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.6.10 Use Enough Processing Power

You should dedicate enough processing power to MobiLink so that the MobiLink server processing is not a
bottleneck.

Typically the MobiLink server requires significantly less CPU than the consolidated database. However, using
Java or .NET row handling adds to the MobiLink server processing requirement. In practice, network limitations
or database contention are more likely to be bottlenecks.

1.6.11 Optimize Script Execution

The performance of your scripts in the consolidated database is an important factor. It may help to create
indexes on your tables so that the upload and download cursor scripts can efficiently locate the required rows.
However, too many indexes may slow uploads.

When you use the Create Synchronization Model Wizard in SQL Central to create your MobiLink applications, an
index is automatically defined for each download cursor when you deploy the model.

1.6.12 Use Minimum Logging Verbosity

Use the minimum logging verbosity that is compatible with your business needs. By default, verbose logging is
off, and MobiLink does not write its log to disk. You can control logging verbosity with the -v option, and enable
logging to a file with the -o or -ot options.

As an alternative to verbose log files, you can monitor your synchronizations with the MobiLink Profiler. The
MobiLink Profiler does not need to be on the same computer as the MobiLink server, and a Monitor connection
has a negligible effect on MobiLink server performance.

1.6.13 Plan for Operating System Limitations

Operating systems restrict the number of concurrent connections a server can support over TCP/IP.

If this limit is reached, which may occur when over 1000 clients attempt to synchronize at the same time, the
operating system may exhibit unexpected behavior, such as unexpectedly closing connections and rejecting
additional clients that attempt to connect. To prevent this behavior, either configure the operating system to
have a higher TCP/IP connection limit and set the -nc mlsrv17 option, or use the -sm mlsrv17 option to specify
a maximum number of remote connections that is less than the operating system limit.

When a client attempts to synchronize with a MobiLink server that has accepted its maximum number of
concurrent synchronizations as specified by the -sm option, the client receives the error code -1305
(SQLE_MOBILINK_COMMUNICATIONS_ERROR). The client application should handle this error and try to
connect again in a few minutes.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 189

1.6.14 Java or .NET vs. SQL Synchronization Logic

No significant throughput difference has been found between using Java or .NET synchronization logic vs. SQL
synchronization logic. However, Java and .NET synchronization logic have some extra overhead per
synchronization and require more memory.

In addition, SQL synchronization logic is executed on the computer that runs the consolidated database, while
Java or .NET synchronization logic is executed on the computer that runs the MobiLink server. So, Java or .NET
synchronization logic may be desirable if your consolidated database is heavily loaded.

Synchronization using direct row handling imposes a heavier processing burden on the MobiLink server, so you
may need more RAM, perhaps more disk space, and perhaps more CPU power, depending on how you
implement direct row handling.

1.6.15 Priority Synchronization

If you have some tables that you need to synchronize more frequently than others, create a separate
publication and subscription for them.

When using synchronization models in SQL Central, you can do this by creating more than one model. You can
synchronize this priority publication more frequently than other publications, and synchronize other
publications at off-peak times.

190 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.6.16 Download Only the Rows You Need

Take care to download only the rows that are required, for example by using timestamp synchronization instead
of snapshot. Downloading unnecessary rows is wasteful and adversely affects synchronization performance.

1.6.17 Only Synchronize When You Need to

Overly frequent synchronization can create an unnecessary burden on the MobiLink synchronization system.
Carefully decide how often you need to synchronize. Test thoroughly to ensure performance expectations can
be within the production environment.

1.6.18 For Large Uploads, Estimate the Number of Rows

For SQL Anywhere clients, you can significantly improve the speed of uploading a large number of rows by
providing dbmlsync with an estimate of the number of rows that are uploaded. You do this with the dbmlsync -
urc option.

1.6.19 Use Background Synchronization

From the remote user's point of view, the more synchronization happens in the background, the less urgent it is
for synchronizations to be as fast as possible. Consider designing your remote application to use background
synchronization so that remote users can continue to work even when synchronizing.

1.6.20 Key Factors Influencing MobiLink Performance

The overall performance of any system, including throughput for MobiLink synchronization, is usually limited
by a bottleneck at one point in the system.

For MobiLink synchronization, the following might be the bottlenecks limiting synchronization throughput:

The performance of the consolidated database

Of particular importance for MobiLink is the speed at which the consolidated database can execute the
MobiLink scripts. Multiple database worker threads can execute scripts simultaneously, so for best
throughput you need to avoid database contention in your synchronization scripts.
The number of MobiLink database worker threads

A smaller number of threads involve fewer database connections, less chance of contention in the
consolidated database and less operating system overhead. However, too small a number may leave
clients waiting for a free database worker thread, or have fewer connections to the consolidated database
than it can overlap efficiently.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 191

The bandwidth for client-to-MobiLink communications

For slow connections, such as those over dial-up or wide-area wireless networks, the network may cause
clients and MobiLink servers to wait for data to be transferred.
The client processing speed

Slow client processing speed is more likely to be a bottleneck in downloads than uploads, since downloads
involve more client processing as rows and indexes are written.
The speed of the computer running the MobiLink server

If the processing power of the computer running MobiLink is slow, or if it does not have enough memory for
the MobiLink database worker threads and buffers, then MobiLink execution speed could be a
synchronization bottleneck. The MobiLink server's performance depends little on disk speed as long as the
buffers and database worker threads fit in physical memory.
The bandwidth for MobiLink to consolidated database communication

This is unlikely to be a bottleneck if both MobiLink and the consolidated database are running on the same
computer, or if they are on separate computers connected by a high-speed network.

In this section:

MobiLink Tuning for Performance [page 192]
The key to achieving optimal MobiLink synchronization throughput is to have multiple synchronizations
occurring simultaneously and executing efficiently.

1.6.20.1 MobiLink Tuning for Performance

The key to achieving optimal MobiLink synchronization throughput is to have multiple synchronizations
occurring simultaneously and executing efficiently.

To enable multiple simultaneous synchronizations, MobiLink uses pools of database worker threads for
different tasks. One pool is dedicated to reading upload data from the network and unpacking it. Another pool
of threads, called database worker threads, applies the upload to the consolidated database and fetches data
to be downloaded from the consolidated database. Another pool of database worker threads is dedicated to
packing and sending the download data to the remote databases. Each database worker thread uses a single
connection to the consolidated database for applying and fetching changes, using your synchronization
scripts.

In this section:

Contention [page 193]
The most important factor is to avoid database contention in your synchronization scripts.

Number of Database Worker Threads [page 193]
Other than contention in your synchronization scripts, the most important factor for synchronization
throughput is the number of database worker threads. The number of database worker threads
controls how many synchronizations can proceed simultaneously in the consolidated database.

MobiLink Database Connections [page 195]
MobiLink creates a database connection for each database worker thread. You can use the -cn option
to specify that MobiLink create a larger pool of database connections, but any excess connections are
idle unless MobiLink needs to close a connection or use a different script version.

192 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.6.20.1.1 Contention

The most important factor is to avoid database contention in your synchronization scripts.

Just as with any other multi-client use of a database, you want to minimize database contention when clients
are simultaneously accessing a database. Database rows that must be modified by each synchronization can
increase contention. For example, if your scripts increment a counter in a row, then updating that counter can
be a bottleneck.

Synchronization requests are accepted (up to the limit specified by the -sm option) and the uploaded data is
read and unpacked so that it is ready for a database worker thread. If there are more synchronizations than
database worker threads, the excess are queued, waiting for a free database worker thread.

You can control the number of database worker threads and connections, but MobiLink always ensures that
there is at least one connection per database worker thread. If there are more connections than database
worker threads, the excess connections are idle. Excess connections may be useful with multiple script
versions.

Related Information

-sm mlsrv17 Option [page 85]
SendDownloadAck (sa) Extended Option

1.6.20.1.2 Number of Database Worker Threads

Other than contention in your synchronization scripts, the most important factor for synchronization
throughput is the number of database worker threads. The number of database worker threads controls how
many synchronizations can proceed simultaneously in the consolidated database.

Testing is vital to determine the optimum number of database worker threads.

Increasing the number of database worker threads allows more overlapping synchronizations to access the
consolidated database, and may increase throughput. However, it also increases resource and database
contention between the overlapping synchronizations, and potentially increases the time for individual
synchronizations. As the number of database worker threads is increased, the benefit of more simultaneous
synchronizations becomes outweighed by the cost of longer individual synchronizations, and adding more
database worker threads decreases throughput. Experimentation is required to determine the optimal number
of database worker threads for your situation, but the following may help to guide you.

For uploads, performance testing shows that the best throughput can typically be achieved with three to ten
database worker threads. Variation depends on factors like the type of consolidated database, data volume,
database schema, the complexity of the synchronization scripts, and the hardware used. The bottleneck is
usually due to contention between database worker threads executing the SQL of your upload scripts at the
same time in the consolidated database.

Use the -w mlsrv17 option to set the number of database worker threads. You can also use the -wm mlsrv17
option to let MobiLink server automatically adjust the number of database worker threads for the best
throughput, assuming the number lies between the current -w and -wm settings. However, while -wm is

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 193

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ab67096ce21014a3c2a1eb5b8c399b.html

convenient it may not work in all cases. As always, testing is vital to determine the optimum number of
database worker threads.

When download acknowledgements are not used (the default), the client-to-MobiLink bandwidth is less
influential because a database worker thread is free to process other synchronizations while other threads
send the download. So, the number of database worker threads is less critical.

Many downloads can be sent concurrently; far more than the number of database worker threads. For optimal
download performance, it is important for the MobiLink server to have enough RAM to buffer these downloads.

If the MobiLink server starts paging to disk (possibly because of too many downloads being processed
concurrently), consider using the -sm option to either decrease the number of database worker threads or limit
the total number of synchronizations being actively processed.

Leaving download acknowledgement off (the default) can reduce the optimal number of database worker
threads for download, because database worker threads do not have to process download acknowledgement
transactions.

For download acknowledgement, blocking download acknowledgement has been discontinued, so all download
acknowledgement is handled as non-blocking, which has better performance. With non-blocking
acknowledgement, the server reuses the database worker thread while the remote database applies the
download, so the number of database worker threads may not need to be increased, which results in better
performance.

To get both the best download throughput and the best upload throughput, MobiLink provides two options. You
can specify a total number of database worker threads to optimize downloads. You can also limit the number
that can simultaneously apply uploads to optimize upload throughput.

The -w option controls the total number of database worker threads. The default is five.

The -wu option limits the number of database worker threads that can simultaneously apply uploads to the
consolidated database. By default, all database worker threads can apply uploads simultaneously, but that can
cause severe contention in the consolidated database. The -wu option lets you reduce that contention while still
having a larger number of database worker threads to optimize the fetching of download data. The -wu option
only has an effect if the number is less than the total number of database worker threads.

Related Information

-w mlsrv17 Option [page 96]
-wm mlsrv17 Option [page 97]
-wu mlsrv17 Option [page 98]

194 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.6.20.1.3 MobiLink Database Connections

MobiLink creates a database connection for each database worker thread. You can use the -cn option to
specify that MobiLink create a larger pool of database connections, but any excess connections are idle unless
MobiLink needs to close a connection or use a different script version.

There are two cases where MobiLink closes a database connection and open a new one. The first case is if an
error occurs. The second case is if the client requests a synchronization script version, and none of the
available connections have already used that synchronization script version.

 Note
Each database connection is associated with a script version. To change the script version, the connection
must be closed and reopened.

If you routinely use more than one script version, you can reduce the need for MobiLink to close and open
connections by increasing the number of connections. You can eliminate the need completely if the number of
connections used for synchronizations is the number of database worker threads times the number of script
versions.

An example of tuning MobiLink for two script versions is given in the following command line:

mlsrv17 -c "DSN=SQL Anywhere 17 Demo" -w 5 -cn 10

Since the maximum number of database connections used for synchronizations is the number of script
versions times the number of database worker threads, setting -cn to 10 ensures that database connections
are not closed and opened excessively.

Related Information

-cn mlsrv17 Option [page 55]

1.6.21 MobiLink Performance Monitoring

There are a variety of tools available to help you monitor the performance of your synchronizations.

The MobiLink Profiler is a graphical tool for monitoring synchronizations. It allows you to see the time taken by
every aspect of the synchronization.

In addition, there are several MobiLink scripts that are available for monitoring synchronizations. These scripts
allow you to use performance statistics in your business logic. You may, for example, want to store the
performance information for future analysis, or alert a DBA if a synchronization takes too long. You must write
these scripts with the same care as your other scripts, avoiding contention and blocking as much as possible.

SAP Solution Manager provides tools that you can use to monitor MobiLink as part of your overall SAP
landscape. The ncs.conf file provides all the necessary connection and configuration information required to
deliver monitoring data to an SAP Diagnostic Agent. To enable monitoring, use the -ncs, -ncsd, or -ncsp
MobiLink server options.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 195

Related Information

MobiLink Profiler [page 247]
MobiLink Server Logging and SAP Passports [page 26]
download_statistics Connection Event [page 398]
download_statistics Table Event [page 401]
synchronization_statistics Connection Event [page 487]
synchronization_statistics Table Event [page 491]
time_statistics Connection Event [page 494]
time_statistics Table Event [page 497]
upload_statistics Connection Event [page 513]
upload_statistics Table Event [page 517]
-ncs mlsrv17 Option [page 67]
-ncsd mlsrv17 Option [page 68]
-ncsp mlsrv17 Option [page 69]

1.7 MobiLink Client/Server Communications Encryption

You can encrypt MobiLink client/server communication using transport layer security.

In this section:

End-to-end Encryption [page 196]
End-to-end encryption occurs when data is encrypted at the point of origin and decrypted at the final
destination.

Starting the MobiLink Server with Transport Layer Security [page 197]
To start the MobiLink server with transport layer security, supply the identity file and the identity
password protecting the server's private key.

MobiLink Client Configuration to Use Transport Layer Security [page 198]
You can configure SQL Anywhere or UltraLite clients to use MobiLink transport layer security.

1.7.1 End-to-end Encryption

End-to-end encryption occurs when data is encrypted at the point of origin and decrypted at the final
destination.

There is no point during transmission that the data is unencrypted.

In MobiLink, transport layer security (TLS) is sometimes only used to encrypt data up to an intermediary (for
example, encryption/decryption hardware) between the client and server. At the intermediary, the data would
be decrypted and then encrypted again by the intermediary for the rest of the journey. Notably, this happens
when synchronizing via HTTPS through a Web server. The brief interval when the data is unencrypted in the
intermediary is sometimes called the Wireless Application Protocol gap or WAP Gap.

196 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Within a corporation, a WAP gap is often acceptable when the intermediary is within corporate control.
However, in a third-party hosted environment where data from different corporations is going through the same
WAP gap, sensitive data may be exposed. End-to-end encryption prevents any intermediary from accessing the
data because the synchronization stream is encrypted from start to finish, and may optionally be encrypted
once more with TLS.

1.7.2 Starting the MobiLink Server with Transport Layer
Security

To start the MobiLink server with transport layer security, supply the identity file and the identity password
protecting the server's private key.

Context

You can hide the command line options using a configuration file and the File Hiding utility (dbfhide).

Procedure

1. Use the mlsrv17 -x server option to specify an identity and an identity password. The syntax for specifying
secure communications options is:

-x protocol(

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 197

 FIPS={ y | n }; IDENTITY=identity-file; IDENTITY_PASSWORD=password;...)

2. Set the options as follows:

protocol

The protocol to use. It can be https or tls. The tls protocol indicates the use of TCP/IP with Transport
Layer Security.
FIPS

Indicates whether to use FIPS 140-2 certified RSA encryption. Servers using the FIPS option are
compatible with clients not using the FIPS option and vice versa.
identity-file

The path and file name of the identity file, which contains the server's private key, the server's
certificate, and, optionally, the certificates signed by the Certificate Authority.
password

The password for the server private key. You specify this password when you create the server identity.

Results

You have started the MobiLink server with transport layer security.

Example

The following example specifies transport layer security, the server identity file, and the identity password
protecting the server's private key.

mlsrv17 -c "dsn=my_cons" -x tls(identity=rsaserver.id;identity_password=test)

The following example is similar to the previous, except that there is a space in the path to the identity file.

mlsrv17 -c "dsn=my_cons" -x "tls(identity=C:\Users\Public\Documents\SQL Anywhere
 17\Samples\Certificates\rsaserver.id;identity_password=pwd)"

1.7.3 MobiLink Client Configuration to Use Transport Layer
Security

You can configure SQL Anywhere or UltraLite clients to use MobiLink transport layer security.

For each client, you specify trusted certificates, the type of encryption, and the network protocol.

198 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

In this section:

Server Authentication [page 199]
Server authentication allows a remote client to verify the identity of a MobiLink server.

Client Security Options [page 200]
MobiLink clients (SQL Anywhere and UltraLite) use a common set of connection parameters to
configure transport layer security.

Transport Layer Security over TCP/IP and HTTPS [page 201]
MobiLink transport layer security is an inherent feature of the MobiLink HTTPS and TCP/IP protocols.

1.7.3.1 Server Authentication

Server authentication allows a remote client to verify the identity of a MobiLink server.

Digital signatures and certificate field verification work together to achieve server authentication.

Digital Signatures

A MobiLink server certificate contains one or more digital signatures used to maintain data integrity and
protect against tampering. Following are the steps used to create a digital signature:

• An algorithm performed on a certificate generates a unique value or hash.
• The hash is encrypted using a signing certificate's or Certificate Authority's private key.
• The encrypted hash, called a digital signature, is embedded in the certificate.

A digital signature can be self-signed or signed by an enterprise root certificate or Certificate Authority.

When a MobiLink client contacts a MobiLink server, and each is configured to use transport layer security, the
server sends the client a copy of its certificate. The client decrypts the certificate's digital signature using the
server's public key included in the certificate, calculates a new hash of the certificate, and compares the two
values. If the values match, this confirms the integrity of the server's certificate.

Verifying Certificate Fields

When using a globally signed certificate, each client must verify certificate field values to avoid trusting
certificates that the same Certificate Authority has signed for other clients. This is resolved by requiring your
clients to test the value of fields in the identity portion of the certificate. A Certificate Authority must guarantee
the accuracy of the identification information in any certificate that it signs.

When creating a certificate using the createcert utility, you enter values for the organization, organizational
unit, and common name fields. You verify these fields using corresponding MobiLink client connection
parameters.

Organization

The organization field corresponds to the certificate_company MobiLink client connection parameter.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 199

Organizational unit

The organizational unit field corresponds to the certificate_unit MobiLink client connection parameter.
Common name

The common name field corresponds to the certificate_name MobiLink client connection parameter.

Related Information

Self-signed Root Certificates
Certificate Chains
Globally Signed Certificates
Client Security Options [page 200]
Digital Certificates
How to Set up Transport Layer Security
Configuring UltraLite Clients to Use Transport Layer Security
certificate_company MobiLink Client Network Protocol Option
certificate_unit MobiLink Client Network Protocol Option
certificate_name MobiLink Client Network Protocol Option

1.7.3.2 Client Security Options

MobiLink clients (SQL Anywhere and UltraLite) use a common set of connection parameters to configure
transport layer security.

trusted_certificates Protocol Option

MobiLink clients use the trusted_certificates protocol option to specify trusted MobiLink server certificates.
The trusted certificate can be a server's self-signed certificate, a public root certificate, or the certificate
belonging to a commercial Certificate Authority. The trusted_certificates protocol option accepts either name
of the file that contains the certificate or the certificate itself as a PEM-encoded string.

Verifying Certificate Fields

The certificate_company, certificate_unit, and certificate_name protocol options are used to verify certificate
fields, an important step for server authentication. Verify certificate fields if you are using a third-party
Certificate Authority to globally sign certificates.

200 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcc2ee86c5f10148e9eb9525d146cf2.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcc36f46c5f1014937afc7b3de310a9.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcc5b1c6c5f1014a902ede82e61999b.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcc069d6c5f1014b123ba7ba047629d.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcc52086c5f1014849bbf77e13747c7.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826926236ce21014b0f48b7b4d5857f8.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8b3406ce21014b6a1ae51449748dd.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8bc726ce210149f6bcf610686adb7.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8c5de6ce2101491bee1f53698edf8.html

Related Information

Digital Certificates
Globally Signed Certificates
Server Authentication [page 199]
trusted_certificates MobiLink Client Network Protocol Option

1.7.3.3 Transport Layer Security over TCP/IP and HTTPS

MobiLink transport layer security is an inherent feature of the MobiLink HTTPS and TCP/IP protocols.

To use transport layer security over HTTPS, specify the TRUSTED_CERTIFICATES connection parameter using
the ADR extended option. Following is the syntax for a partial dbmlsync command line.

-e "ctp=protocol;
 adr=[FIPS={ y | n };] TRUSTED_CERTIFICATES={ public-certificate-filename | PEM-encoded-certificate }; ..."

protocol

The protocol to use. It can be https or tls. The tls (transport layer security) protocol uses RSA encryption
over TCP/IP.
FIPS

Indicates whether to use FIPS-certified encryption. FIPS-certified encryption can only be used with RSA
encryption. FIPS-certified HTTPS uses separate FIPS 140-2 certified software, but is compatible with
version 9.0.2 or later MobiLink servers using HTTPS.
public-certificate-filename

The path and file name of a trusted certificate.

For HTTPS or FIPS-certified HTTPS, you must use certificates created using RSA encryption.
PEM-encoded-certificate

A string that contains the PEM-encoded certificate.

For HTTPS or FIPS-certified HTTPS, you must use certificates created using RSA encryption.

For TLS and HTTPS synchronizations, if none of the certificate_name, certificate_company, or certificate_unit
protocol options are provided, MobiLink clients check the host name against the certificate provided by the
server. If the Subject Alternative Name extension is present, the client checks the host name against each of
the names in the extension. Otherwise, the client checks the host name against the Common Name in the
subject field. If no matches are found, the synchronization fails with
STREAM_ERROR_SECURE_CERTIFICATE_NOT_TRUSTED. This check supports wildcard matching.

If any of the certificate_name, certificate_company, or certificate_unit protocol options are provided, these
values are used to check against the server certificate's subject field, and the host name will be ignored. If the
skip_certificate_name_check protocol option is enabled, no name checking will be done on the server's
certificate.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 201

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcc069d6c5f1014b123ba7ba047629d.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcc5b1c6c5f1014a902ede82e61999b.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8cebc6ce21014b365cf0c0d508409.html

Example

The following example specifies RSA security over HTTPS. In this example, the client checks that the name(s)
on the server's certificate matches the host name "myserver". The synchronization fails if the host name does
not match. It must all be written on one line:

dbmlsync -c "server=rem1;uid=DBA;pwd=mypwd" -e "ctp=https;
 adr='host=MyServer; trusted_certificates=c:\certs\rootca.crt'"

Alternatively, you can specify the CommunicationAddress extended option using the CREATE
SYNCHRONIZATION SUBSCRIPTION or ALTER SYNCHRONIZATION SUBSCRIPTION statement. This method
provides the same information, but stores it in the database.

CREATE SYNCHRONIZATION SUBSCRIPTION TO pub1
 FOR user1
 ADDRESS 'host=MyServer; trusted_certificates=c:\certs\rootca.crt';

In the following example, the host name matching is overridden with a direct check of three of the subject fields
of the server's certificate. It must all be written on one line:

dbmlsync -c "server=rem1;uid=myuid;pwd=mypwd" -e "ctp=https;
 adr='host=myserver;
 trusted_certificates=c:\certs\rootca.crt;
 certificate_company=My Company;
 certificate_unit=My Division; certificate_name=My MobiLink Server'"

1.8 Manage Remote Databases

You can centrally manage remote databases involved in MobiLink synchronization using the MobiLink plug-in
SQL Central.

Central administration of remote databases lets you do the following:

• Centrally control when a remote database synchronizes with MobiLink.
• Perform schema changes on remote databases.
• Diagnose problems with specific remote databases or with the synchronization system in general.
• Upload log files.

Central administration of remote databases replaces the SQL passthrough functionality, originally introduced
in version 11.0.0, that allowed you to download scripts of SQL statements from a consolidated database to a
SQL Anywhere or UltraLite client, and have those SQL statements executed on the client at an appropriate
time.

Central administration is achieved using remote tasks. A remote task is an ordered collection of commands
(similar to a batch file) that you create using the MobiLink 17 plug-in for SQL Central. A remote task may have
conditions that govern when it runs. A remote task can be configured to run only once, to run on demand, or to

202 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

repeat regularly. Remote tasks are deployed to the consolidated database and can be assigned to one or more
MobiLink Agents.

The MobiLink Agent is an application that runs on a remote device. Each set of databases being centrally
administered from a specific MobiLink server must have one instance of the MobiLink Agent running. The
Agent's job is to execute the remote tasks that are assigned to it at appropriate times. The MobiLink Agent
uses an UltraLite database, which is called the agent database, to store tasks that have been assigned to it, the
results of tasks that have been run, and other configuration information.

Periodically, the MobiLink Agent synchronizes its agent database using regular MobiLink synchronization.
During these synchronizations, the Agent receives any new tasks that have been assigned to it and optionally
uploads results of tasks it has run so that they can be reviewed by the system administrator using the MobiLink
17 plug-in for SQL Central.

The following diagram shows how information flows between SQL Central, the consolidated database, and the
client devices when using the central administration of remote databases feature.

In this section:

Central Administration Concepts [page 204]
The following concepts are important to understand when working with central administration of
remote databases.

MobiLink Agents [page 207]
The Agent manages the execution of remote tasks on a device. It stores tasks to be executed and the
results of tasks it has executed in the agent database.

Remote Tasks [page 219]
A remote task is the unit of work when performing central administration of remote databases.

Deployment and Configuration [page 245]
Information is provided about deployment and configuration. For a list of files required to deploy the
MobiLink Agent, see the SQL Anywhere MobiLink client deployment and Deploying UltraLite MobiLink
clients topics.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 203

1.8.1 Central Administration Concepts

The following concepts are important to understand when working with central administration of remote
databases.

MobiLink Project

A MobiLink project is created by an administrator using the MobiLink 17 plug-in for SQL Central. You must first
define a MobiLink project before you can work with remote tasks.

A MobiLink project is a collection of the following:

• Zero or more remote tasks.
• At least one connection to a consolidated database.
• Zero or more synchronization models.

A sample MobiLink project is provided in %SQLANYSAMP17%\MobiLink\CustDB\project.mlp.

MobiLink Agent

A MobiLink Agent is an application that runs on the client device. The Agent's purpose is to receive and execute
tasks from the MobiLink server and report the status of those tasks back to the MobiLink server.

The MobiLink Agent can manage multiple remote databases on the client device. If remote databases on the
client device must synchronize with different consolidated databases, the device would require a different
MobiLink Agent for each different consolidated database with which the application needs to synchronize.

MobiLink Agent ID

The MobiLink Agent ID is a string that identifies an Agent running on a client device to the MobiLink server. It
can be viewed by the administrator working with the MobiLink project. Since each Agent runs on a single client
device, this ID also identifies the device to the administrator.

Each MobiLink Agent must have a unique ID. The Agent ID can either be specified at startup with the mlagent
command or a default value is assigned in the form Agent_computername_UUID, where computername is
the host name of the computer that the Agent is running on and UUID is a universally unique identifier.

It is highly recommended that case not be used to differentiate between Agent IDs. For example, do not create
Agent ID Agent_XYZ and agent_xyz as different Agent IDs. When the consolidated database is case-
insensitive, this recommendation is a requirement. When the consolidated database is case-sensitive, this
recommendation is not enforced.

204 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remote Task

A unit of work is called a remote task. A remote task is a collection of commands. The MobiLink Agent receives
work to do in the form of remote tasks, and reports the status of work it has attempted back to the
administrator.

Command

A command is an instruction in a task that carries out some action. A task can have several commands and
there is a set order to the commands. A command includes an action to perform, input parameters, and
instructions about what to do if the command fails.

Deployed Remote Task

A deployed remote task is a task that has been copied into the consolidated database. Only deployed tasks can
be assigned to an Agent for execution.

Status Information

Status information is information about remote tasks, such as whether the tasks completed successfully. This
information is stored on the client in the agent database when tasks execute, and sent to the server at various
times so the administrator can see the status of the remote tasks in the system.

Agent Database

An agent database is an UltraLite database on the remote device that is used by the MobiLink Agent to store
information about tasks and configuration.

The default location of the agent database is %ALLUSERSPROFILE%\Application Data\SQL Anywhere
17\diagnostics\MobiLink Agent on Microsoft Windows and My Device\Application Data
\SQLAny17\MLAgent on Microsoft Windows Mobile.

The agent database file name is whatever was specified with -n option for mlagent.exe, plus the
extension .udb. If the -n option is not provided, the default name is mlagent.udb.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 205

Remote Database

A remote database is an UltraLite or SQL Anywhere database on a remote device that contains your application
data, is involved in MobiLink synchronization, and is managed by a MobiLink Agent. Each remote database has
a remote schema name that identifies its schema.

Remote Schema Name

A remote schema name identifies a group of databases with the same schema. Typically all databases with the
same remote schema name are databases for the same version of an application. A schema includes things
like: table definitions, stored procedures, triggers, publications and synchronization profiles. A schema does
not include items that would normally vary from one instance of a database to another such as synchronization
users and database users.

A remote database cannot be managed remotely unless it has a remote schema name, so at least one remote
schema name must be defined before an Agent can be created in SQL Central.

When you add a consolidated database to a project, either with the Create Project Wizard or the Add
Consolidated Database Wizard, the wizard automatically checks if there are any remote schema names defined
in the consolidated database that are not already in the project. If there are, you are asked to import them.

Server-Initiated Remote Task (SIRT)

A server-initiated remote task is any remote task that is run when the Agent receives notification from the
server to run the task. A task may have a schedule, but still be initiated by the server.

In this section:

Central Administration Setup Overview [page 206]
The following steps outline the procedures to set up central administration of remote databases on the
server and client.

1.8.1.1 Central Administration Setup Overview

The following steps outline the procedures to set up central administration of remote databases on the server
and client.

Set up central administration on the server

1. Create a MobiLink project in SQL Central.
2. Use SQL Central to define one or more remote schema names to identify your remote database(s) to

the system.
3. Use SQL Central to make all the Agents that are managing the remote databases known to your

system.

206 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

4. Use SQL Central to create tasks and assign them to Agents.
Set up central administration on the client

1. Configure the MobiLink Agent on each device running the application. This gives it an identity in the
system and provides the MobiLink connection information.

2. Run the MobiLink Agent on the device so it is able to receive tasks from the server and execute them.

Related Information

Remote Tasks [page 219]
MobiLink Agent on the Client Device [page 209]
MobiLink Agent on the Client Device [page 209]
Creating a MobiLink Project
Adding a Remote Schema Name [page 214]
Adding an Agent [page 215]

1.8.2 MobiLink Agents

The Agent manages the execution of remote tasks on a device. It stores tasks to be executed and the results of
tasks it has executed in the agent database.

The Agent synchronizes the agent database using ordinary MobiLink synchronization. During synchronization,
the Agent receives new tasks to execute and uploads information about tasks it has executed.

The Agent synchronizes the agent database when the following occur:

• The Agent is started.
• The Agent receives a notification from the server to synchronize the agent database. The Agent listens for

notifications from the server and when notified, synchronizes the agent database.
• A user-specified amount of time has elapsed since the last synchronization.
• A task completes that is configured to send its status immediately upon completion.

The Agent is multithreaded and may run more than one task in parallel. A task is only deleted after it enters a
"final" state. Final states are: successful, failed, expired or canceled. A task only enters a final state if it is "run
exclusive" or "run immediate" and it succeeds or fails; or if it is a scheduled task and it expires; or it is canceled
at the server. The "on demand" tasks do not enter a final state unless they are canceled. On demand tasks sit in
the Agent and are executed by server-initiated requests (SIRT).

The following diagram shows the flow of communication to and from the Agent.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 207

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bbc88d6ce210148f839584a1c75986.html

In this section:

MobiLink Agent on the Client Device [page 209]
The Agent can be run in two modes: configuration mode and normal mode. In configuration mode,
options specified on the command line are stored in the agent database for use during the next run in
normal mode. Once the specified options are stored, the Agent terminates.

MobiLink Agents in SQL Central [page 213]
After an Agent is created and configured on the client device using the mlagent command, the Agent
must also be created in SQL Central before it can be assigned tasks.

Agent Authentication [page 218]
The Agent acts as a MobiLink synchronization client when synchronizing the agent database.

208 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.8.2.1 MobiLink Agent on the Client Device

The Agent can be run in two modes: configuration mode and normal mode. In configuration mode, options
specified on the command line are stored in the agent database for use during the next run in normal mode.
Once the specified options are stored, the Agent terminates.

When run in normal mode, the Agent reads the configuration options stored in the agent database and
continues running. While running it executes remote tasks it has received when appropriate and synchronizes
the agent database at various times to receive new remote tasks and to upload results of remote tasks that it
has run.

When run in normal mode, the Agent always attempts to do a synchronization at startup. This can be useful
when you want to force the Agent to get up to date information from MobiLink.

In this section:

mlagent Command [page 209]
Runs the MobiLink Agent on the client device, either in configuration mode or normal mode.

Interactive Configuration of the MobiLink Agent [page 212]
The MobiLink Agent can be configured using a configuration window as well as through the command
line.

MobiLink Agent Stop Utility [page 213]
The MobiLink Agent Stop utility lets you stop an instance of the MobiLink Agent running on the same
device where the stop utility is run.

1.8.2.1.1 mlagent Command

Runs the MobiLink Agent on the client device, either in configuration mode or normal mode.

 Syntax

mlagent [options]

To run in configuration mode, specify -c or -cr on the mlagent command line.

Option Description

@ data Use this to read in options from the specified environment
variable or configuration file. If both exist with the same
name, the environment variable is used.

-c Set the configuration options, only updating those options
that differ from the current options, then stop the Agent.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 209

Option Description

-cr Set the configuration options, resetting all existing options
to the defaults, then stop the Agent. Using this option re
sets all the information in the agent database and should
only be used if the agent database is in an unrecoverable
state.

-a agentid Valid only with -c or -cr. Specify the ID of this Agent.

If the -a option is not specified, the default is
Agent_computername_UUID, where computername
is the host name of the computer that the Agent is running
on and UUID is a universally unique identifier.

It is highly recommended that case not be used to differ-
entiate between Agent IDs. For example, do not create
Agent ID Agent_XYZ and agent_xyz as different Agent
IDs. When the consolidated database is case-insensitive,
this recommendation is a requirement. When the consoli
dated database is case-sensitive, this recommendation is
not enforced.

-db database location Valid only with -c or -cr. Specify the path where remote da
tabases are stored on the client device.

-x protocol[protocol-options] ...

protocol : tcpip | tls | http | https

protocol-options: (option=value; ...)

Valid only with -c or -cr. Specify the MobiLink client net
work protocol options. These options determine how the
Agent connects to the MobiLink server when synchroniz
ing the agent database.

-ap parameters Specify the MobiLink authentication parameters used
when synchronizing the agent database.

-ek key Specify the encryption key used to access the agent data
base.

-n name Specify the name of the agent database. The default is
taskdb.

-o file Log output to the specified file.

-on size Append .old to the mlagent log file name and start a new
file with the original name when the log reaches the size
specified. Size must be a minimum of 10K. This option
cannot be used with -os.

-os size Rename the mlagent log file to YYMMDDxx.mla and start
a new file with the original name when the log reaches the
size specified. Size must be a minimum of 10K. This op
tion cannot be used with -on.

210 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Option Description

-ot file Truncate the file and log output messages to it.

-p password Specify the MobiLink password used to synchronize the
agent database.

-pi Test whether the Agent can synchronize. This option
causes the Agent to do a ping synchronization of its Agent
database with the MobiLink server, using the currently
configured MobiLink client network protocol options and
user authentication parameters. The mlagent process im
mediately returns 0 if the ping synchronization was suc
cessful, or the SQL error code of the synchronization re
quest if the synchronization failed. For more information
about ping synchronizations, see the -pi dbmlsync option.

The MobiLink Agent database must be configured by run
ning mlagent with -c or -cr before mlagent is invoked with -
pi.

The MobiLink Agent cannot be invoked with both -pi and
either -c or -cr on the command line.

-q Run in a minimized window.

-qi Do not display tray icon or window.

-u user Specify the MobiLink user name used to synchronize the
agent database.

-v level Specify the output verbosity level from 0-9. The default is
3.

Example

The following example demonstrates how to run the Agent in configuration mode. It uses the default Agent
database and sets the agent ID to be the same as the MobiLink user ID:

mlagent -c -a username -u username -p password -x
http{host=myhost.example.com;port=8080} -o logfile.mla

The following example demonstrates how to run the Agent in normal mode, accepting all the settings from the
default agent database:

mlagent

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 211

Related Information

Configuration Files
-pi dbmlsync Option

1.8.2.1.2 Interactive Configuration of the MobiLink Agent

The MobiLink Agent can be configured using a configuration window as well as through the command line.

The configuration window appears automatically if the Agent is run and there is not enough information for the
Agent database to operate properly. Alternatively, you can display the configuration window using the menu on
the MobiLink Agent window. For Microsoft Windows, click the System menu in the top left corner of the
MobiLink Agent window and click Configure. For Microsoft Windows Mobile, select the Configure item on the
menu bar.

The following tables shows how the fields on the configuration window relate to the MobiLink Agent
configuration options.

Configuration window field name Equivalent mlagent configuration option

Agent ID -a option for mlagent

User -u option for mlagent

Password -p option for mlagent

Authentication Parameters -ap option for mlagent

MobiLink Client Network Protocol Options -x option for mlagent

Remote Database Location -db option for mlagent

Encryption

If the Agent database does not exist, a message appears asking if a default encryption key should be used. The
default key is hard to guess, but could be discovered since it is hard-coded in the Agent. If you choose not to
use the default encryption key, a window appears so you can enter and verify the encryption key.

If the Agent database exists but the MobiLink Agent cannot connect to it because a non-default encryption key
was not specified with the -ek option, a window appears so you can enter the key.

212 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac964e6ce21014b0c1a62b926cd965.html

1.8.2.1.3 MobiLink Agent Stop Utility

The MobiLink Agent Stop utility lets you stop an instance of the MobiLink Agent running on the same device
where the stop utility is run.

 Syntax

mlastop [options]

Option Description

-n name The name of the Agent to stop. If -n is not specified, all
Agents on the device are stopped.

Related Information

mlagent Command [page 209]
SQL Anywhere MobiLink Client Deployment [page 18]
UltraLite MobiLink Client Deployment [page 21]

1.8.2.2 MobiLink Agents in SQL Central

After an Agent is created and configured on the client device using the mlagent command, the Agent must also
be created in SQL Central before it can be assigned tasks.

The Create MobiLink Agent Wizard guides you through the creation of the Agent, where you specify the
information that is required for the Agent to be properly identified. You must have a remote schema name
defined before you can create an Agent in SQL Central.

In this section:

Adding a Remote Schema Name [page 214]
Use the Create Remote Schema Name Wizard to add a remote schema name.

Importing Remote Schema Names [page 214]
Schema names can be imported from another database.

Adding an Agent [page 215]
Add an Agent to use central administration of remote databases.

Agent Properties [page 216]
Agent properties can be viewed and edited from the Agent Properties window in SQL Central.

Adding Managed Remote Databases [page 217]
In order for an Agent to manage a remote database, the database must be associated with the Agent in
SQL Central. This is done by specifying a remote schema name.

Adding a Group [page 217]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 213

A group is a collection of MobiLink Agents.

1.8.2.2.1 Adding a Remote Schema Name

Use the Create Remote Schema Name Wizard to add a remote schema name.

Context

A remote schema name must be defined before you can create an Agent in SQL Central.

Procedure

1. Double-click the MobiLink project.

2. Double-click Remote Schema Names and then click New Remote Schema Name .
3. Follow the instructions in the Create Remote Schema Name Wizard and click Finish.

Results

The remote schema name is added.

1.8.2.2.2 Importing Remote Schema Names

Schema names can be imported from another database.

Procedure

1. Double-click the MobiLink project.
2. Right-click Remote Schema Names and click Import.
3. Choose the database from which you want to import the remote schema names from the displayed list of

consolidated databases and click OK.

214 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Results

Any remote schema names in the selected database that are not already in the MobiLink project are imported.

1.8.2.2.3 Adding an Agent

Add an Agent to use central administration of remote databases.

Prerequisites

A remote schema name must be defined before you can create an Agent in SQL Central.

Procedure

1. Double-click the MobiLink project.
2. Double-click Consolidated Databases.

3. Double-click Agents and then click File New Agent .
4. Follow the steps in the Create MobiLink Agent Wizard.

Results

The Agent is created

Next Steps

Once the Agent is created in SQL Central, you can do the following:

• view and change Agent properties
• add remote databases for an Agent to manage
• synchronize an Agent
• delete an Agent
• view events for an Agent
• view tasks for an Agent
• view information about remote databases managed by an Agent

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 215

1.8.2.2.4 Agent Properties

Agent properties can be viewed and edited from the Agent Properties window in SQL Central.

You can also set the following properties by right-clicking an Agent and choosing Set, then the property you
want to set:

Synchronization Interval

The synchronization interval controls how frequently the Agent synchronizes its agent database.
Administration Polling Interval

The administration polling interval determines how frequently the Agent checks for requests from the
server for it to synchronize or perform other actions.
MobiLink Client Network Protocol Options

The MobiLink client network protocol options are an Agent property that is specified on the client and sent
up to the server when the Agent first synchronizes. If an administrator changes an agent's MobiLink
protocol options, the new value is sent to the Agent when it synchronizes, and the Agent uses the new
value for all subsequent communicates with MobiLink.

If an administrator sends invalid MobiLink communication options (for example, an incorrectly set server
host name) it may become impossible for the Agent receiving that value to communicate with the
MobiLink server any more. In this case, the administrator must correct the MobiLink client network
protocol option in SQL Central, and then have the Agent re-configured on the device to the correct set of
options.
Connection Strings for Managed Databases

The connection string(s) that the MobiLink Agent can use to connect to the remote database(s).

In this section:

Viewing or Changing Agent Properties [page 216]
Agent properties can be viewed or updated.

1.8.2.2.4.1 Viewing or Changing Agent Properties

Agent properties can be viewed or updated.

Procedure

1. Double-click the consolidated database.
2. Double-click Agents, right-click the Agent you want to worth with and click Properties.
3. If necessary, make changes to the properties and click Apply.

216 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Results

1.8.2.2.5 Adding Managed Remote Databases

In order for an Agent to manage a remote database, the database must be associated with the Agent in SQL
Central. This is done by specifying a remote schema name.

Procedure

1. Double-click the consolidated database.
2. Double-click the Agent you want to work with and click Add Managed Remote Database.
3. The available remote databases are represented by remote schema names. Choose a Remote Schema

Name from the dropdown list.
4. Enter a connection string for the remote database and click OK.

The connection string is used on the client device. All ODBC data sources or paths and/or files must be
valid for the device.

Results

The database is added.

1.8.2.2.6 Adding a Group

A group is a collection of MobiLink Agents.

Prerequisites

You must have one of more Agents defined before you can create a group.

Procedure

1. Ensure that your consolidated databases are running.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 217

2. Double-click the MobiLink project.

3. Double-click the project name and click New Group .
4. Follow the instructions in the Group Wizard and click Finish.

Results

The group is created.

1.8.2.3 Agent Authentication

The Agent acts as a MobiLink synchronization client when synchronizing the agent database.

The synchronization scripts to support the Agent use the ml_ra_agent_17 script version. The Agent
synchronization scripts are automatically installed when you do a MobiLink setup for a consolidated database.
However, no authentication scripts are provided for the Agent.

At least one of the following must be defined to have a secure system:

• authenticate_user connection event
• authenticate_user_hashed connection event
• authenticate_parameters connection event

This can be done one of the following ways:

• Call the ml_add_connection_script stored procedure. For example:

ml_add_connection_script('ml_ra_agent_17', 'authenticate_user', '<DEFINE
YOUR AUTHENTICATION LOGIC>')

• Use Connection Scripts in SQL Central. You can use the ml_ra_agent_17 script version or ml_global. It is
likely that you will want to have the same authentication for both application data synchronization and for
the Agent. By using ml_global, you can just define one set of authentication scripts for both. This is the
recommended way to do authentication.

Related Information

Consolidated Database Setup [page 155]
Script Versions [page 312]
authenticate_user Connection Event [page 354]
authenticate_user_hashed Connection Event [page 360]
authenticate_parameters Connection Event [page 351]

218 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.8.3 Remote Tasks

A remote task is the unit of work when performing central administration of remote databases.

A remote task consists of the following:

• One or more trigger mechanisms
• Optional conditions
• An ordered collection of commands
• Other properties

Tasks are created by the administrator using the MobiLink 17 plug-in for SQL Central. At design-time they are
stored locally on the administrator's computer in the project.

Generally, one task should not depend on the completion of another task. However, it is possible to create a
task that depends on another by having one task write something to the remote database and having the
condition of another task query that value.

Once the administrator is ready for Agents to receive a task, the administrator deploys the task. When
deployed, a task is copied into the consolidated database. There are now two copies of the task: the deployed
task in the consolidated database and the design-time task in the project. Deployed tasks may not be modified.
However, the design-time task used to create them may be modified and deployed again (to create a second
deployed task). Deployed tasks can be canceled, initiated (SIRT), reactivated and assigned to new recipients.

Once deployed, a task may be assigned to one or more Agents for execution. When assigned to an Agent, the
task is downloaded to the Agent. The Agent then executes the task at an appropriate time and optionally
uploads the results back to the consolidated database where they can be reviewed by an administrator using
the MobiLink 17 plug-in for SQL Central.

Tasks have the following attributes:

Name

A remote task has two names: one identifies the design-time version of the task stored in the project while
the other identifies the task once it is deployed. Often the two names are the same.

A task's design-time name is assigned when the task is created and must be unique among tasks in the
project. A deployed task name is assigned when the task is deployed and this name must be unique among
deployed tasks in the consolidated database.
Description

A description of the task can be entered and may contain any text you want to associate with the task. The
description is stored in the project and in the consolidated database (once the task is deployed), but is not
sent to the Agent.
Trigger mechanisms

A remote task's trigger mechanisms determine when the Agent attempts to execute the task. A task may
have more than one trigger mechanism. There are three supported trigger mechanisms:

Based on a schedule

The task is triggered at specific times or at specific time intervals. This option must be explicitly set for
a task.
When received by an Agent

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 219

The task is triggered when it is received by the Agent, and will run only once. This option must be
explicitly set for a task.
On demand

The task may be triggered at any time by a message from the server in a process called Server-
Initiated Remote Task (SIRT). All tasks that are not configured to run only once support being triggered
on demand.

Conditions

Before a task can be executed, all its conditions must be satisfied. If a task is triggered but all its conditions
are not met, then the run attempt is considered a failure and the task must be triggered again before the
conditions are reevaluated.
Remote schema name

A task can optionally be associated with a remote schema name. Tasks that require access to a remote
database must be associated with a remote schema name. The remote schema name is used by the Agent
to determine which of the databases the Agent needs to access when executing the task. Tasks must be
associated with a remote schema name if they contain any of the following commands: create database,
drop database, execute SQL or synchronize. A remote task must also be associated with a remote schema
name to use a SQL condition to determine if the task can run.
Commands

A task contains an ordered set of commands that carry out the work required for the task. The order in
which the commands are specified defines the order in which the commands are executed within the task.
It is important to be aware of the order of the commands because commands could be dependent on each
other.
Maximum number of retries

Each command has an on failure action that can be used to cause the task or the command to be retried if
the command fails. This option lets you limit the number of retries allowed during a single run attempt.
Delay between retries

This option specifies the amount of time to wait after a command fails before attempting to retry the
command or task. This delay may allow a transitory condition (such as a locked database table or a locked
file) that caused the failure to pass before the command or task is reattempted. Retry delays are assumed
to be "short" periods of time. A task condition is not re-evaluated between retries.
Maximum running time

It is possible that a task when executed, does not behave as the administrator intended. An OS call could
hang; an attempt to synchronize could be very slow - a SQL statement could be blocked on another
connection using the database. Setting a maximum running time for a task lets you limit how long the task
may run. If the maximum running time is reached, the task is terminated (the actual time at which the task
is terminated depends on the ability to interrupt the operation). The status for the task is set to reflect the
timeout and the task is not retried until it is triggered again. If a command in a task fails and the task or
command needs to be retried, the maximum running time is reset after the delay. So, the maximum
running time is considered to be per attempted task execution or retry. It does not include the aggregate
time of all retries and it does not include Prompt commands.
Schema change

Schema change tasks change the schema of a remote database. If the task succeeds, the remote schema
name of the remote database is also updated. Schema change tasks are always high priority tasks and
they report their status on completion.
High priority

220 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

High priority tasks are always triggered when received by an Agent and executed as soon as any currently
executing tasks are complete. They may not be executed based on a schedule and they may not have any
conditions on their execution. A task marked high priority is only executed when there are no other tasks
being executed to ensure that no other task interferes with the execution of a high priority task.
Status reporting

Status reporting options on a task allow you to specify when and if results are reported back to the
consolidated database, both when the task completes successfully and when it fails. The available options
are:

Send status only

Task results are not reported. However, information about the number of task successes or failures is
maintained and reported.
Return results the next time the Agent synchronizes the agent database

Task results and status are maintained and reported the next time the Agent synchronizes the agent
database.
Return results immediately when task execution completes

Task results and status are reported as soon as the task completes.
Random delay interval

If a given task sends results to the MobiLink server after execution or causes a remote database to
synchronize with the server, and it is triggered simultaneously across a large number of remotes, then
setting a random delay for the task uniformly distributes the synchronization workload for the server over a
configurable period of time.

A remote task can have a random delay interval, which is an interval N, in seconds, with which each agent
generates a random number of seconds in [0, N) to delay each task execution. If the task is a scheduled
task, the random delay is generated before the first task execution, and used for each execution. The task
is executed at the scheduled times, offset by the random delay. This ensures that the deltas of the task
execution times are consistent with the schedule.

It is not recommended that the random delay interval be larger than smallest delta time of a scheduled
task. If the task is an on demand task, meaning it is initiated by the server, the random delay is generated
and used to delay the execution each time the task is initiated. If the task is a run on receipt task, the
random delay is generated and used to delay the execution at the first and only time the task is executed.

In this section:

Remote Task Logic [page 222]
The following is an outline of the logic used to execute a remote task.

Creating a Remote Task [page 223]
Tasks are defined and managed within the context of a MobiLink project.

Editing a Remote Task [page 224]
Remote task properties can be edited.

Deploying a Remote Task [page 225]
When you are ready to add the task to the system, the task needs to be deployed.

Exporting a Remote Task [page 226]
Remote tasks can be exported to a file.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 221

Deployed Remote Tasks [page 226]
You can still work with a remote task after it has been deployed. Deployed tasks can be canceled,
initiated, reactivated and have recipients added to them.

Server-initiated Remote Tasks (SIRT) [page 230]
A server-initiated remote task is any remote task that is run when the Agent receives notification from
the server to run the task.

Task Commands [page 232]
A command is an instruction in a task that carries out some action. A task can have several commands
and there is a set order to the commands. A command includes an action to perform, input
parameters, and instructions about what to do if the command fails.

Variables in Parameters [page 241]
The following macros provide access to information that may vary between remote devices.

Status [page 242]
When the Agent runs a task it stores status information about that execution in the agent database
unless the task is marked to not report any status information. Status information in the agent
database is uploaded to the server whenever the agent database is synchronized.

MobiLink System Procedures [page 243]
In addition to the functionality in SQL Central for managing remote tasks, there are also MobiLink
system procedures in the consolidated database that can be used to automate administration tasks.

1.8.3.1 Remote Task Logic

The following is an outline of the logic used to execute a remote task.

current_command = 1; num_tries = 0;
EXECUTE_TASK:
loop {
 num_tries = num_tries + 1;
 EXECUTE_COMMANDS;
 if(task_success or task_abort) break EXECUTE_TASK;
 if(task_retry and at maximum tries) {
 break EXECUTE_TASK;
 } else {
 continue;
 }
}
EXECUTE_COMMANDS:
for each command starting at current_command {
 execute current_command;
 if(command failed) {
 if(action on failure is "abort task") {
 break EXECUTE_COMMANDS, returning task_abort;
 } else if(action on failure is "continue") {
 // no action, continue at next command
 } else if(action on failure is "retry task") {
 current_command = 1;
 break EXECUTE_COMMANDS, returning task_retry;
 } else if(action on failure is "retry command") {
 // no change to current_command
 break EXECUTE_COMMANDS, returning task_retry;
 }
 }
 current_command = next command number;

222 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

} return task_success;

The maximum running time is reset for a task when the task starts and when a command or the entire task is
retried because a command fails.

When a command or task is retried because a command fails, the condition is not reevaluated and no new
trigger event is required. It is important to consider whether properties referenced in the condition can change
during the execution of the task, and whether retrying a command if the condition fails would produced
undesirable results.

1.8.3.2 Creating a Remote Task

Tasks are defined and managed within the context of a MobiLink project.

Context

An administrator can create, alter and remove a task without requiring a connection to the consolidated
database. Tasks that have not been deployed are considered to be in development and exist locally in the
MobiLink project only.

Procedure

1. Double-click the MobiLink project.

2. Double-click Remote Tasks and click New Remote Task .
3. Follow the steps in the Create Remote Task Wizard and click Finish.

 Note
If you must create a new remote schema name, which identifies a group of remote databases that have
the same schema, click Create a Remote Schema Name on the Welcome page of the Create Remote
Task Wizard. The Create Remote Schema Name Wizard appears and the Create Remote Task Wizard
stays open. Once you have created the new remote schema name, it appears in the Remote Schema
Name dropdown of the Create Remote Task Wizard.

4. Follow the procedure to add one or more commands to the task.

Results

The task is created.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 223

Next Steps

After the task has been created, it can be deployed to the consolidated, and then assigned to recipients
(Agents).

Related Information

Adding a Command to a Remote Task [page 240]
Deploying a Remote Task [page 225]

1.8.3.3 Editing a Remote Task

Remote task properties can be edited.

Procedure

1. Double-click the MobiLink project.
2. Click Properties.
3. Edit the remote task properties.
4. When you are finished editing the remote task properties, click Apply.

Results

The remote task properties are updated.

Next Steps

A remote task can be deployed and assigned to Agents.

224 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.8.3.4 Deploying a Remote Task

When you are ready to add the task to the system, the task needs to be deployed.

Prerequisites

A remote task must contain at least one command before it can be deployed.

Context

Deploying a remote task means that the task is copied into the consolidated database and the new copy is
given a name. The deployed task name is often the same name that the task had during development.

When you deploy a task you can also assign it to a list of Agents. Agents can be added after a task is deployed,
so it is not necessary to add them when the task is first deployed. This is useful when new Agents are added to
the system after a task has already been deployed.

Procedure

1. Double-click the MobiLink project.
2. Right-click the remote task you want to deploy and click Deploy.
3. Follow the instructions in the Deploy a Remote Task Wizard.
4. Click Finish.

Results

The remote task is deployed.

Next Steps

Deployed tasks can be canceled, initiated, reactivated and have recipients added to them.

Related Information

Task Commands [page 232]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 225

Adding a Command to a Remote Task [page 240]
Deployed Remote Tasks [page 226]

1.8.3.5 Exporting a Remote Task

Remote tasks can be exported to a file.

Prerequisites

You must have a remote task defined.

Procedure

1. Double-click the MobiLink project.
2. Right-click the remote task you want to export and click Export.
3. Specify a name and location for the file. Click Save.

Results

The remote task is exported to the specified file.

1.8.3.6 Deployed Remote Tasks

You can still work with a remote task after it has been deployed. Deployed tasks can be canceled, initiated,
reactivated and have recipients added to them.

You can find deployed remote tasks in SQL Central in the following places:

• To work with deployed remote tasks at an individual Agent level, ensure the consolidated database you are
working with is expanded in the Folders view of the MobiLink 17 plug-in for SQL Central. Expand Agents,
click the Agent you want to worth with then click the Tasks tab in the right pane. It contains a list of all
remote tasks that have been deployed for the selected Agent.

• To work with deployed remote tasks for all Agents, ensure the MobiLink project you are working with is
selected in the left pane in Folders view, then right-click Remote Tasks and click Deployed Tasks. Deployed
remote tasks are listed for all Agents.

In this section:

226 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Canceling a Deployed Remote Task for All Agents [page 227]
To cancel a deployed remote task if it is no longer required, or if you are upgrading the remote schema
and are deploying a new version of the task.

Canceling a Deployed Remote Task for a Single Agent [page 228]
To cancel a deployed remote task if it is no longer required, or if you are upgrading the remote schema
and are deploying a new version of the task.

Initiating a Deployed Remote Task for All Agents [page 228]
Initiating a deployed remote task causes the server to notify the Agent on the client that the task
should be run right away.

Initiating a Deployed Remote Task for a Single Agent [page 229]
Initiating a deployed remote task causes the server to notify the Agent on the client that the task
should be run right away.

Reactivating a Deployed Remote Task for a Single Agent [page 229]
Some deployed remote tasks can be reactivated.

Adding Recipients to a Deployed Remote Task [page 230]
You can add recipients to a deployed remote task. For example, you would need must add Agents to a
deployed task if new Agents are created after a task has been deployed.

1.8.3.6.1 Canceling a Deployed Remote Task for All Agents

To cancel a deployed remote task if it is no longer required, or if you are upgrading the remote schema and are
deploying a new version of the task.

Procedure

1. Double-click the MobiLink project.

2. Click Remote Tasks Deployed Tasks and select the deployed task you want to cancel.
3. Right-click the deployed task you want to cancel and click Cancel For All Recipients.

Results

The task is canceled.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 227

1.8.3.6.2 Canceling a Deployed Remote Task for a Single
Agent

To cancel a deployed remote task if it is no longer required, or if you are upgrading the remote schema and are
deploying a new version of the task.

Procedure

1. Double-click the consolidated database.
2. Double-click Agents and click the Agent you want to worth with.
3. In the right pane, click the Tasks tab.
4. Right-click the deployed task you want to cancel and click Cancel.

Results

The deployed remote task is canceled.

1.8.3.6.3 Initiating a Deployed Remote Task for All Agents

Initiating a deployed remote task causes the server to notify the Agent on the client that the task should be run
right away.

Procedure

1. Double-click the MobiLink project.

2. Click Remote Tasks Deployed Tasks and select the deployed task you want to initiate.
3. Right-click the deployed task you want to initiate and click Initiate For All Recipient.

Results

The task is initiated for all Agents.

228 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.8.3.6.4 Initiating a Deployed Remote Task for a Single
Agent

Initiating a deployed remote task causes the server to notify the Agent on the client that the task should be run
right away.

Procedure

1. Double-click the consolidated database you.
2. Double-click Agents and click the Agent you want to worth with.
3. In the right pane, click the Tasks tab.
4. Right-click the deployed task you want to initiate and click Initiate.

Results

The task is initiated for the selected Agent.

1.8.3.6.5 Reactivating a Deployed Remote Task for a Single
Agent

Some deployed remote tasks can be reactivated.

Procedure

1. Double-click the consolidated database.
2. Double-click Agents and click the Agent you want to worth with.
3. In the right pane, click the Tasks tab.
4. Right-click the deployed task you want to reactivate and click Reactivate.

Results

The deployed task is reactivated.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 229

1.8.3.6.6 Adding Recipients to a Deployed Remote Task

You can add recipients to a deployed remote task. For example, you would need must add Agents to a deployed
task if new Agents are created after a task has been deployed.

Procedure

1. Double-click the MobiLink project.

2. Click Remote Tasks Deployed Tasks and select the deployed task you want to add recipients to.
3. Right-click the deployed task you want to add recipients to and click Add Recipients.
4. Choose Agents from the Agents list and click Add to add them to the Recipients list, or choose Add All to

select all Agents.
5. Click OK.

Results

The selected Agents are added as recipients.

1.8.3.7 Server-initiated Remote Tasks (SIRT)

A server-initiated remote task is any remote task that is run when the Agent receives notification from the
server to run the task.

When an administrator chooses to initiate a remote task, the MobiLink server sends a message to the affected
Agents instructing them to run the specified task. A task might already be scheduled to run at a particular time,
however, it could still be a server-initiated if the administrator chooses to do so.

A SIRT can be initiated through SQL Central by choosing Initiate for a particular Agent or Initiate For All
Recipients on a deployed task. A SIRT can also be initiated using the ml_ra_notify_task system procedure on
the MobiLink server.

In this section:

Remote Task Notifier (RTNotifier) [page 231]
A notifier called the RTNotifier is built into the MobiLink server to keep track of SIRT requests.

Related Information

ml_ra_notify_task System Procedure [page 642]

230 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.8.3.7.1 Remote Task Notifier (RTNotifier)

A notifier called the RTNotifier is built into the MobiLink server to keep track of SIRT requests.

The RTNotifier checks the MobiLink system tables and if a SIRT has been initiated, when the MobiLink Agent
polls the MobiLink server the RTNotifier sends the appropriate remote task information to the client and the
remote task is run.

The RTNotifier runs by default. If you are not using central administration of remote tasks, you can disable the
RTNotifier using the options below.

RTNotifier options are specified as option/value pairs that get inserted into the ml_property system table. The
example below shows how to turn the RTNotifier off. In the example, the RTNotifier option is enable and the
value is set to no. SIRT is the component name, and the RTNotifier(RTNotifier1) is the notifier name, but these
two columns are for internal use only and should not be changed.

call ml_add_property('SIRT', 'RTNotifier(RTNotifier1)', 'enable', 'yes');

The table below lists RTNotifier options that can be specified in the ml_property system table.

Option Value Description

autoset_poll_every { yes | no } Specifies whether the poll_every prop
erty should be automatically adjusted
based on how often the Agents poll the
MobiLink server for remote task re
quests. If the poll_every is adjusted, the
update is seen when the RTNotifier
checks for updates based on the up
date_poll_every value.

enable { yes | no } Specifies whether the RTNotifier should
be enabled when the MobiLink server
starts. This property cannot be updated
dynamically.

poll_every time in seconds Specifies how often, in seconds, the
RTNotifier executes the request_cursor
to re-populate the in-memory cache
with remote task requests. If the value
of this property is 2147483647, then the
RTNotifier does not execute the re
quest_cursor.

update_poll_every time in seconds Specifies how often, in seconds, the
RTNotifier should check for updates to
their properties.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 231

Option Value Description

request_cursor This option is for internal use only.
Specifies a query used to retrieve the
remote task requests from the consoli
dated database.

1.8.3.8 Task Commands

A command is an instruction in a task that carries out some action. A task can have several commands and
there is a set order to the commands. A command includes an action to perform, input parameters, and
instructions about what to do if the command fails.

In this section:

Copy File Command [page 233]
Makes a copy of a file on the remote device.

Create Database Command [page 233]
Creates a new remote database on the remote device that is managed by the Agent.

Delete File Command [page 234]
Deletes a file on the remote device.

Download File Command [page 235]
Download a file from the server to the remote device.

Drop Database Command [page 235]
Deletes a managed remote database.

Execute SQL Command [page 236]
Executes SQL against a remote database.

Prompt Command [page 237]
Displays a message box on the remote device.

Rename File Command [page 237]
Renames a file on the remote device.

Run Program Command [page 238]
Run a program on the remote device.

Synchronize Command [page 238]
Synchronizes a remote database.

Upload File Command [page 239]
Uploads a file from the remote device to the server.

Command Usage [page 239]
Use one of the following methods to add a command to a task:

232 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.8.3.8.1 Copy File Command

Makes a copy of a file on the remote device.

Parameters

Original file name

The name of the file to be copied.
New file name

The name of the file to which the original file is to be copied.
Overwrite existing file if necessary

Using this option causes the file to be copied even if a file with the name specified with the New file name
parameter already exists.
Ignore read-only attribute

This parameter can only be used if the Overwrite existing file... parameter is used. When this option is
used, the copy occurs even if a file with the name specified with the New file name parameter already
exists, and is read-only.

Remarks

File name specifications can be absolute or relative. If a relative file name is specified, it is taken to be relative to
the current working directory of the Agent.

1.8.3.8.2 Create Database Command

Creates a new remote database on the remote device that is managed by the Agent.

Parameters

File name

The file name for the new database. Usually you should use the {db_location} macro to specify the path for
your database. For example, {db_location}\mydatabase.db. If an Agent will manage more than one
SQL Anywhere database then you must create each database in a separate directory. You should place
each database in a separate subdirectory of the {db_location} directory.
CHAR collation

Specifies the collation for CHAR, VARCHAR and LONG VARCHAR data types in the new database.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 233

NCHAR collation

For SQL Anywhere only, specifies the collation for NCHAR, NVARCHAR and LONG NVARCHAR data types
in the new database.

Remarks

This command can only be used in a remote task marked as Requiring or Creating a Remote Database.

The type of database (UltraLite or SQL Anywhere) created by the command is determined by the remote
schema name specified for the remote task. If the file name specified uses a directory that does not exist on
the remote device then the directory is created. The file name specification may be absolute or relative. If a
relative file name is specified, it is taken to be relative to the current working directory of the Agent. This is not
supported for SQL Anywhere in Microsoft Windows Mobile.

The CREATE DATABASE statement can be used to initialize a database on a desktop computer, which can later
be copied to a Microsoft Windows Mobile device.

1.8.3.8.3 Delete File Command

Deletes a file on the remote device.

Parameters

File name

The name of the file on the remote database to be deleted.
Ignore read-only attribute

Checking this option results in the file being deleted even if it is marked read-only.

Remarks

The file name specification may be absolute or relative. If a relative file name is specified, it is taken to be
relative to the current working directory of the Agent.

By default, a task fails if the file to be deleted does not exist. To allow a task to succeed even if the file to be
deleted does not exist, clear the Fail If The File Does Not Exist option on the Commands property page for the
delete file command in the MobiLink 17 plug-in for SQL Central.

234 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.8.3.8.4 Download File Command

Download a file from the server to the remote device.

Parameters

Server file name

The name of the file on the server to download to the remote device. The file name cannot be absolute. It is
taken relative to the download root directory of the MobiLink server. This directory is specified using the -
ftr option on the MobiLink server.
Remote file name

Specifies the location on the remote device where the file is to be stored. The file name may be absolute or
relative. If a relative file name is specified, it is taken to be relative to the current working directory of the
Agent.

Related Information

-ftr mlsrv17 Option [page 64]

1.8.3.8.5 Drop Database Command

Deletes a managed remote database.

Parameters

None

Remarks

This command can only be used in a remote task marked as requiring or creating a remote database. The
database dropped is the one associated with the remote schema name specified for the remote task.

The connection string for the remote schema name associated with the task that contains the drop database
command must have a DBF parameter.

The database being dropped must not be running when the drop database command is executed.

All data in the remote database is lost when the database is dropped.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 235

Dropping a database is not supported on Microsoft Windows Mobile.

Related Information

UltraLite DBF Connection Parameter
DatabaseFile (DBF) Connection Parameter

1.8.3.8.6 Execute SQL Command

Executes SQL against a remote database.

Parameters

SQL

The SQL to be executed. Separate SQL statements with GO on a line by itself. For SQL statements
bracketed by a BEGIN and END statement, do not specify GO within the BEGIN-END block. Here is an
example of the correct use of GO to delimit statements:

SELECT * FROM systable GO
CREATE PROCEDURE p1()
BEGIN
 CREATE TABLE t1(pk INTEGER PRIMARY KEY);
 INSERT INTO t1 VALUES(5);
 COMMIT;
END
GO SELECT * FROM SYSPROCEDURE

Remarks

This command can only be used in a remote task marked as requiring or creating a remote database. The SQL
is executed against the database associated with the remote schema name specified for the remote task.

When executing SQL, the Agent does not COMMIT any statements. If the SQL being execute does not have a
COMMIT, the statement is rolled back. This is important when the SQL is INSERT, UPDATE and DELETE
statements or any other statements that do not explicitly cause a COMMIT.

The status /results for the command store the results of the executed SQL. DDL statements return no results.
INSERT/UPDATE/DELETE statements return the number of rows affected as a single value on a line. SELECT
statements return the results in .csv format with column headings as the first row. Results from multiple
statements are all appended into one big result.

236 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826a1b416ce210149cabf938b7b37b24.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813a59836ce21014b0ce8834a80fbbd0.html

1.8.3.8.7 Prompt Command

Displays a message box on the remote device.

Parameters

Message

The message to be displayed in the message box.

Remarks

The message on the remote device is visible until it is dismissed by clicking OK.

If the task has additional commands that follow the prompt command, they are not executed until the message
is dismissed. The time between when the prompt is displayed and when the user clicks OK is not included in
the calculation of the task running time.

1.8.3.8.8 Rename File Command

Renames a file on the remote device.

Parameters

Original file name

The current name of the file to be renamed.
New file name

The name of the file, after it is renamed.
Overwrite existing file if necessary

Checking this option causes the file to be renamed even if a file with the new file name already exists.
Ignore read-only attribute

This option can only be selected if Overwrite existing file is selected. When this option is selected, the
rename occurs even if a file with the new file name already exists and is read-only.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 237

Remarks

File name specifications can be absolute or relative. If a relative file name is specified, it is taken to be relative to
the current working directory of the Agent.

1.8.3.8.9 Run Program Command

Run a program on the remote device.

Parameters

Command line

The command line to be executed.

Remarks

Execution of the task will not continue until the program completes execution. The command is considered
successful if the exit code for the program that was run is 0.

1.8.3.8.10 Synchronize Command

Synchronizes a remote database.

Parameters

Synchronization profile

Specifies a synchronization profile already defined in the remote database that contains the options to be
used for the synchronization.
Extra options

Specifies additional options to be used for the synchronization. If an option is specified in both the extra
options and the synchronization profile, then the setting from the extra options overrides the setting in the
synchronization profile. This option may be left blank.

238 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

This command can only be used in a remote task marked as requiring or creating a remote database. The
database synchronized is the one associated with the remote schema name specified for the remote task.

1.8.3.8.11 Upload File Command

Uploads a file from the remote device to the server.

Parameters

Remote file name

The name of the file on the remote device to upload to the server. This file name can be absolute or relative.
If a relative file name is specified, it is taken to be relative to the current working directory of the Agent.
Server file name

Specifies the location on the server where the file is to be stored. This file name cannot be absolute and
may not contain more than one backslash (\). It is taken relative to the upload root directory of the
MobiLink server. This directory is specified using the -ftru option on the MobiLink server.

It is a good idea to use a macro in the server file name to ensure that each agent that executes the
command uploads its file to a different location on the server. Otherwise, you may have problems with
agents over-writing each other's files. A good convention is to place the files from each agent in a separate
directory where the name of the directory is the agent id. You can use the {agent_id} macro to achieve this.
For example, to upload a file called myuploadfile.txt you might set the destination file name to
{agent_id}\myuploadfile.txt.

Related Information

Variables in Parameters [page 241]

1.8.3.8.12 Command Usage

Use one of the following methods to add a command to a task:

• In the Folders view in the left pane, right-click the task and click Add Command.
• In the Folders view in the left pane, select the task and click the Add Command toolbar button.
• When you create a task, you automatically get a command in the right pane. Press Tab to move from

parameter to parameter. If you keep pressing Tab, a new command is automatically added to the task.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 239

• Right-click an existing command and click Add Command.
• Right-click in the whitespace under the existing commands and click Add Command.
• Select the task in the Folders view in the left pane. From the File menu click Add Command.

In this section:

Adding a Command to a Remote Task [page 240]
A remote task cannot be deployed until it contains at least one command.

1.8.3.8.12.1 Adding a Command to a Remote Task

A remote task cannot be deployed until it contains at least one command.

Procedure

1. Double-click the MobiLink project.
2. Double-click Remote Tasks, right-click the remote task you want to work with, and click Add Command.

The Commands pane appears in the right pane.
3. From the Command Type dropdown list, choose the type of command required.
4. Fill in the appropriate parameters for the selected command.
5. From the On failure dropdown list, choose one of the following options to specify how to proceed if the

command fails:

Abort Task

The current attempt to execute the task is terminated and the attempt is marked as failed.
Continue

The task will continue to execute by moving to the next command.
Retry Command

The task is retried beginning at the failed command. If the maximum number of retry attempts for the
task is reached, the command is not retried.
Restart Task

The task is retried, starting at the first command. If the maximum number of attempts for the task is
reached, the task is not retried.

Results

Result

240 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Next Steps

The task can be deployed.

Related Information

Task Commands [page 232]
Deploying a Remote Task [page 225]

1.8.3.9 Variables in Parameters

The following macros provide access to information that may vary between remote devices.

These values can be used in remote task conditions, in parameters for commands within remote tasks, and in
connection strings:

Variable Replacement

{agent_db} The full path and file name for the agent database file. This
file can be uploaded from the device to help diagnose prob
lems when necessary.

{agent_id} The Agent ID.

{agent_log} The full path and file name for the Agent log file. This file can
be uploaded from the device to help diagnose problems
when necessary. If the Agent runs without an Agent log file,
this variable is an empty string.

{battery_level} The battery level for the remote device. The range is zero to
one hundred (0-100).

{db_location} The Agent's remote database directory, as specified by the
mlagent -db option.

{is_on_ac_power} Indicates whether the remote device is using an AC power
source. 1 indicates the device is plugged in and 0 indicates
the device is running on battery power.

{is_online} This variable evaluates to 1 (true) if and only if the client de
vice is connected to a network such that there is a route to
the IP address of the MobiLink server. The host computer
may be offline and the variable will still evaluate to 1 (true).

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 241

Variable Replacement

{ml_password} The MobiLink password (pwd) being used by the Agent to
synchronize with the agent database.

{ml_stream} The protocol parameters for connecting to the MobiLink
server. For example,
HTTP{host=SAP.com;port=9376}

{ml_username} The MobiLink user name (uid) being used by the Agent to
synchronize with the agent database.

{network_conn_name} Evaluates to the name of the network connection that is
used by the Agent for communication with the MobiLink
server. If there is no network connection that can be used by
the Agent to communicate with the MobiLink server, this var
iable evaluates to ?.

{remote_id} The remote ID for the remote database associated with this
task. This value is only meaningful for in remote tasks that
are marked as Requiring or Creating a Remote Database.

{rows_to_upload} For UltraLite databases only. The number of rows in the re
mote database that will be uploaded if a full synchronization
is done.

1.8.3.10 Status

When the Agent runs a task it stores status information about that execution in the agent database unless the
task is marked to not report any status information. Status information in the agent database is uploaded to
the server whenever the agent database is synchronized.

The status information is accessible using the MobiLink 17 plug-in for SQL Central. To view status for a specific
deployed task, select the task in the Folders view in the left pane and view either the Recipients or Results tabs
in the right pane. To view the status of all tasks assigned to a specific Agent, select the Agent in the Folders view
in the left pane and view the Tasks tab in the right pane.

The following stored procedures also return status information:

• ml_ra_get_agent_events system procedure
• ml_ra_get_agent_ids system procedure
• ml_ra_get_agent_properties system procedure
• ml_ra_get_latest_event_id system procedure
• ml_ra_get_orphan_taskdbs system procedure
• ml_ra_get_remote_ids system procedure
• ml_ra_get_task_results system procedure
• ml_ra_get_task_status system procedure

242 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

ml_ra_get_agent_events System Procedure [page 629]
ml_ra_get_agent_ids System Procedure [page 633]
ml_ra_get_agent_properties System Procedure [page 634]
ml_ra_get_latest_event_id System Procedure [page 635]
ml_ra_get_orphan_taskdbs System Procedure [page 635]
ml_ra_get_remote_ids System Procedure [page 636]
ml_ra_get_task_results System Procedure [page 637]
ml_ra_get_task_status System Procedure [page 639]

1.8.3.11 MobiLink System Procedures

In addition to the functionality in SQL Central for managing remote tasks, there are also MobiLink system
procedures in the consolidated database that can be used to automate administration tasks.

With the exception of the ml_ra_cancel_notification system procedure and the repair procedures, everything
that can be done with system procedures can also be done using the MobiLink 17 plug-in for SQL Central.
However, the following tasks can only be done using the MobiLink 17 plug-in for SQL Central:

• Create new tasks
• Create a new remote schema name
• Add descriptions to Agents, remotes, remote schema names and tasks

All the new MobiLink system tables, system procedures and the Agent script version begin with the prefix
ml_ra_.

Following is a list of the system procedures used for central administration of remote databases:

• ml_ra_add_agent_id system procedure
• ml_ra_assign_task system procedure
• ml_ra_cancel_notification system procedure
• ml_ra_cancel_task_instance system procedure
• ml_ra_clone_agent_properties system procedure
• ml_ra_delete_agent_id system procedure
• ml_ra_delete_events_before system procedure
• ml_ra_delete_remote_id system procedure
• ml_ra_delete_task system procedure
• ml_ra_get_agent_events system procedure
• ml_ra_get_agent_ids system procedure
• ml_ra_get_agent_properties system procedure
• ml_ra_get_latest_event_id system procedure
• ml_ra_get_orphan_taskdbs system procedure
• ml_ra_get_remote_ids system procedure
• ml_ra_get_task_results system procedure

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 243

• ml_ra_get_task_status system procedure
• ml_ra_manage_remote_db system procedure
• ml_ra_notify_agent_sync system procedure
• ml_ra_reassign_taskdb system procedure
• ml_ra_set_agent_property system procedure
• ml_ra_unmanage_remote_db system procedure

Related Information

ml_ra_add_agent_id System Procedure [page 623]
ml_ra_assign_task System Procedure [page 623]
ml_ra_cancel_notification System Procedure [page 624]
ml_ra_cancel_task_instance System Procedure [page 625]
ml_ra_clone_agent_properties System Procedure [page 626]
ml_ra_delete_agent_id System Procedure [page 627]
ml_ra_delete_events_before System Procedure [page 627]
ml_ra_delete_remote_id System Procedure [page 628]
ml_ra_delete_task System Procedure [page 629]
ml_ra_get_agent_events System Procedure [page 629]
ml_ra_get_agent_ids System Procedure [page 633]
ml_ra_get_agent_properties System Procedure [page 634]
ml_ra_get_latest_event_id System Procedure [page 635]
ml_ra_get_orphan_taskdbs System Procedure [page 635]
ml_ra_get_remote_ids System Procedure [page 636]
ml_ra_get_task_results System Procedure [page 637]
ml_ra_get_task_status System Procedure [page 639]
ml_ra_manage_remote_db System Procedure [page 641]
ml_ra_notify_agent_sync System Procedure [page 642]
ml_ra_reassign_taskdb System Procedure [page 643]
ml_ra_set_agent_property System Procedure [page 644]
ml_ra_unmanage_remote_db System Procedure [page 645]

244 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.8.4 Deployment and Configuration

Information is provided about deployment and configuration. For a list of files required to deploy the MobiLink
Agent, see the SQL Anywhere MobiLink client deployment and Deploying UltraLite MobiLink clients topics.

Agent Deployment Considerations

To properly administer the remote databases in your MobiLink synchronization system, there are a few
technical points to consider:

• The MobiLink Agent only runs on Microsoft Windows and Microsoft Windows Mobile devices. Remote
databases on platforms other than these currently cannot be managed via a MobiLink Agent.

• Managing UltraLite remote databases requires using the UltraLite engine so applications accessing those
remote databases must also do so via the UltraLite engine. Attempting to use the in-process version of
UltraLite will result in file-in-use errors.

• Central administration is only possible when the MobiLink Agent is running on a device. In general, it is
assumed that the Agent is always running on a device. You can stop an Agent using mlastop.exe;
however, the Agent will need to be re-started in order for central administration to be effective again.

Deployment of UltraLite Applications and Databases with the MobiLink
Agent on Microsoft Windows Mobile

There are various mechanisms to deploy UltraLite with the Agent on a Microsoft Windows Mobile device.

You can use the SQL Anywhere Deployment Wizard to build a .CAB cabinet file that can be used to deploy SQL
Anywhere on a Microsoft Windows Mobile device. However, the Deployment Wizard does not include support
for creating deployments of user applications and databases.

On completion of the Deployment Wizard an .INF file is created. The .INF file consists of a number of sections
that describe the target location of the files, shortcuts, and registry settings contained within the .CAB file.
This .INF file can be modified to include logic to install user applications and databases with the Agent.

Deployment with the SQL Anywhere for Windows Mobile Deployment Wizard

You can use the SQL Anywhere for Windows Mobile Deployment Wizard to deploy the files required for central
administration of remote databases.

The SQL Anywhere for Windows Mobile Deployment Wizard includes the option to Manage SQL Anywhere
Remote Databases or Manage UltraLite Remote Databases.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 245

Configuration Considerations for the Agent (Microsoft Windows desktop)

One way to configure the Agent on a Microsoft Windows computer is to have an install program (the same one
that installs your application) install the agent and run the commands to configure, validate and start the
Agent. An install program could prompt for the MobiLink identification and/or authentication parameters.
Those parameters could then be used to configure the agent using mlagent -cr on the command line.

After the agent is configured, the install program could run mlagent -pi ... to verify that authentication
parameters are valid. A connection to the MobiLink server is required when this command is run to properly do
authentication validation.

Lastly, the Agent could be launched as the final step of the install process. The Agent will then be ready to
receive and execute tasks on the target device. The Agent's process return code can be used to provide
information about the Agent's execution. For example, if the mlagent failed to ping the MobiLink server, the
return code from mlagent.exe would be the SQLCODE that results from a synchronization of the Agent
database with the configured mlagent options.

Configuration Considerations for the Agent (Microsoft Windows Mobile)

How you configure the MobiLink Agent on Microsoft Windows Mobile depends on how the user's application
will be installed on the device.

One way to configure and run the MobiLink Agent is to have the user application prompt for MobiLink
identification and/or authentication parameters and then configure and/or launch the MobiLink Agent as part
of its start up process.

• The application can attempt to run the Agent. If it has not been properly configured, the mlagent
executable returns an error code.

• If you get this code, then run the agent in configuration mode to set it up; then try running the agent in
normal mode again.

Related Information

UltraLite Data Management Components for Microsoft Windows Mobile
MobiLink Agent on the Client Device [page 209]
SQL Anywhere MobiLink Client Deployment [page 18]
UltraLite MobiLink Client Deployment [page 21]
MobiLink Agent Stop Utility [page 213]
mlagent Command [page 209]

246 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826e67736ce21014866fb0e002832c7e.html

1.9 MobiLink Profiler

The MobiLink Profiler is a MobiLink administration tool that provides you with detailed information about the
performance of your synchronizations, enabling you to analyze bottlenecks and maximize performance.

 Note
Adobe will stop updating and distributing the Flash Player at the end of 2020. Because the SQL Anywhere
Monitor is based on Flash, you cannot use it once Flash support ends. In many cases, tasks that were
previously performed in the Monitor can be performed in the SQL Anywhere Cockpit. See SQL Anywhere
Monitor Non-GUI User Guide.

You can use the SQL Anywhere Monitor for basic performance information and use the MobiLink Profiler to get
lower level details, down to the event level, about synchronizations.

Synchronization data from your profiling session is saved in a profiling database file that is created in your data
directory with a default file name, user, and password. You can specify a different profiling database on the
General tab of the Options window.

When you start the MobiLink Profiler and connect it to a MobiLink server, the MobiLink Profiler begins to collect
statistical information about all synchronizations that occur in that profiling session. The MobiLink Profiler
continues to collect data until you end the profiling session or shut down the MobiLink server. You can view the
data in tabular or graphical form in the MobiLink Profiler interface.

MobiLink Profiler output allows you to see a wide variety of information about your synchronizations. For
example, you can quickly identify synchronizations or events that result in errors or that meet other criteria
that you specify. You can identify possible contention in synchronization scripts by checking whether
synchronizations of differing durations have phases that end around the same time (because synchronizations
are waiting for a previous phase to finish before they can continue). You can also identify events for which the
MobiLink server detected blocking.

It is recommended that the Profiler be used primarily in a development environment to test performance
before deploying to a production system.

SQL Anywhere Monitor

The SQL Anywhere Monitor is a browser-based administration tool that provides you with information about
the health and availability of SQL Anywhere databases and MobiLink servers. It is useful in assessing overall
system health and availability, and for analyzing overall synchronization statistics. The SQL Anywhere Monitor
does not provide information about individual synchronizations. For detailed information about individual
synchronizations, including timing and other per-synchronization statistics, use the MobiLink Profiler.

In this section:

Starting the MobiLink Profiler (Administration Tools) [page 249]
You can have multiple instances of the MobiLink Profiler running for each MobiLink server. However, it is
recommended that you only run one MobiLink Profiler instance per MobiLink server.

MobiLink Profiler (mlprof) on the Command Line [page 250]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 247

https://help.sap.com/doc/4dbffc39d22945a7ac69af24995cc3dc/17.0/en-US/SQL-Anywhere-Monitor-Non-GUI-User-Guide.pdf
https://help.sap.com/doc/4dbffc39d22945a7ac69af24995cc3dc/17.0/en-US/SQL-Anywhere-Monitor-Non-GUI-User-Guide.pdf

Command line options allow you to have the MobiLink Profiler open and connect to a MobiLink server
on startup. This is useful for automated, unattended profiling of a test session.

Starting a Profiling Session [page 250]
Starting a MobiLink Profiler session begins the collection of data and saves the data to a profiling
database.

Ending a Profiling Session [page 252]
Ending a MobiLink Profiler session stops the collection of data but keeps the MobiLink Profiler running
so that you can view your data or start a new profiling session.

Opening or Deleting a Previous Profiling Session [page 253]
Choose a previous MobiLink Profiler session to open or delete from the Open MobiLink Profiler Session
window.

The Profiling Database [page 253]
When the MobiLink Profiler first starts, it creates a profiling database with a default file name, user and
password.

MobiLink Profiler Interface [page 254]
The MobiLink Profiler has the following panes.

Statistic Customization [page 263]
The Watch Manager allows you to visibly distinguish synchronizations that meet criteria that you
specify. For example, you might want to highlight big synchronizations, long synchronizations, small
synchronizations that take a long time, or synchronizations that receive warnings.

Using the Profiling Database [page 264]
In SQL Central, you can use predefined views to review and analyze data in the profiling database.

MobiLink Synchronization Statistical Properties [page 267]
The following is a list of the statistical properties for synchronizations that are available in the MobiLink
Profiler. These statistics can be viewed in the New Watch window, the Details Table pane, or the
Synchronization Properties window. In Synchronization Properties, the property names do not contain
underscores.

Related Information

SQL Anywhere Monitor

248 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813988db6ce21014a7f08159ea30c870.html

1.9.1 Starting the MobiLink Profiler (Administration Tools)

You can have multiple instances of the MobiLink Profiler running for each MobiLink server. However, it is
recommended that you only run one MobiLink Profiler instance per MobiLink server.

Prerequisites

For new profiling sessions, start your consolidated database and MobiLink server, if they are not already
running.

Context

 Note
The version of the MobiLink Profiler must match the version of the MobiLink Server you are using.

Procedure

Click Start Programs SQL Anywhere 17 Administration Tools MobiLink Profiler .

Results

The MobiLink Profiler is started.

Next Steps

Begin a profiling session to start collecting data.

Related Information

Starting a Profiling Session [page 250]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 249

1.9.2 MobiLink Profiler (mlprof) on the Command Line

Command line options allow you to have the MobiLink Profiler open and connect to a MobiLink server on
startup. This is useful for automated, unattended profiling of a test session.

Use the following syntax:

mlprof [options]

Option Description

-c Closes the MobiLink Profiler at the end of the profiling ses
sion.

-p password The password for the MobiLink user.

-r Recreates the profiling database.

Use this option to remove all previous profiling sessions, or if
there is a problem with the profiling database schema.

-u ml_username The MobiLink user. This option is required to begin a profil-
ing session initiated from the command line.

-x {tcpip|tls|http|https}[(keyword=value;...)] The network protocol and parameters for connecting to the
MobiLink server. The keyword=value pairs can be the host,
port, and additional network parameters. This option is re
quired to begin a profiling session initiated from the com
mand line.

You can type mlprof -? to view the mlprof syntax.

Related Information

-x mlsrv17 Option [page 99]

1.9.3 Starting a Profiling Session

Starting a MobiLink Profiler session begins the collection of data and saves the data to a profiling database.

Prerequisites

Start your consolidated database and MobiLink server, if they are not already running.

250 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Procedure

1. From the MobiLink Profiler, click File Begin Profiling Session .
This starts the collection of data.

2. A MobiLink Profiler connection starts like a synchronization connection to the MobiLink server. For all
MobiLink Profiler sessions, the script version is set to for_ML_Monitor_only.

The Connect To MobiLink Server window should be completed as follows:

User

Type the name of the MobiLink user for the connection. A user name must be supplied, but if you
started the MobiLink server with -zu+, then it does not matter which MobiLink user you supply
because unrecognized MobiLink user names are added automatically to the ml_user table upon
synchronization.
Password

Type a password for the connection. This must be the correct password for the MobiLink user you
specify. Leave this field blank if the MobiLink user does not have a password.
Host

The network name or IP address of the computer where the MobiLink server is running. By default, the
host is the computer where the MobiLink Profiler is running. You can use localhost if the MobiLink
server is running on the same computer as the MobiLink Profiler.
Protocol

This should be set to the same network protocol that the MobiLink server is using for synchronization
requests.
Port

This should be set to the same network port that the MobiLink server is using for synchronization
requests.
Encryption

If you chose HTTPS or TLS for the protocol, this box is enabled. Choose an encryption type from the
dropdown list.

To use HTTPS and TLS, you must have MobiLink client-side data stream encryption installed on the
computer running the MobiLink Profiler.
Trusted Certificate File

If you chose HTTPS or TLS for the protocol, specify the name of the trusted certificate file to be used
for secure connections to the MobiLink server. For Windows platforms, the trusted certificate store is
used if a trusted certificate file is not supplied. Non-Windows platforms require that a trusted
certificate file be specified for a secure connection.
Additional Protocol Options

Specify optional network parameters in this field. The allowed values depend on the connection stream
type. Multiple parameters should be separated by a semicolon.

All valid MobiLink client network protocol options are supported, except for those already set in this
window, such as host, port and trusted certificate.

3. Start synchronizing.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 251

4. Click the Pause button to pause automatic scrolling of the Chart and Utilization graph information.

Results

The MobiLink Profiler starts collecting data and the profiling data appears as it is collected.

Related Information

MobiLink Client/Server Communications Encryption [page 196]
MobiLink Client Network Protocol Options

1.9.4 Ending a Profiling Session

Ending a MobiLink Profiler session stops the collection of data but keeps the MobiLink Profiler running so that
you can view your data or start a new profiling session.

Procedure

1. Click File End Profiling Session . This stops the collection of data and disconnects the Profiler from
the MobiLink server.

You can also stop collecting data by shutting down the MobiLink server or by closing the MobiLink Profiler.

2. When you are ready to close the MobiLink Profiler, click File Close .

Results

The MobiLink Profiler stops collecting profiling data.

252 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a8e2886ce21014af37ca9aa8f73a47.html

1.9.5 Opening or Deleting a Previous Profiling Session

Choose a previous MobiLink Profiler session to open or delete from the Open MobiLink Profiler Session window.

Prerequisites

There must be previous Profiler sessions in the profiling database.

Procedure

1. From the MobiLink Profiler, click File Open Session .
Previous profiling sessions in the profiling database are displayed.

2. Select the profiling session you want to open or delete.
3. Click OK to open the selected session, or click Delete to remove the selected session from the profiling

database.

Results

If you clicked OK, the data from the selected session is displayed.

If you clicked Delete, the selected session is deleted from the profiling database and is no longer listed.

Next Steps

You can review the data if you opened a previous Profiler session.

1.9.6 The Profiling Database

When the MobiLink Profiler first starts, it creates a profiling database with a default file name, user and
password.

The profiling database is stored in the MLProfiler17 folder of your documents directory. If you do not want to
use the default user and password for the profiling database, change the database location to an existing SQL
Anywhere database that you want to use, or copy that database to the default location. When you next start the
MobiLink Profiler, you can enter the user ID and password for that database and it becomes the profiling
database. Connection information is saved upon successful connection.

Once connected to the profiling database, if an incompatible schema is detected, you are asked if you want to
recreate the profiling database schema and then the MobiLink Profiler closes. If you chose to recreate the

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 253

profiling database, then when the Profiler is restarted, it recreates the schema, which also deletes any previous
profiling session data. Data could be lost unless you back it up before restarting the MobiLink Profiler.

To determine the name and location of the profiling database, go to the General page of the Options window.

1.9.7 MobiLink Profiler Interface
The MobiLink Profiler has the following panes.

Details Table

Details Table is the top pane, when enabled. It is a spreadsheet that, by default, shows the total time taken
by each synchronization, with a breakdown showing the amount of time taken by each phase of the
synchronization.
Utilization Graph

Utilization Graph is the second pane, when enabled. It provides a graphical representation of the number of
synchronizations in each phase. The same horizontal scale is used for the Utilization Graph pane and Chart
pane. The scale at the bottom of the Chart pane represents time. You can select the data that is displayed
in the utilization graph by dragging and selecting the data in the Overview pane below, or by clicking View

Go To .
Chart

Chart is the third pane and is always displayed. It provides a graphical representation of synchronizations,
colored by synchronization phase. The scale at the bottom of this pane represents time. You can select the
data that is displayed in the chart by dragging and selecting the data in the Overview pane below, or by
clicking View Go To .
Overview

Overview is the bottom pane, when enabled. It shows an overview of all synchronizations in the session.
This pane contains a box outline called the Marquee Tool that indicates and can select the region appearing
in the Chart and Utilization Graph panes.

In addition, there is an Options window that you can use to customize the display and property windows that
can be displayed.

In this section:

Details Table Pane [page 255]
The Details Table provides information about the synchronizations, including phase times. All times are
measured by the MobiLink server. Some phase times may be non-zero even when you do not have the
corresponding script defined.

Utilization Graph Pane [page 257]
The Utilization Graph is the second pane from the top. It displays the number of synchronizations in
each phase in a time graph.

Chart Pane [page 258]
The Chart pane presents the same information as the default columns in the Details Table, but in
graphical format. The bars in the Chart represent the length of time taken by each synchronization,
with sub-sections of the bars representing the phases of the synchronization.

Overview Pane [page 260]

254 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The Overview pane shows an overview of the entire MobiLink Profiler session. You can navigate through
the session using the Marquee Tool, which is the box inside the Overview pane.

Options Window [page 261]
Options allow you to specify many settings, including colors and patterns for the graphical display in
the Chart pane, Utilization Graph pane, and the Overview pane.

Session Properties [page 262]
The Session Properties window provides statistics about the profiling session. It provides property
values for the current profiling session. To open the Session Properties window, click File
Properties .

Sample Properties [page 262]
The Sample Properties window provides detailed statistics for time intervals. Each time interval is about
one second long. Samples are numbered by the MobiLink Profiler to reflect the order in which they
were received.

Synchronization Properties [page 262]
Double-click a synchronization in either the Details Table pane or the Chart pane to see properties for
that synchronization.

1.9.7.1 Details Table Pane
The Details Table provides information about the synchronizations, including phase times. All times are
measured by the MobiLink server. Some phase times may be non-zero even when you do not have the
corresponding script defined.

You can choose the columns that appear in the Details Table pane by clicking Tools Options and then
opening the Table tab.

The following columns appear by default:

number

Identifies each synchronization. This number is assigned by the MobiLink server, not by the MobiLink
Profiler, so it does not necessarily start at 1 in any given MobiLink Profiler session and is not necessarily
received in numerical order. This number is the same as the synchronization number shown in MobiLink
server warnings, errors, and logs. You can see the same number in the Synchronization Properties window.
remote_id

The unique identifier of the remote database.
user

The MobiLink synchronization user.
version

The version of the synchronization script.
start_time

The date and time when the MobiLink server started the synchronization. (This may be later than when the
synchronization was requested by the client.)
duration

The total duration of the synchronization, in seconds.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 255

All the following phase times are in seconds.

sync_request phase

The time taken between creating the network connection between the remote database and the MobiLink
server, up to receiving the first bytes of the upload stream. This time is insignificant unless you have set -
sm to a smaller value than -nc, in which case this time can include the time that a synchronization is
paused when the number of synchronizations is larger than the maximum number of active
synchronizations that were specified with -sm.
receive_upload phase

The time taken from the first bytes of the upload stream being received by the MobiLink server until the
upload stream from the remote database has been completely received. The upload stream includes table
definitions and the remote database rows being uploaded, so the time may be significant even for a
download-only synchronization. The time depends on the size of the upload stream and the network
bandwidth for the transfer.
get_db_worker phase

The time required to acquire a free database worker thread.
connect phase

The time required by the database worker thread to make a database connection if a new database
connection is needed. For example, after an error, or if the script version has changed.
authenticate_user phase

The time for MobiLink to validate the synchronization request, the user name, and the password (if your
synchronization setup requires authentication). This is the length of the authenticate user transaction
(from the start of authentication to just before the begin_synchronization event).
begin_sync phase

The time to run your begin_synchronization script, if one was run.
apply_upload phase

The time to apply the upload to the consolidated database. This is the time between the begin_upload
script and the end_upload script.
prepare_for_download phase

The time to run your prepare_for_download script, if one was run.
fetch_download phase

The time to fetch the rows to be downloaded from the consolidated database. This is the time between the
begin_download script and the end_download script.
end_sync phase

The time to run the end_synchronization script, if one was run.
send_download phase

The time taken to send the download stream to the remote database.
wait_for_download_ack phase

If download acknowledgement is enabled, this includes the time spent waiting for the download to be
applied to the remote database and for the remote database to send the download acknowledgement.
get_db_worker_for_download_ack phase

256 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

If download acknowledgement is enabled, this includes the time spent waiting for a free database worker
thread after the download acknowledgement was received.
connect_for_download_ack phase

If download acknowledgement is enabled, this includes the time required by the database worker thread to
make a database connection if a new database connection is needed.
nonblocking_download_ack phase

If download acknowledgement is enabled, this includes the time required for the
publication_nonblocking_download_ack connection and nonblocking_download_ack connection events.

To sort the table by a specific column, click the column heading. If new data appears in the MobiLink Profiler, it
gets sorted as it is added.

You can close the Details Table pane by clearing Details Table option in the View menu.

Related Information

MobiLink Synchronization Statistical Properties [page 267]
Synchronization Properties [page 262]
Remote IDs
MobiLink Users
Script Versions [page 312]

1.9.7.2 Utilization Graph Pane

The Utilization Graph is the second pane from the top. It displays the number of synchronizations in each phase
in a time graph.

The Utilization Graph uses the same horizontal scrollbar, horizontal time labels, and horizontal zoom level as
the Chart. An instant in time lines up vertically between the Graph pane and the Chart pane.

There are two ways to select the time range that is displayed in the Graph and Chart:

• From the View menu, click Go To.
• In the Overview pane, move the Marquee Tool. The Marquee Tool is the small box that appears in the

Overview pane.

Double-click an area of the Utilization Graph to open a Sample Properties window that shows the details of the
sample interval it represents. The sample interval is about a second long.

Drag your mouse in the Utilization Graph pane to see data for a range of samples. The Sample Range Properties
window appears.

In this section:

How the Utilization Graph Works [page 258]
To customize the Utilization Graph, click Tools Options and click the Graph tab. This tab identifies
the Utilization Graph times by color, and allows you to customize the graph.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 257

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abecb96ce210149cfae8b41cb3ae74.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a604836ce21014bf80a97d6e23f982.html

Related Information

Marquee Tool [page 260]
Sample Properties [page 262]

1.9.7.2.1 How the Utilization Graph Works

To customize the Utilization Graph, click Tools Options and click the Graph tab. This tab identifies the
Utilization Graph times by color, and allows you to customize the graph.

Phase Counters

Each property shows the number of synchronizations currently in that phase.

Antialiasing

One of your customization choices is antialiasing. Antialiasing makes the graph look better, but can be slower
to draw.

1.9.7.3 Chart Pane

The Chart pane presents the same information as the default columns in the Details Table, but in graphical
format. The bars in the Chart represent the length of time taken by each synchronization, with sub-sections of
the bars representing the phases of the synchronization.

Viewing data

Click a synchronization to select that synchronization in the Details Table.

Double-click a synchronization to open the Synchronization Properties window.

Grouping data by remote ID or compactly

To group the data by remote ID, click View By Remote ID .

258 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Alternatively, you can view the data in a compact mode that shows all active synchronizations in as few rows as
possible. Click View Compact View . In Compact View, the row numbers are meaningless.

Zooming in on data

There are several ways to select the data that is visible in the Chart pane and Utilization Graph:

Zoom options

Zoom options in the View menu and zoom buttons on the toolbar allow you to zoom in and out. To have a
synchronization fill the available space, use Zoom To Selection.
Scrollbar

Click the scrollbar at the bottom of the Chart pane and slide it.
Go To window

To open this window, click View Go To .

Start Date & Time Specify the start time for the data that appears in the Chart pane. If you change this
setting, you must specify at least the year, month, and date of the date-time.

Chart Range Specify the duration of time that is displayed. The chart range can be specified in
milliseconds, seconds, minutes, hours, or days. The chart range determines the granularity of the data: a
smaller length of time means that more detail is visible.
Marquee Tool

In the Overview pane, drag to change the Marquee Tool. The Marquee Tool is the box that appears in the
Overview pane.

Time axis

At the bottom of the Chart pane there is a scale showing time periods. The format of the time is readjusted
automatically depending on the span of time that is displayed. You can always see the complete date-time by
hovering your cursor over the scale.

Default color scheme

You can view or set the colors in the Chart pane by opening the Options window (available from the Tools
menu). The default color scheme for the Chart pane uses lime green for uploads, coral red for downloads, and
blue for begin and end phases, with a darker shade for earlier parts of a phase.

Use the Options window to change color settings.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 259

Related Information

Synchronization Properties [page 262]
Marquee Tool [page 260]
Options Window [page 261]

1.9.7.4 Overview Pane

The Overview pane shows an overview of the entire MobiLink Profiler session. You can navigate through the
session using the Marquee Tool, which is the box inside the Overview pane.

By default, active synchronizations, blocked synchronizations, completed synchronizations, and failed
synchronizations are represented with colors via watches. To set the colors, open the MobiLink Profiler, click

Tools Options , and then click the Overview tab or edit the corresponding watches by clicking Tools
Watch Manager and then Edit.

You can close the Overview pane by deselecting it in the View menu.

You can also separate the Overview pane from the rest of the MobiLink Profiler window. In the Options window,
click the Overview tab and clear the Keep overview window attached to main window checkbox.

In this section:

Marquee Tool [page 260]
The Marquee Tool is the small box that appears in the Overview pane. You can use it to see different
data, or to see data at different granularity. The area represented within the box is displayed in the
chart and graph panes. You can use the Marquee Tool as follows:

Related Information

Options Window [page 261]
Statistic Customization [page 263]

1.9.7.4.1 Marquee Tool

The Marquee Tool is the small box that appears in the Overview pane. You can use it to see different data, or to
see data at different granularity. The area represented within the box is displayed in the chart and graph panes.
You can use the Marquee Tool as follows:

• Click in the Overview pane to move the Marquee Tool and the start time of the data shown in the chart or
utilization graph.

• Drag in the Overview pane to redraw the Marquee Tool to change the Marquee Tool's location and size and
change the start time and the range of data. If you make the marquee box smaller, you shorten the interval
of the visible data in the chart, which makes more detail visible.

260 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

In this section:

Changing the Color of the Marquee Tool [page 261]
You can change the color of the Marquee Tool.

1.9.7.4.1.1 Changing the Color of the Marquee Tool

You can change the color of the Marquee Tool.

Procedure

1. Click Tools Options .
2. Click the Overview tab.
3. Select a new color in the Marquee field.
4. Click OK.

Results

The color of the Marquee Tool is changed.

1.9.7.5 Options Window

Options allow you to specify many settings, including colors and patterns for the graphical display in the Chart
pane, Utilization Graph pane, and the Overview pane.

From the Options window: General tab, you can change the profiling database used to store the profiling data
and you can recreate the profiling database, which removes all previous profiling sessions.

To open the Options window, open the MobiLink Profiler and click Tools Options .

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 261

1.9.7.6 Session Properties

The Session Properties window provides statistics about the profiling session. It provides property values for
the current profiling session. To open the Session Properties window, click File Properties .

1.9.7.7 Sample Properties

The Sample Properties window provides detailed statistics for time intervals. Each time interval is about one
second long. Samples are numbered by the MobiLink Profiler to reflect the order in which they were received.

To open the Sample Properties window, click in the Graph pane for the time period that you want to examine.

The Sample Properties window has three tabs:

General

Provides a high-level breakdown of what your synchronizations were doing at the time the sample was
taken.
Phases

Provides counts of the phases your synchronizations were in at the time the sample was taken.
Events

Provides information about event scripts being run during synchronization.

You can customize the appearance of the graph to hide properties, but all properties appear in the Sample
Properties window. If you have hidden a phase, it is identified as Hidden in the Phases tab of the Sample
Properties window; otherwise, the color is shown.

The Sample Range Properties window shows information for the multiple samples if you selected multiple
samples by dragging in the Utilization Graph.

The Sample Range Properties window has the same tabs as the Sample Properties window. However, average
and maximum values are displayed for the range.

1.9.7.8 Synchronization Properties

Double-click a synchronization in either the Details Table pane or the Chart pane to see properties for that
synchronization.

You can choose to see statistics for all tables (which is the sum for all tables in the synchronization), or for
individual tables. The dropdown list provides a list of the tables that were involved in the synchronization.

The Synchronization page shows warning and/or errors, the Events page shows how often the event scripts
were called and how long they took. If the MobiLink server detected that the synchronization was blocked, then
a Blocked page is available.

For descriptions of the quantities displayed on any page of the Synchronization Properties window, click Help.

262 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

MobiLink Synchronization Statistical Properties [page 267]

1.9.8 Statistic Customization

The Watch Manager allows you to visibly distinguish synchronizations that meet criteria that you specify. For
example, you might want to highlight big synchronizations, long synchronizations, small synchronizations that
take a long time, or synchronizations that receive warnings.

To open the Watch Manager, open the MobiLink Profiler and then click Tools Watch Manager .

The left pane of the Watch Manager contains a list of all available watches. The right pane contains a list of
active watches. To add or remove a watch from the active list, select a watch in the left pane and click the
appropriate button.

There are four predefined watches (Active, Blocked, Completed, and Failed). You can edit predefined watches to
change the way they are displayed, and you can deactivate them by removing them from the right pane.

No synchronizations are displayed in the chart unless they meet the conditions of a watch. If you disable all
watches (by removing them from the Current Watches list), then no synchronizations are shown in the Chart or
Overview panes.

The order of watches in the right pane is important. Watches that are closer to the top of the list are processed
first. Use the Move Up and Move Down buttons to organize the order of watches in the right pane.

You can use the predefined watches and create other watches. To edit a watch condition, remove it and then
add the new watch condition.

When a new MobiLink Profiler connects to the same MobiLink server, it shows up as a short synchronization in
any MobiLink Profilers that are already connected. The MobiLink Profiler synchronization has the version name
for_ML_Monitor_only. You can hide this MobiLink Profiler synchronization by only enabling watches that have
the following condition:

Property

Set to Version
Operator

Set to is not equal to
Value

Set to for_ML_Monitor_only

In this section:

Creating a New Watch [page 264]
Add a watch to display synchronizations that meet the defined watch criteria.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 263

1.9.8.1 Creating a New Watch

Add a watch to display synchronizations that meet the defined watch criteria.

Procedure

1. In the Watch Manager, click New.
2. Give the watch a name in the Name box.
3. Select a Property, comparison Operator, and Value.
4. Click Add. (You must click Add to save the condition.)
5. If desired, select another Property, Operator, and Value, and click Add.
6. Select a Chart Pattern for the watch in the Chart pane.
7. Select an Overview Color for the watch in the Overview pane.
8. Click OK.

Results

The new watch is created.

Related Information

MobiLink Synchronization Statistical Properties [page 267]

1.9.9 Using the Profiling Database

In SQL Central, you can use predefined views to review and analyze data in the profiling database.

Prerequisites

 Note
Adobe will stop updating and distributing the Flash Player at the end of 2020. Because the SQL Anywhere
Monitor is based on Flash, you cannot use it once Flash support ends. In many cases, tasks that were
previously performed in the Monitor can be performed in the SQL Anywhere Cockpit. See SQL Anywhere
Monitor Non-GUI User Guide.

264 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/doc/4dbffc39d22945a7ac69af24995cc3dc/17.0/en-US/SQL-Anywhere-Monitor-Non-GUI-User-Guide.pdf
https://help.sap.com/doc/4dbffc39d22945a7ac69af24995cc3dc/17.0/en-US/SQL-Anywhere-Monitor-Non-GUI-User-Guide.pdf

You must have run at least one profiling session.

You must know the name and location of the profiling database. To determine this information, go to the
General page of the Options window.

Context

This task assumes you are using the default profiling database.

You can also use Interactive SQL to work with Profiler views.

Procedure

1. Use the SQL Anywhere 17 plug-in to connect to the profiling database, using the following options:

User ID

Type mlprofiler for the User ID.
Password

Type sql for the password.
Action

Choose Start and connect to a database on this computer.
Database file

Enter the path information for the profiling database or click Browse to select the file. The default
database file is mlprofiler.db in a folder called MLProfiler17 in your Documents folder.
Server name

Type MLProfilerDB.
Start line

To set the initial memory for caching database pages and other database server information, type the
following:

dbeng17.exe -c 1g

2. Click Connect.
3. Expand the mlprofiler database and double-click Views to see a list of the MobiLink Profiler views.
4. Select a view. The following views are available:

• category_samples (base view for category sampling data)
• data_event_statistics
• data_event_times
• data_phase_statistics
• data_phase_times
• event_samples (base view for event sampling data)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 265

• event_times
• event_total_times
• phase_samples (base view for phase sampling data)
• phase_statistics
• phase_times
• server_cumulative_samples (base view for cumulative server-related sampling data)
• server_snapshot_samples (base view for non-cumulative server-related sampling data)
• server_throughput_samples
• sync_as_csv (view like the old MobiLink Monitor .csv file format)
• sync_blocked
• sync_statistics
• sync_times
• syncs (base view for synchronizations)

The SQL pane on the right includes a comment at the top that describes the selected view.

 Note
The server-related sampling data is for metrics that are also available in the SQL Anywhere Monitor for
MobiLink.

Results

Data from the profiling database is displayed for each view in the Data page.

Example

The following sample query shows the event scripts that consumed the most time for all synchronizations in
the second session:

select * from event_total_times where session_id = 2 order by 1 desc

The following sample query shows the fastest synchronization completion rates for all the sessions:

select max("Successful syncs/s") as "Max syncs/s",
 session_id
from server_throughput_samples
group by session_id order by 1 desc, 2

266 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Next Steps

• Review the profiling data.
• Use these views in your queries.

1.9.10 MobiLink Synchronization Statistical Properties

The following is a list of the statistical properties for synchronizations that are available in the MobiLink Profiler.
These statistics can be viewed in the New Watch window, the Details Table pane, or the Synchronization
Properties window. In Synchronization Properties, the property names do not contain underscores.

Synchronization Statistics

MobiLink statistical properties return the following information for synchronizations:

Property Description

active (hidden by default) True if the synchronization is active as of
the time you viewed the information for this synchronization.

apply_upload (phase counter) Time required for the uploaded data to be
applied to the consolidated database.

authenticate_user (phase counter) Total time to perform user authentication,
including executing the authenticate_* events.

begin_sync (phase counter) Total time for the begin_synchronization
event.

client (hidden by default) The type of MobiLink client and full client
version. For example, dbmlsync 16.0.0.xxxx.

completed (hidden by default) True if the synchronization completed
successfully.

conflicted_updates (hidden by default) Number of update rows that caused con
flict. A row is included only when a resolve conflict script was
successfully called for it.

connect (phase counter) Time required by the database worker
thread to make a database connection if a new database
connection is needed. For example, after an error or if the
script version has changed.

connect_for_download_ack (phase counter) Time required by the database worker
thread to make a database connection if a new database
connection is needed for a download acknowledgement.

connection_retries (hidden by default) Number of times the MobiLink server re
tried the connection to the consolidated database.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 267

Property Description

download (hidden by default) This property indicates the synchroniza
tion included a download command.

download_ack (hidden by default) Can be none or non-blocking.

download_bytes (hidden by default) Amount of memory used within the Mo
biLink server to store the download and send to the remote
database (before any encryption or compression).

download_deleted_rows (hidden by default) Number of row deletions fetched from
the consolidated database by the MobiLink server (using
download_delete_cursor scripts).

download_errors (hidden by default) Number of errors that occurred during
the download.

download_fetched_rows (hidden by default) Number of rows fetched from the con
solidated database by the MobiLink server (using down
load_cursor scripts).

download_filtered_rows (hidden by default) Number of fetched rows that were not
downloaded to the MobiLink client because they matched
rows that the client uploaded.

download_warnings (hidden by default) Number of warnings that occurred dur
ing the download.

duration Total time for the synchronization, as measured by the Mobi
Link server.

end_sync (phase counter) Total time for the end_synchronization
event.

fetch_download (phase counter) Time required to fetch the rows to be down
loaded from the consolidated database to create the down
load stream.

get_db_worker (phase counter) Time required to acquire a free database
worker thread.

get_db_worker_for_download_ack (phase counter) Time spent waiting for a free database
worker thread after the download acknowledgement has
been received.

has_blocked (hidden by default) True if blocking is detected by the Mobi
Link server.

ignored_deletes Number of upload delete rows that caused errors while the
upload_delete script was invoked, when the handle_error or
handle_odbc_error are defined and returned 1000, or when
there is no upload_delete script defined for the given table.

ignored_inserts Total number of upload insert rows that were ignored. They
were ignored because 1) there is no upload_insert script in
normal mode; or 2) errors occurred when the MobiLink
server was invoking the corresponding script and the han
dle_error or handle_odbc_error event returned 1000.

ignored_updates Number of upload update rows that caused conflict but a re
solve conflict script was not successfully called or no up
load_update script was defined.

268 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Property Description

nonblocking_download_ack (phase counter) Time required for the publication_nonblock
ing_download_ack connection and nonblocking_down
load_ack connection events.

number Synchronization number.

prepare_for_download (phase counter) Total time for the prepare_for_download
event.

receive_upload (phase counter) Phase time for receiving the upload.

remote_id Remote ID that uniquely identifies the remote database.

send_download (phase counter) Time required to send the download stream
to the remote database. The time depends on the size of the
download stream and the network bandwidth for the trans
fer. For an upload-only synchronization, the download
stream is simply an upload acknowledgement.

server (hidden by default) The MobiLink server name or host:port.

start_time Date-time (in ISO-8601 extended format) for the start of the
synchronization.

sync_deadlocks (hidden by default) Number of deadlocks in the consolidated
database that were detected for the synchronization.

sync_errors (hidden by default) Total number of errors that occurred for
the synchronization.

sync_request (phase counter) Time taken between creating the network
connection between the remote database and the MobiLink
server, up to receiving the first bytes of the upload stream.

sync_tables (hidden by default) Number of client tables that were in
volved in the synchronization.

sync_warnings (hidden by default) Number of warnings that occurred for
the synchronization.

upload (hidden by default) Indicates the synchronization included
an upload command.

upload_bytes (hidden by default) Amount of memory used within the Mo
biLink server to store the upload. This provides a good indi
cation of the impact on server memory of a synchronization.

upload_deadlocks (hidden by default) Number of deadlocks in the consolidated
database that were detected during the upload.

upload_deleted_rows (hidden by default) Number of rows that were successfully
deleted from the consolidated database.

upload_errors (hidden by default) Number of errors that occurred during
the upload.

upload_inserted_rows (hidden by default) Number of rows that were successfully
inserted in the consolidated database.

upload_updated_rows (hidden by default) Number of rows that were successfully
updated in the consolidated database.

upload_warnings Number of warnings that occurred during the upload.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 269

Property Description

user MobiLink user name.

version Name of the synchronization version.

wait_for_download_ack (phase counter) Time spent waiting for the download to be
applied to the remote database and for the remote database
to send the download acknowledgement.

Related Information

Statistic Customization [page 263]
Details Table Pane [page 255]
Synchronization Properties [page 262]

1.10 MobiLink File-based Download

File-based download is an alternative way to download data to SQL Anywhere remote databases: downloads
can be distributed as files, enabling offline distribution of synchronization changes. This allows you to create a
file once and distribute it to many remote databases.

With file-based download, you can put download synchronization changes in a file and transfer it to SQL
Anywhere remote databases in any way a file can be transferred. For example, you can:

• broadcast the data by satellite multicast
• apply the update using SAP Afaria
• email or FTP the file to users

You choose the users you want to receive the file. Full synchronization integrity is preserved in file-based
download, including conflict detection and resolution. You can ensure that the file is secure by applying third-
party encryption on the file.

When to Use

File-based downloads are useful when a large amount of data changes on the consolidated database, but the
remote database does not update the data frequently or does not do any updates at all. For example, price
lists, product lists, and code tables.

File-based downloads are not useful when the downloaded data is updated frequently on the remote database
or when you are running frequent upload-only synchronizations. In these situations, the remote sites may be
unable to apply download files because of integrity checks that are performed when download files are applied.

File-based downloads currently can be used only with SQL Anywhere remote databases.

270 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Download-Only Publications

Usually you should use a download-only publication for your file-based download. Use a regular publication
only when you need to perform uploads with the same publication as you perform file-based downloads.

If you use a regular publication, file-based downloads cannot be used as the sole means of updating remote
databases. In that case you still need to regularly perform full synchronizations or upload-only
synchronizations. Full or upload-only synchronizations are required to advance log offsets and to maintain the
transaction log file, which otherwise grows large and slows down synchronization. A full synchronization may
also be required to recover from errors.

In this section:

File-Based Download Setup [page 271]
The following steps provide an overview of the tasks required to set up file-based download, assuming
that you already have MobiLink synchronization set up.

Validation Checks [page 275]
Before applying a download file to a remote database, dbmlsync does several things to ensure that the
synchronization is valid.

File-Based Download Examples [page 278]
The following two examples set up a file-based download synchronization using a consolidated
database with only one table. The first is a simple snapshot example and the second is a slightly more
involved timestamp-based example.

Related Information

Download-only Publications

1.10.1 File-Based Download Setup

The following steps provide an overview of the tasks required to set up file-based download, assuming that you
already have MobiLink synchronization set up.

1. Create a file-definition database.
2. At the consolidated database, create scripts with a new script version.
3. Create a download file.
4. Apply the download file.

In this section:

File-Definition Database [page 272]
To set up file-based download, you create a file-definition database. This is a SQL Anywhere database
that has the same synchronization tables and publications as your remote databases. It can be located
anywhere.

Changes at the Consolidated Database [page 272]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 271

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a759d46ce21014a555ec58a1e4db0b.html

On the consolidated database, create a new script version for your file-based download and implement
any scripts required by your existing synchronization system into it. Upload scripts are not required.

Download File Creation [page 273]
The download file contains the data to be synchronized. To create the download file, set up your file-
definition database and consolidated database as described above. Run dbmlsync with the -bc option
and supply a file name with the extension .df.

Application of the Download File [page 274]
If you need to apply a download file to a remote database that has never synchronized using MobiLink,
then before you apply the download file you need to either perform a normal synchronization on the
remote database or use the dbmlsync -bg option when creating the download file.

Related Information

File-Based Download Examples [page 278]

1.10.1.1 File-Definition Database

To set up file-based download, you create a file-definition database. This is a SQL Anywhere database that has
the same synchronization tables and publications as your remote databases. It can be located anywhere.

This database contains no data or state information. It does not have to be backed up or maintained; in fact,
you can delete it and recreate it as needed.

The file-definition database must include the following:

• the same publications as the remote databases, the tables and columns used in the publication, the foreign
key relationships and constraints of those tables and columns, and the tables required by those foreign key
relationships.

• a MobiLink user name that identifies the group of remote databases that are to apply the download file. You
use this group MobiLink user name in your synchronization scripts to identify the group of remote
databases.

1.10.1.2 Changes at the Consolidated Database

On the consolidated database, create a new script version for your file-based download and implement any
scripts required by your existing synchronization system into it. Upload scripts are not required.

This script version is used only for file-based download. For this script version, all scripts that take MobiLink
user names as parameters, instead, take a MobiLink user name that refers to a group of remote databases.
This is the user name that is defined in the file-definition database.

For each script version that you have defined, implement a begin_publication script.

For timestamp-based downloads, implement a modify_last_download_timestamp script for each script
version. How you implement this script depends on how much data you intend to send in each download file.

272 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

For example, one approach is to use the earliest time that any user from the group last downloaded
successfully. Remember that the ml_username parameter passed to this script is actually the group name.

 Note
It is strongly recommended that you use the -dsd option on the MobiLink server when generating file-based
download files from a Microsoft SQL Server consolidated database. If you do not use the -dsd option,
remotes may occasionally be unable to apply a file-based download file and will report an error similar to
the following: The last download time for publication <publication> is <timestamp>
The download file's next last download time was <timestamp> Cannot apply a
download file if its next last download time is before the publication's last
download time.

Generally, the frequency with which a remote database is unable to apply a download file will be
proportional to the frequency with which the remote database performs normal (connected)
synchronizations and the amount of concurrent activity in the consolidated database.

Related Information

Script Versions [page 312]
begin_publication Connection Event [page 374]
modify_last_download_timestamp Connection Event [page 457]
-dsd mlsrv17 Option [page 59]

1.10.1.3 Download File Creation

The download file contains the data to be synchronized. To create the download file, set up your file-definition
database and consolidated database as described above. Run dbmlsync with the -bc option and supply a file
name with the extension .df.

For example:

dbmlsync -c "UID=DBA;PWD=passwd;SERVER=fbdl_eng;DBF=fdef.db" -v+ -e "sv=filebased" -bc file1.df

You can also choose to specify options when you create the download file:

-be option

Use -be to add a string to the download file that can be accessed at the remote database using the
sp_hook_dbmlsync_validate_download_file stored procedure.
-bg option

Use the -bg option to create a download file that can be used by remotes that have never synchronized.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 273

Related Information

-be dbmlsync Option
sp_hook_dbmlsync_validate_download_file
-bg dbmlsync Option

1.10.1.4 Application of the Download File

If you need to apply a download file to a remote database that has never synchronized using MobiLink, then
before you apply the download file you need to either perform a normal synchronization on the remote
database or use the dbmlsync -bg option when creating the download file.

For timestamp-based synchronization, doing either of these two things causes the download of an initial
snapshot of the data. For both timestamp and snapshot based synchronization, this step sets the generation
number to the value that is generated by the begin_publication script on the consolidated database.

Perform a Normal Synchronization

You can prepare a remote database to receive download files by performing a synchronization that does not
use a download file.

Use the -bg Option

Alternatively, you can create a download file with the -bg option to use with remotes that haven't yet
synchronized. You apply this initial download file to prepare the remote database for file-based
synchronization.

Snapshot downloads

If you are performing snapshot downloads, then the initial download file just needs to set the generation
number. You may choose to include an initial snapshot of the data in this file, but since each snapshot
download contains all the data and does not depend on previous downloads, this is not required.

For snapshot downloads, using the -bg option is straightforward. Just specify -bg in the dbmlsync
command line when you create the download file. You can use the same script version to create the initial
download file as you use for subsequent download files.
Timestamp-based downloads

If you are performing timestamp-based downloads, then the initial download must set the generation
number on the remote database and include a snapshot of the data. With timestamp-based downloads,
each download builds on previous ones. Each download file contains a last download timestamp. All rows
changed on the consolidated database after the file's last download timestamp are included in the file. To
apply a file, a remote database must already have received all the changes that occurred before the file's
last download timestamp. This is confirmed by checking that the file's last download timestamp is greater

274 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a5a3816ce21014a3eabb0d0767aded.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af4e796ce21014be82cb3ca28255e1.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a5ac516ce21014844dab916799c4f0.html

than or equal to the remote database's last download timestamp (the time up to which the remote
database has received all changes from the consolidated database).

Before a remote database can apply its first normal download file, it must receive all data changed before
that file's last download timestamp and after January 1, 1900. The initial download file created with the -bg
option must contain this data. The easiest way to select this data is to create a separate script version that
uses the same download_cursor's as your normal file-based synchronization script version but does not
have a modify_last_download_timestamp script. If no modify_last_download_timestamp script is defined,
then the last download timestamp for a file-based download defaults to January 1, 1900.

If you apply download files built with the -bg option to remote databases that have already synchronized, the -
bg option causes the generation numbers on the remote database to be updated with the value on the
consolidated database at the time the download file was created. This defeats the purpose of generation
numbers, which is to prevent you from applying further file-based downloads until an upload has been
performed in situations such as when recovering a consolidated database that is lost or corrupted.

Related Information

MobiLink Generation Numbers [page 277]
-bg dbmlsync Option

1.10.2 Validation Checks

Before applying a download file to a remote database, dbmlsync does several things to ensure that the
synchronization is valid.

• dbmlsync checks the download file to ensure that the file-definition database that was used to create it
has:
• the same publication as the remote database
• the same tables and columns used in the publication
• the same foreign key relationships and constraints as those tables and columns

• dbmlsync checks to see if there is any data in the publication that has not been uploaded from the remote.
If there is, the download file is not applied, because applying the download file could cause pending upload
data to be lost.

• dbmlsync checks the last download timestamp, next last download timestamp, and creation time of the
download file to ensure that:
• newer data on the remote database is not overwritten by older data contained in the download file.
• a download file is not applied if applying it means that the remote database would miss some changes

that have occurred on the consolidated database. This situation might occur if the remote database
did not apply previous file-based downloads.

• Optionally, dbmlsync checks the generation number in the remote database to ensure it matches the
generation number in the download file.

•

In this section:

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 275

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a5ac516ce21014844dab916799c4f0.html

Automatic Validation [page 276]
Before applying a download file, dbmlsync performs special checks on the last download timestamp,
next last download timestamp, download file creation time, and transaction log.

MobiLink Generation Numbers [page 277]
Generation numbers provide a mechanism for forcing remote databases to upload data before applying
any more download files. This is especially useful when a problem on the consolidated database has
resulted in data loss and you must recover lost data from the remote databases.

Custom Validation [page 278]
You can create custom validation logic to determine if a download file should be applied to a remote
database. You do this with the sp_hook_dbmlsync_validate_download_file stored procedure. With this
stored procedure, you can both reject a download file and override the default checking of the
generation number.

1.10.2.1 Automatic Validation

Before applying a download file, dbmlsync performs special checks on the last download timestamp, next last
download timestamp, download file creation time, and transaction log.

Last Download Timestamp and Next Last Download Timestamp

Each download file contains all changes to be downloaded that occurred on the consolidated database
between the file's last download timestamp, and its next last download timestamp. The time at the
consolidated database is used for both time values. By default the file's last download time is Jan 1, 1900 12:00
AM and the file's next last download timestamp is the time the download file was created. These defaults can
be overridden by implementing the generate_next_last_download_timestamp,
modify_last_download_timestamp, and modify_next_last_download_timestamp scripts on the consolidated
database.

A remote site can apply a download file only if the file's last download timestamp is less than or equal to the
remote's last download timestamp. This ensures that a remote database never misses operations that occur
on the consolidated database. Usually when a file-based download fails based on this check, the remote
database has missed one or more download files. The situation can be corrected by applying the missing
download files or by performing a full or download-only synchronization.

In addition, a remote site can apply a download file only if the file's next last download timestamp is greater
than the remote database's last download timestamp. The remote database's last download timestamp is the
time (at the consolidated database) up to which the remote database has received all changes that are to be
downloaded. The remote database's last download time is updated each time the remote database
successfully applies a download (normal or file-based). This check ensures that a download file is not applied if
more recent data has already been downloaded. A common case where this could happen occurs when
download files are applied out of order. For example, suppose a download file F1.df is created, and another file
F2.df is created later. This check ensures that F1.df cannot be applied after F2.df, because that could allow
newer data in F2.df to be overwritten with older data in F1.df.

When a file-based download fails based on the next last download timestamp, no additional action is required
other than to delete the file. Synchronization succeeds once a new file is received.

276 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Creation Time

The download file's creation time indicates the time at the consolidated database when creation of the file
began. A download file can only be applied if the file's creation time is greater than the remote database's last
upload time. The remote's last upload time is the time at the consolidated database when the remote's last
successful upload was committed. This check ensures that data that has been uploaded after the creation of
the download (and is newer than the download) is not overwritten by older data in the download file.

When a download file is rejected based on this check, no action is required. The remote site should be able to
apply the next download file.

When an upload fails because dbmlsync did not receive an acknowledgement after sending an upload to the
MobiLink server, the remote database's last upload time may be incorrect. In this case, the creation time check
cannot be performed and the remote database is unable to apply download files until it completes a normal
synchronization.

Transaction Log

Before applying a download file, dbmlsync scans the remote database's transaction log and builds up a list of
all changes that must be uploaded. Dbmlsync only applies a download file if it does not contain any operations
that affect rows with changes that must be uploaded.

1.10.2.2 MobiLink Generation Numbers

Generation numbers provide a mechanism for forcing remote databases to upload data before applying any
more download files. This is especially useful when a problem on the consolidated database has resulted in
data loss and you must recover lost data from the remote databases.

On the remote database, a separate generation number is automatically maintained for each subscription. On
the consolidated database, the generation number for each subscription is determined by the
begin_publication script. Each time a remote database performs a successful upload, it updates the remote
generation number with the value set by the begin_publication script in the consolidated database.

Each time a download file is created, the generation number set by the begin_publication script is stored in the
download file. A remote site only applies a download file if the generation number in the file is equal to the
generation number stored in the remote database.

 Note
Whenever the generation number generated by the begin_publication script for a file-based download
changes, the remote databases must perform a successful upload before they can apply any new download
files.

The sp_hook_dbmlsync_validate_download_file stored procedure can be used to override the default checking
of the generation number.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 277

Related Information

begin_publication Connection Event [page 374]
end_publication Connection Event [page 415]
sp_hook_dbmlsync_validate_download_file

1.10.2.3 Custom Validation

You can create custom validation logic to determine if a download file should be applied to a remote database.
You do this with the sp_hook_dbmlsync_validate_download_file stored procedure. With this stored procedure,
you can both reject a download file and override the default checking of the generation number.

You can use the dbmlsync -be option to embed a string in the file. You use the -be option against the file-
definition database when you create the download file. This string is passed to the
sp_hook_dbmlsync_validate_download_file through the #hook_dict table, and can be used in your validation
logic.

Related Information

sp_hook_dbmlsync_validate_download_file

1.10.3 File-Based Download Examples

The following two examples set up a file-based download synchronization using a consolidated database with
only one table. The first is a simple snapshot example and the second is a slightly more involved timestamp-
based example.

In this section:

Snapshot Example [page 279]
This example implements file-based download for snapshot synchronization. It sets up the three
databases that are required by the file-based download, and then demonstrates how to download data.

Timestamp-Based Example [page 283]
This example implements file-based download for timestamp-based synchronization. It sets up the
three databases and then demonstrates how to download data by file.

278 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af4e796ce21014be82cb3ca28255e1.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af4e796ce21014be82cb3ca28255e1.html

1.10.3.1 Snapshot Example

This example implements file-based download for snapshot synchronization. It sets up the three databases
that are required by the file-based download, and then demonstrates how to download data.

This example is presented in such a way that you can either just read through it, or you can cut and paste the
text to run the sample.

Create Databases for the Sample

The following commands create the three databases used in the example: a consolidated database, a remote
database, and a file-definition database.

dbinit -dba DBA,passwd scons.db dbinit -dba DBA,passwd sremote.db dbinit -dba DBA,passwd sfdef.db

The following commands start the three databases and create a data source name for MobiLink to use to
connect to the consolidated database.

 dbeng17 -n sfdef_eng sfdef.db dbeng17 -n scons_eng scons.db dbeng17 -n sremote_eng sremote.db dbdsn -y -w fbd_demo -c
"SERVER=scons_eng;DBF=scons.db;UID=DBA;PWD=passwd;ASTART=off;ASTOP=off"

Open Interactive SQL, connect to scons.db and run the MobiLink setup script. For example:

read "C:\Program Files\SQL Anywhere 17\MobiLink\setup\syncsa.sql"

Start the MobiLink server:

start mlsrv17 -v+ -c "DSN=fbd_demo" -zu+ -ot scons.txt

Set up the Snapshot Example Consolidated Database

In this example, the consolidated database has one table, called T1. After connecting to the consolidated
database, you can run the following SQL to create table T1:

CREATE TABLE T1 (pk INTEGER PRIMARY KEY,
 c1 INTEGER);

The following code creates a script version called filebased and creates a download script for that script
version.

CALL ml_add_table_script('filebased', 'T1', 'download_cursor', 'SELECT pk, c1 FROM T1');

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 279

The following code creates a script version called normal and creates upload and download scripts for that
script version.

CALL ml_add_table_script ('normal', 'T1', 'upload_insert',
 'INSERT INTO T1 VALUES ({ml r.pk}, {ml r.c1})');
CALL ml_add_table_script('normal', 'T1',
 'upload_update',
 'UPDATE T1 SET c1 = {ml r.c1} WHERE pk = {ml r.pk} ');
CALL ml_add_table_script('normal', 'T1',
 'upload_delete',
 'DELETE FROM T1 WHERE pk = {ml r.pk}');
CALL ml_add_table_script('normal', 'T1',
 'download_cursor',
 'SELECT pk, c1 FROM T1');
CALL ml_add_table_script('normal', 'T1',
 'download_delete_cursor',
 '--{ml_ignore}'); COMMIT;

The following command creates the stored procedure begin_pub and specifies that begin_pub is the
begin_publication script for both the "normal" and "filebased" script versions:

CREATE PROCEDURE begin_pub (INOUT generation_num integer,
 IN username varchar(128),
 IN pubname varchar(128))
BEGIN
 SET generation_num=1;
END;
CALL ml_add_connection_script(
 'filebased',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name}) }');
CALL ml_add_connection_script(
 'normal',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username}, {ml s.publication_name}) }');

Create the Snapshot Example Remote Database

In this example, the remote database also contains one table, called T1. Connect to the remote database and
run the following SQL to create the table T1, a publication called P1, and a user called U1. The SQL also creates
a subscription for U1 to P1.

CREATE TABLE T1 (pk INTEGER PRIMARY KEY,
 c1 INTEGER
);
CREATE PUBLICATION P1 (
 TABLE T1
);
CREATE SYNCHRONIZATION USER U1;
CREATE SYNCHRONIZATION SUBSCRIPTION

280 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

TO P1 FOR U1;

The following code creates an sp_hook_dbmlsync_validate_download_file hook to implement user-defined
validation logic in the remote database:

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file() BEGIN
 DECLARE udata varchar(256);
SELECT value
 INTO udata
 FROM #hook_dict
 WHERE name = 'user data';
 IF udata <> 'ok' THEN
 UPDATE #hook_dict
 SET value = 'FALSE'
 WHERE name = 'apply file';
 END IF; END

Create the Snapshot Example File-Definition Database

A file-definition database is required in MobiLink systems that use file-based download. This database has the
same schema as the remote databases being updated by file-based download, and it contains no data or state
information. The file-definition database is used solely to define the structure of the data that is to be included
in the download file. One file-definition database can be used for many groups of remote databases, each
defined by its own MobiLink group user name.

The following code defines the file-definition database for this sample. It creates a schema that is identical to
the remote database, and also creates:

• a publication called P1 that publishes all rows of the T1 table. The same publication name must be used in
the file-definition database and the remote databases.

• a MobiLink user called G1. This user represents all the remotes that are to be updated in the file-based
download.

• a subscription to the publication.

You must connect to sfdef.db before running this code.

CREATE TABLE T1 (pk INTEGER PRIMARY KEY,
 c1 INTEGER
);
CREATE PUBLICATION P1 (
 TABLE T1
);
CREATE SYNCHRONIZATION USER G1;
CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1 FOR G1;

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 281

Prepare for Initial Synchronization

To prepare your new remote database so that you can apply a download file, you need to either perform a
normal synchronization or create the download file with the dbmlsync -bg option. This example shows you how
to initialize your new remote database by performing a normal synchronization.

You can perform an initial synchronization of the remote database with the script version called normal that
was created earlier:

dbmlsync -c "UID=DBA;PWD=passwd;SERVER=sremote_eng;DBF=sremote.db" -v+ -e
"sv=normal"

Demonstrate the Snapshot Example File-Based Download

Connect to the consolidated database and insert some data that is synchronized by file-based download, such
as the following:

INSERT INTO T1 VALUES(1, 1); INSERT INTO T1 VALUES(2, 4);
INSERT INTO T1 VALUES(3, 9); COMMIT;

The following command must be run on the computer that holds the file-definition database. It does the
following:

• The dbmlsync -bc option creates the download file, and names it file1.df.
• The -be option includes the string "OK" in the download file that is accessible to the

sp_dbmlsync_validate_download_file hook.

dbmlsync -c "UID=DBA;PWD=passwd;SERVER=sfdef_eng;DBF=sfdef.db" -v+ -e
"sv=filebased" -bc file1.df -be ok -ot fdef.txt

To apply the download file, run dbmlsync with the -ba option on the remote database, supplying the name of
the download file you want to apply:

dbmlsync -c "UID=DBA;PWD=passwd;SERVER=sremote_eng; DBF=sremote.db" -v+ -ba
file1.df -ot remote.txt

The changes are now applied to the remote database. Open Interactive SQL, connect to the remote database,
and run the following SQL statement to verify that the remote database has the data:

SELECT * FROM T1

Clean up the Snapshot Example

The following commands stop all three database servers and erase the files.

del file1.df mlstop -h -w

282 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

dbstop -y -c "SERVER=sfdef_eng; UID=DBA; PWD=passwd"
dbstop -y -c "SERVER=scons_eng; UID=DBA; PWD=passwd"
dbstop -y -c "SERVER=sremote_eng; UID=DBA; PWD=passwd"
dberase -y sfdef.db
dberase -y scons.db dberase -y sremote.db

1.10.3.2 Timestamp-Based Example

This example implements file-based download for timestamp-based synchronization. It sets up the three
databases and then demonstrates how to download data by file.

This example is presented in such a way that you can either just read through it, or you can cut and paste the
text to run the sample.

Create Databases for the Sample

The following commands create the three databases used in the example: a consolidated database, a remote
database, and a file-definition database.

dbinit -dba DBA,passwd tcons.db dbinit -dba DBA,passwd tremote.db dbinit -dba DBA,passwd tfdef.db

The following commands start the three databases and create a data source name for MobiLink to use to
connect to the consolidated database.

dbeng17 -n tfdef_eng tfdef.db dbeng17 -n tcons_eng tcons.db dbeng17 -n tremote_eng tremote.db dbdsn -y -w tfbd_demo -c
"SERVER=tcons_eng;DBF=tcons.db;UID=DBA;PWD=passwd;START=off;ASTOP=off"

Open Interactive SQL, connect to tcons.db and run the MobiLink setup script. For example:

read "C:\Program Files\SQL Anywhere 17\MobiLink\setup\syncsa.sql"

Start the MobiLink server:

mlsrv17 -v+ -c "DSN=tfbd_demo" -zu+ -ot tcons.txt

Set up the Timestamp Example Consolidated Database

In this example, the consolidated database has one table, called T1. After connecting to the consolidated
database, you can run the following code to create T1:

CREATE TABLE T1 (pk INTEGER PRIMARY KEY,

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 283

 c1 INTEGER,
 last_modified TIMESTAMP DEFAULT TIMESTAMP);

The following code defines a script version called normal with a minimal number of scripts. This script version
is used for synchronizations that do not use file-based download.

CALL ml_add_table_script('normal', 'T1', 'upload_insert',
 'INSERT INTO T1(pk, c1) VALUES({ml r.pk}, {ml r.c1})');

CALL ml_add_table_script('normal', 'T1',
 'upload_update',
 'UPDATE T1 SET c1 = {ml r.c1} WHERE pk = {ml r.pk} ');
CALL ml_add_table_script('normal', 'T1',
 'upload_delete',
 'DELETE FROM T1 WHERE pk = {ml r.pk}');
CALL ml_add_table_script('normal', 'T1',
 'download_cursor',
 'SELECT pk, c1 FROM T1 WHERE last_modified >= {ml s.last_table_download}');

The following code sets the generation number for all subscriptions to 1. Generation numbers can be useful if
your consolidated database becomes lost or corrupted and you need to force an upload.

CREATE PROCEDURE begin_pub (INOUT generation_num integer,
 IN username varchar(128),
 IN pubname varchar(128))
BEGIN
 SET generation_num = 1;
END;

CALL ml_add_connection_script('normal',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name},
 {ml s.last_publication_upload},
 {ml s.last_publication_download}) }');
 COMMIT;

The following code defines the script version called filebased. This script version is used to create file-based
download.

CALL ml_add_connection_script('filebased', 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name}) }');
CALL ml_add_table_script('filebased', 'T1',
 'download_cursor',
 'SELECT pk, c1 FROM T1 WHERE last_modified >= {ml s.last_table_download}');

The following code sets the last download time so that all changes that occurred within the last five days are
included in download files. Any remote database that has missed all the download files created in the last five
days has to perform a normal synchronization before being able to apply any more file-based downloads.

CREATE PROCEDURE ModifyLastDownloadTimestamp(

284 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 INOUT last_download_timestamp TIMESTAMP,
 IN ml_username VARCHAR(128))
BEGIN
 SELECT dateadd(day, -5, CURRENT TIMESTAMP)
 INTO last_download_timestamp;
END;

CALL ml_add_connection_script('filebased',
 'modify_last_download_timestamp',
 'CALL ModifyLastDownloadTimestamp(
 {ml s.last_download}, {ml s.username})');
 COMMIT;

Create the Timestamp Example Remote Database

In this example, the remote database also contains one table, called T1. After connecting to the remote
database, run the following code to create table T1, a publication called P1, and a user called U1. The code also
creates a subscription for U1 to P1.

CREATE TABLE T1 (pk INTEGER PRIMARY KEY,
 c1 INTEGER
);
CREATE PUBLICATION P1 (
 TABLE T1
);
CREATE SYNCHRONIZATION USER U1;
CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1 FOR U1;

The following code defines an sp_hook_dbmlsync_validate_download_file stored procedure. This stored
procedure prevents the application of download files that do not have the string "ok" embedded in them.

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file() BEGIN
 DECLARE udata varchar(256);

 SELECT value
 INTO udata
 FROM #hook_dict
 WHERE name = 'user data';

 IF udata <> 'ok' THEN
 UPDATE #hook_dict
 SET value = 'FALSE'
 WHERE name = 'apply file';
 END IF; END

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 285

Create the Timestamp Example File-Definition Database

The following code defines the file-definition database for the timestamp example. It creates a table, a
publication, a user, and a subscription for the user to the publication.

CREATE TABLE T1 (pk INTEGER PRIMARY KEY,
 c1 INTEGER
);
CREATE PUBLICATION P1 (
 TABLE T1
);
CREATE SYNCHRONIZATION USER G1;
CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1 FOR G1;

Prepare for Initial Synchronization

To prepare your new remote database so that you can apply a download file, you need to either perform a
normal synchronization or create the download file with the dbmlsync -bg option. This example shows you how
to use -bg.

The following code defines a script version called filebased_init for the consolidated database. This script
version has a single begin_publication script.

CALL ml_add_table_script('filebased_init', 'T1', 'download_cursor',
 'SELECT pk, c1 FROM T1');
CALL ml_add_connection_script(
 'filebased_init',
 'begin_publication',
 '{ call begin_pub(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name}) }');
 COMMIT;

The following two command lines create and apply an initial download file using the script version called
filebased_init and the -bg option.

dbmlsync -c "UID=DBA;PWD=passwd;SERVER=tfdef_eng;DBF=tfdef.db" -v+ -e "sv=filebased_init" -bc tfile1.df -be ok -bg
 -ot tfdef1.txt
dbmlsync -c "UID=DBA;PWD=passwd;SERVER=tremote_eng;DBF=tremote.db" -v+ -ba tfile1.df -ot tremote.txt

286 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Demonstrate the Timestamp Example File-Based Download

Connect to the consolidated database and insert some data that is synchronized by file-based download, such
as the following:

INSERT INTO T1(pk, c1) VALUES(1, 1); INSERT INTO T1(pk, c1) VALUES(2, 4);
INSERT INTO T1(pk, c1) VALUES(3, 9); commit;

The following command line creates a download file containing the new data.

dbmlsync -c "UID=DBA;PWD=passwd;SERVER=tfdef_eng;DBF=tfdef.db" -v+ -e "sv=filebased" -bc tfile2.df -be ok -ot tfdef2.txt

The following command line applies the download file to the remote database.

dbmlsync -c "UID=DBA;PWD=passwd;SERVER=tremote_eng;DBF=tremote.db" -v+ -ba tfile2.df -ot tfdef3.txt

The changes are now applied to the remote database. Open Interactive SQL, connect to the remote database,
and run the following SQL statement to verify that the remote database has the data:

SELECT * FROM T1

Clean up the Timestamp Example

The following commands stop all three database servers and then erase the files.

del tfile1.df mlstop -h -w
dbstop -y -c "SERVER=tfdef_eng; UID=DBA; PWD=passwd"
dbstop -y -c "SERVER=tcons_eng; UID=DBA; PWD=passwd"
dbstop -y -c "SERVER=tremote_eng; UID=DBA; PWD=passwd"
dberase -y tfdef.db
dberase -y tcons.db dberase -y tremote.db

1.11 The Relay Server Reverse Proxy

The Relay Server is a reverse proxy that enables secure, load-balanced communication between mobile devices
and backend servers through a web server. Supported backend servers include MobiLink, SAP Mobile Server,
SAP Afaria, and SAP Mobile Office.

The Relay Server provides the following:

• A common communication architecture for mobile devices communicating with backend servers.
• A mechanism to enable a load-balanced and fault-tolerant environment for backend servers.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 287

• A way to help communication between mobile devices and back-end servers in a way that integrates easily
with existing corporate firewall configurations and policies.

1.12 MobiLink Events

The synchronization process has multiple steps and a unique event identifies each step. You control the
synchronization process by writing scripts associated with some of these events.

In this section:

Synchronization Scripts [page 288]
You control the synchronization process by writing synchronization scripts and storing or referencing
them in MobiLink system tables in the consolidated database. You can write scripts in SQL,or Java,
or .NET.

Synchronization Events [page 332]
A MobiLink synchronization is made up of many events.

1.12.1 Synchronization Scripts

You control the synchronization process by writing synchronization scripts and storing or referencing them in
MobiLink system tables in the consolidated database. You can write scripts in SQL,or Java, or .NET.

MobiLink synchronization logic is specified with synchronization scripts. Scripts define:

• how data that is uploaded from the remote database should be applied to the consolidated database
• what data should be downloaded from the consolidated database
• how authentication takes place during synchronization (optional)

Scripts can be individual statements or stored procedure calls. They are stored or referenced in your
consolidated database. To add scripts to the consolidated database, you can use SQL Central or you can use
system procedures.

 Caution
There should be no implicit or explicit commit or rollback in your SQL synchronization scripts or the
procedures or triggers that are called from your SQL synchronization scripts. COMMIT or ROLLBACK
statements within SQL scripts alter the transactional nature of the synchronization steps. If you use them,
MobiLink cannot guarantee the integrity of your data in the event of a failure.

During synchronization, the MobiLink server reads the scripts if they are not already loaded, then executes
them against the consolidated database.

288 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The synchronization process has multiple steps. A unique event identifies each step. You control the
synchronization process by writing scripts associated with some of these events. You write a script only when
some particular action must occur at a particular event. The MobiLink server executes each script when its
associated event occurs. If you do not define a script for a particular event, the MobiLink server simply
proceeds to the next step.

For example, one event is begin_upload_rows. You can write a script and associate it with this event. The
MobiLink server reads this script when it is first needed, and executes it during the upload phase of
synchronization. If you write no script, the MobiLink server proceeds immediately to the next step, which is
processing the uploaded rows.

Some scripts, called table scripts, are associated not only with an event, but also with a particular table in the
remote database. The MobiLink server performs some tasks on a table-by-table basis; for example,
downloading rows. You can have many scripts associated with the same event, but each with different
application tables. Alternatively, you can define many scripts for some application tables, and very few for
others.

In this section:

Simple Synchronization Script Example [page 290]
MobiLink provides many events that you can exploit, but it is not mandatory to provide scripts for each
event. In a simple synchronization model, you may need only a few scripts.

Scripts and the Synchronization Process [page 291]
Each script corresponds to a particular event in the synchronization process. You write a script only
when some action must occur. All unnecessary events can be left undefined.

Script Types [page 292]
There are two types of synchronization scripts, connection-level scripts and table-level scripts.

Script Parameters [page 294]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 289

Most synchronization scripts can receive parameters from the MobiLink server. For details about the
parameters you can use in each script, see the documentation for synchronization events.

Script Versions [page 312]
Scripts are organized into groups called script versions. By specifying a particular script version,
MobiLink clients can select which set of synchronization scripts are used to process the upload and
prepare the download.

Scripts Required for Synchronization [page 315]
When you run the MobiLink server, certain scripts are required. Which scripts are required is
determined by whether you are doing a bi-directional, upload-only, or download-only synchronization.

Script Additions and Deletions [page 316]
When you use the Create Synchronization Model Wizard, scripts are automatically added to the
consolidated database when you deploy the model.

Scripts to Upload Rows [page 321]
To inform the MobiLink server on how to process the upload data received from the remote databases,
you define upload scripts. You write separate scripts to handle rows that are updated, inserted, or
deleted at the remote database.

Scripts to Download Rows [page 324]
There are two scripts that can be used for processing each table during the download transaction.
These are the download_cursor script, which performs inserts and updates, and the
download_delete_cursor script, which performs deletes.

Scripts to Handle Errors [page 329]
An error in a synchronization script occurs when an operation in the script fails while the MobiLink
server is executing it.

Related Information

The Synchronization Process
Synchronization Events [page 332]
Options for Writing Server-side Synchronization Logic
Synchronization Scripts in Microsoft .NET [page 541]
Synchronization Script Writing in Java [page 526]
Synchronization Techniques [page 113]

1.12.1.1 Simple Synchronization Script Example

MobiLink provides many events that you can exploit, but it is not mandatory to provide scripts for each event.
In a simple synchronization model, you may need only a few scripts.

Downloading all the rows from the table to each remote database synchronizes the ULProduct table in the
CustDB sample application. In this case, no additions are permitted at the remote databases. You can
implement this simple form of synchronization with two scripts; in this case only two events have a script
associated with them.

290 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b5f7de6ce21014abd0ed7492e3b5da.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcd7226ce210149045b3c43c351444.html

The MobiLink event that controls the rows to be downloaded during each synchronization is named the
download_cursor event. Cursor scripts must contain SELECT statements. The MobiLink server uses these
queries to define a cursor. For a download_cursor script, the cursor selects the rows to download to one
particular table in the remote database.

In the CustDB sample application, there is a single download_cursor script for the ULProduct table in the
sample application, which consists of the following query:

SELECT prod_id, price, prod_name FROM ULProduct

This query generates a result set. The rows that make up this result set are downloaded to the client. In this
case, all the rows of the table are downloaded.

The MobiLink server knows to send the rows to the ULProduct application table because this script is
associated with both the download_cursor event and ULProduct table by the way it is stored in the
consolidated database. SQL Central allows you to make these associations.

The second required event is the download_delete_cursor, which must have a script defined, along with the
download_cursor, for each table being downloaded. This simple example does not use download deletes so the
script is defined as --{ml_ignore}.

In this example, the query selects data from a consolidated table also named ULProduct. The names need not
match. You could, instead, download data to the ULProduct application table from any table, or any
combination of tables, in the consolidated database by rewriting the query.

You can write more complicated synchronization scripts. For example, you could write a script that downloads
only recently modified rows, or one that provides different information to each remote database.

1.12.1.2 Scripts and the Synchronization Process

Each script corresponds to a particular event in the synchronization process. You write a script only when some
action must occur. All unnecessary events can be left undefined.

The two principal parts of the process are the processing of uploaded information and the preparation of rows
for downloading. If rows are uploaded from a remote table you must define the appropriate upload script(s). If
a table is to have rows downloaded via SQL then both the download_cursor and download_delete_cursor
scripts must be defined.

The MobiLink server reads and prepares each script once, when it is first needed. The script is then executed
whenever the event is invoked.

The Sequence of Events

An overview of MobiLink events is provided in the documentation for synchronization events.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 291

Notes

• MobiLink technology allows multiple clients to synchronize concurrently. In this case, each client uses a
separate connection to the consolidated database.

• The begin_connection and end_connection events are independent of any one synchronization as one
connection can handle many synchronization requests. These scripts have no parameters. These are
examples of connection-level scripts.

• Some events are invoked only once for each synchronization regardless of how many tables are
synchronized. These are connection-level scripts.

• Some events are invoked once for each table being synchronized. Scripts associated with these events are
called table-level scripts.
While each table can have its own table scripts, you can also write table-level scripts that are shared by
several tables, though this is uncommon.

• Some events, such as begin_synchronization, occur at both the connection level and the table level. You
can supply both connection and table scripts for these events.

Reference material, including details about each script and its parameters, can be found in the documentation
for synchronization events.

Related Information

Scripts to Upload Rows [page 321]
Scripts to Download Rows [page 324]
Synchronization Events [page 332]

1.12.1.3 Script Types

There are two types of synchronization scripts, connection-level scripts and table-level scripts.

connection-level scripts

These scripts perform actions that are connection-specific or synchronization-specific and that are
independent of any one remote table. These scripts can be used with other scripts to implement your
synchronization business logic.
table-level scripts

These scripts perform actions specific to one synchronization and one particular remote table. These
scripts are used with other scripts to implement your synchronization business logic, including conflict
resolution.

In this section:

Connection Scripts [page 293]
Connection-level scripts control high level events that are not associated with a particular table. Use
these events to perform global tasks that are required during every synchronization.

292 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Table Scripts [page 293]
Table scripts allow actions at specific events relating to the synchronization of a specific table, such as
uploading rows, resolving conflicts, or selecting rows to download.

1.12.1.3.1 Connection Scripts

Connection-level scripts control high level events that are not associated with a particular table. Use these
events to perform global tasks that are required during every synchronization.

Connection scripts control actions centered on connecting and disconnecting, and synchronization-level event
actions such as beginning and ending the upload or download process. Some connection scripts have related
table scripts. These connection scripts are always invoked regardless of the tables being synchronized.

You only need to write a connection-level script when some action must occur at a particular event. You may
need to create scripts for only a few events. The default action at any event is for the MobiLink server to
perform no actions. Some simple synchronization schemes need no connection scripts.

ml_global Script Version

To save you from defining the same scripts multiple times, you can define connection-level scripts once and
then re-use them from any script version. You do this by defining a script version called ml_global.

Related Information

Script Versions [page 312]

1.12.1.3.2 Table Scripts

Table scripts allow actions at specific events relating to the synchronization of a specific table, such as
uploading rows, resolving conflicts, or selecting rows to download.

The synchronization scripts for a given table can refer to any table (or a combination of tables) in the
consolidated database. You can use this feature to fill a particular remote table with data stored in one or more
consolidated tables, or to store data uploaded from a single remote table into multiple tables in the
consolidated database.

Table Names Need Not Match

The names of tables in the remote databases need not match the names of the tables in the consolidated
database. The MobiLink server determines which scripts are associated with a table by looking up the remote

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 293

table name in the ml_table system table. The scripts themselves reference the consolidated tables of your
choice.

1.12.1.4 Script Parameters

Most synchronization scripts can receive parameters from the MobiLink server. For details about the
parameters you can use in each script, see the documentation for synchronization events.

You can specify parameters in your SQL scripts in one of two ways:

• named script parameters
• question marks (deprecated in SQL scripts)

In this section:

Named Script Parameters [page 294]
Named parameters have the following advantages over (deprecated) question marks:

Script Parameters Represented by Question Marks (Deprecated for SQL) [page 296]
Representing parameters with question marks is an ODBC convention. To use question marks in your
MobiLink SQL scripts, place a single question mark in your script for each parameter.

Commenting Script Parameters [page 296]
The following forms of comments are recognized:

MobiLink System Parameters and Events [page 297]
The following table provides a list of MobiLink system parameters that shows which event type each
parameter is valid for and which event(s) each parameter can be used in.

User-defined Named Parameters [page 310]
You can also define your own parameters. These are especially useful for RDBMSs that don't allow
user-defined variables.

Authentication Parameters [page 311]
In MobiLink scripts, authentication parameters can be specified using named parameters.

Related Information

Synchronization Events [page 332]

1.12.1.4.1 Named Script Parameters

Named parameters have the following advantages over (deprecated) question marks:

• Named parameters allow you to specify any subset of the available parameters in any order.
• With the exception of in/out parameters, you can specify the same named parameter more than once

within a script.

294 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

• When you use named parameters, you can specify the remote ID in your scripts. This is the only way to
specify the remote ID in scripts.

• You can create your own named parameters, called user-defined named parameters.

You cannot mix named parameters and question marks in a single script.

There are five types of MobiLink named parameters. To specify a named parameter, you must prefix it with its
type, as follows:

Type of named parameter Prefix Examples

System parameter. s. {ml s.remote_id}

Row parameter. Describes the column
name. If the column name contains
spaces, enclose it in double quotes or
square brackets.

r. {ml r.cust_id}

{ml r."Column name"}

Old row parameter. Only used in up
load_update scripts to specify the pre-
image column values. If the column
name contains spaces, enclose it in
double quotes or square brackets.

o. {ml o.cust_name}

{ml o."Column name"}

Authentication parameter. a. {ml a.1}

User-defined parameter. If the parame
ter will be updated (in/out), use the pre
fix u. If the parameter will only be refer
enced (input-only), use the prefix ui.

u. or ui. {ml u.varname}

{ml ui.varname}

To reference a script parameter by name, enclose the parameter in curly braces and prefix it with ml, as in {ml
parameter }. For example, {ml s.action_code}. The curly brace notation is an ODBC convention.

For convenience, you can enclose a larger section of code in the curly braces, as long as the section of code
does not contain any schema names with the same name as a MobiLink script parameter. For example, each of
the following upload_insert scripts are valid and equivalent:

INSERT INTO t (id, c0) VALUES({ml r.id}, {ml r.c0})

and

INSERT INTO t (id, c0) VALUES({ml r.id, r.c0})

and

{ml INSERT INTO t (id, c0) VALUES(r.id, r.c0) }

Related Information

Authentication Parameters [page 311]
User-defined Named Parameters [page 310]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 295

1.12.1.4.2 Script Parameters Represented by Question Marks
(Deprecated for SQL)

Representing parameters with question marks is an ODBC convention. To use question marks in your MobiLink
SQL scripts, place a single question mark in your script for each parameter.

The MobiLink server replaces each question mark with the value of a parameter. It substitutes values in the
order the parameters appear in the script definition.

Some parameters are optional. A parameter is optional only if no subsequent parameters are specified. For
example, you must use parameter 1 if you are going to use parameter 2. The parameters must be in the order
specified for each event.

 Note
Representing parameters with question marks has been deprecated in SQL scripts. It is strongly
recommended that you use named parameters instead.

Related Information

Named Script Parameters [page 294]
User-defined Named Parameters [page 310]
Synchronization Events [page 332]

1.12.1.4.3 Commenting Script Parameters

The following forms of comments are recognized:

• Double hyphen prefix (--)
• Double forward slash prefix (//)
• Block commenting (/* */)

The first two forms cause the script text to be ignored until the end of a line. The third form causes all script
text between the /* prefix and the */suffix to be ignored. Block commenting cannot be nested.

Any other type of vendor-specific comment is not recognized and should not be used to comment references
to a named parameter.

296 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.12.1.4.4 MobiLink System Parameters and Events

The following table provides a list of MobiLink system parameters that shows which event type each parameter
is valid for and which event(s) each parameter can be used in.

System parameter Event type Event parameter is available in

action_code connection The action_code parameter is available
in the following events:

• handle_error
• handle_odbc_error
• report_error
• report_odbc_error

authentication_message connection The authentication_message parame
ter is available in the following events:

• authenticate_parameters
• authenticate_user
• authenticate_user_hashed

authentication_status connection The authentication_status parameter is
available in the following events:

• authenticate_parameters
• authenticate_user
• authenticate_user_hashed

bytes connection and table The bytes parameter is available in the
following events:

• download_statistics
• upload_statistics

conflicted_updates connection and table The conflicted_updates parameter is
available in the following events:

• upload_statistics

connection_retries connection The conflicted_retries parameter is
available in the following events:

• synchronization_statistics

deadlocks connection and table The deadlocks parameter is available in
the following events:

• synchronization_statistics (con
nection event)

• upload_statistics (connection and
table events)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 297

System parameter Event type Event parameter is available in

deleted_rows connection and table The deleted_rows parameter is availa
ble in the following events:

• download_statistics
• upload_statistics

error_code connection The error_code parameter is available
in the following events:

• handle_error
• modify_error_message
• report_error

error_message connection The error_message parameter is availa
ble in the following events:

• handle_error
• handle_odbc_error
• modify_error_message
• report_error
• report_odbc_error

errors connection and table The errors parameter is available in the
following events:

• download_statistics
• synchronization_statistics
• upload_statistics

event_name connection and table The event_name parameter is available
in the following events:

• time_statistics

fetched_rows connection and table The fetched_rows parameter is availa
ble in the following events:

• download_statistics

file_authentication_code connection The file_authentication_code parame
ter is available in the following events:

• authenticate_file_transfer
• authenticate_file_upload

filename connection The filename parameter is available in
the following events:

• authenticate_file_transfer
• authenticate_file_upload

298 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

System parameter Event type Event parameter is available in

file_size connection The file_size parameter is available in
the following events:

• authenticate_file_upload

filtered_rows connection and table The filtered_rows parameter is available
in the following events:

• download_statistics

generation_number connection The filtered_rows parameter is available
in the following events:

• begin_publication
• end_publication

hashed_new_password connection The hashed_new_password parameter
is available in the following events:

• authenticate_user_hashed

hashed_password connection The hashed_password parameter is
available in the following events:

• authenticate_user_hashed

ignored_deletes connection and table The ignored_deletes parameter is avail
able in the following events:

• upload_statistics

ignored_inserts connection and table The ignored_inserts parameter is avail
able in the following events:

• upload_statistics

ignored_updates connection and table The ignored_updates parameter is
available in the following events:

• upload_statistics

inserted_rows connection and table The inserted_rows parameter is availa
ble in the following events:

• upload_statistics

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 299

System parameter Event type Event parameter is available in

last_download connection The last_download parameter is availa
ble in the following events:

• begin_download
• end_download
• modify_last_download_timestamp
• modify_next_last_download_time

stamp
• nonblocking_download_ack
• prepare_for_download

last_publication_download connection The last_publication_download param
eter is available in the following events:

• begin_publication
• end_publication
• publication_nonblocking_down

load_ack

last_publication_upload connection The last_publication_upload parameter
is available in the following events:

• begin_publication
• end_publication

last_table_download table The last_table_download parameter is
available in the following events:

• begin_download
• begin_download_deletes
• begin_download_rows
• download_cursor
• download_delete_cursor
• end_download
• end_download_deletes
• end_download_rows

maximum_time connection and table The maximum_time parameter is avail
able in the following events:

• time_statistics

minimum_time connection and table The minimum_time parameter is availa
ble in the following events:

• time_statistics

new_password connection The new_password parameter is availa
ble in the following events:

• authenticate_user

300 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

System parameter Event type Event parameter is available in

new_remote_id connection and table The new_remote_id parameter is avail
able in the following events:

• authenticate_user
• begin_synchronization

new_username connection and table The new_username parameter is availa
ble in the following events:

• authenticate_user
• begin_synchronization

next_last_download connection The next_last_download parameter is
available in the following events:

• generate_next_last_down
load_timestamp

• modify_next_last_download_time
stamp

number_of_calls connection and table The number_of_calls parameter is
available in the following events:

• time_statistics

odbc_state connection The odbc_state parameter is available
in the following events:

• handle_odbc_error
• report_odbc_error

password connection The password parameter is available in
the following events:

• authenticate_user

publication_name connection The publication_name parameter is
available in the following events:

• begin_publication
• end_publication
• publication_nonblocking_down

load_ack

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 301

System parameter Event type Event parameter is available in

remote_id connection and table The remote_id parameter is available in
the following events:

• authenticate_parameters (connec
tion event)

• authenticate_user (connection
event)

• authenticate_user_hashed (con
nection event)

• begin_download (connection and
table event)

• begin_download_deletes (table
event)

• begin_download_rows (table
event)

• begin_publication (connection
event)

• begin_synchronization (connection
and table event)

• begin_upload (connection and ta
ble event)

• begin_upload_deletes (table event)
• begin_upload_rows (table event)
• download_cursor (table event)
• download_delete_cursor (table

event)
• download_statistics (connection

and table event)
• end_download (connection and ta

ble event)
• end_download_deletes (table

event)
• end_download_rows (table event)
• end_publication (connection

event)
• end_synchronization (connection

and table event)
• end_upload (connection and table

event)
• end_upload_deletes (table event)
• end_upload_rows (table event)
• generate_next_last_down

load_timestamp (connection)
• handle_error (connection event)
• handle_odbc_error (connection

event)
• modify_error_message (connec

tion event)

302 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

System parameter Event type Event parameter is available in

• modify_last_download_timestamp
(connection event)

• modify_next_last_download_time
stamp (connection event)

• modify_user (connection event)
• nonblocking_download_ack (con

nection event)
• prepare_for_download (connection

event)
• publication_nonblocking_down

load_ack (connection event)
• report_error (connection event)
• report_odbc_error (connection

event)
• resolve_conflict (table event)
• synchronization_statistics (con

nection and table event)
• time_statistics (connection and ta

ble event)
• upload_delete (table event)
• upload_fetch (table event)
• upload_fetch_column_conflict (ta

ble event)
• upload_insert (table event)
• upload_new_row_insert (table

event)
• upload_old_row_insert (table

event)
• upload_statistics (connection and

table event)
• upload_update (table event)

remote_key connection The remote_key parameter is available
in the following events:

• authenticate_file_transfer
• authenticate_file_upload

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 303

System parameter Event type Event parameter is available in

script_version connection and table The script_version parameter is availa
ble in the following events:

• authenticate_file_transfer (con
nection event)

• authenticate_file_upload (connec
tion event)

• authenticate_parameters (connec
tion event)

• authenticate_user (connection
event)

• authenticate_user_hashed (con
nection event)

• begin_download (connection and
table event)

• begin_download_deletes (table
event)

• begin_download_rows (table
event)

• begin_publication (connection
event)

• begin_synchronization (connection
and table event)

• begin_upload (connection and ta
ble event)

• begin_upload_deletes (table event)
• begin_upload_rows (table event)
• download_cursor (table event)
• download_delete_cursor (table

event)
• download_statistics (connection

and table event)
• end_download (connection and ta

ble event)
• end_download_deletes (table

event)
• end_download_rows (table event)
• end_publication (connection

event)
• end_synchronization (connection

and table event)
• end_upload (connection and table

event)
• end_upload_deletes (table event)
• end_upload_rows (table event)
• generate_next_last_down

load_timestamp (connection)

304 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

System parameter Event type Event parameter is available in

• handle_DownloadData (connection
event)

• handle_error (connection event)
• handle_odbc_error (connection

event)
• modify_error_message (connec

tion event)
• modify_last_download_timestamp

(connection event)
• modify_next_last_download_time

stamp (connection event)
• modify_user (connection event)
• nonblocking_download_ack (con

nection event)
• prepare_for_download (connection

event)
• publication_nonblocking_down

load_ack (connection event)
• report_error (connection event)
• report_odbc_error (connection

event)
• resolve_conflict (table event)
• synchronization_statistics (con

nection and table event)
• time_statistics (connection and ta

ble event)
• upload_delete (table event)
• upload_fetch (table event)
• upload_fetch_column_conflict (ta

ble event)
• upload_insert (table event)
• upload_new_row_insert (table

event)
• upload_old_row_insert (table

event)
• upload_statistics (connection and

table event)
• upload_update (table event)

 Note
The script version can be accessed
from Java and .NET scripts using
the getVersion method on the
DBConnectionContext classes.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 305

System parameter Event type Event parameter is available in

subdir connection The subdir parameter is available in the
following events:

• authenticate_file_transfer
• authenticate_file_upload

subscription_id connection The subscription_id parameter is avail
able in the following events:

• begin_publication
• end_publication
• publication_nonblocking_down

load_ack

synchronization_ok connection and table The synchronization_ok parameter is
available in the following events:

• end_synchronization

synchronized_tables connection The synchronized_tables parameter is
available in the following events:

• synchronization_statistics

306 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

System parameter Event type Event parameter is available in

table connection and table The table parameter is available in the
following events:

• begin_download (table event)
• begin_download_deletes (table

event)
• begin_download_rows (table

event)
• begin_synchronization (table

event)
• begin_upload (table event)
• begin_upload_deletes (table event)
• begin_upload_rows (table event)
• download_statistics (table event)
• end_download (table event)
• end_download_deletes (table

event)
• end_download_rows (table event)
• end_synchronization (table event)
• end_upload (table event)
• end_upload_deletes (table event)
• end_upload_rows (table event)
• handle_error (connection event)
• handle_odbc_error (connection

event)
• report_error (connection event)
• report_odbc_error (connection

event)
• resolve_conflict (table event)
• synchronization_statistics (table

event)
• time_statistics (table event)
• upload_statistics (table event)

total_time connection and table The total_time parameter is available in
the following events:

• time_statistics

updated_rows connection and table The updated_rows parameter is availa
ble in the following events:

• upload_statistics

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 307

System parameter Event type Event parameter is available in

username connection and table The username parameter is available in
the following events:

• authenticate_file_transfer (con
nection event)

• authenticate_file_upload (connec
tion event)

• authenticate_parameters (connec
tion event)

• authenticate_user (connection
event)

• authenticate_user_hashed (con
nection event)

• begin_download (connection and
table event)

• begin_download_deletes (table
event)

• begin_download_rows (table
event)

• begin_publication (connection
event)

• begin_synchronization (connection
and table event)

• begin_upload (connection and ta
ble event)

• begin_upload_deletes (table event)
• begin_upload_rows (table event)
• download_cursor (table event)
• download_delete_cursor (table

event)
• download_statistics (connection

and table event)
• end_download (connection and ta

ble event)
• end_download_deletes (table

event)
• end_download_rows (table event)
• end_publication (connection

event)
• end_synchronization (connection

and table event)
• end_upload (connection and table

event)
• end_upload_deletes (table event)
• end_upload_rows (table event)
• generate_next_last_down

load_timestamp (connection
event)

308 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

System parameter Event type Event parameter is available in

• handle_error (connection event)
• handle_odbc_error (connection er

ror)
• modify_error_message (connec

tion error)
• modify_last_download_timestamp

(connection error)
• modify_next_last_download_time

stamp (connection event)
• modify_user (connection event)
• nonblocking_download_ack (con

nection event)
• prepare_for_download (connection

event)
• publication_nonblocking_down

load_ack (connection event)
• report_error (connection event)
• report_odbc_error (connection

event)
• resolve_conflict (table event)
• synchronization_statistics (con

nection and table event)
• time_statistics (connection and ta

ble event)
• upload_delete (table event)
• upload_fetch (table event)
• upload_fetch_column_conflict (ta

ble event)
• upload_insert (table event)
• upload_new_row_insert (table

event)
• upload_old_row_insert (table

event)
• upload_statistics (connection and

table event)
• upload_update (table event)

warnings connection and table The warnings parameter is available in
the following events:

• download_statistics
• synchronization_statistics
• upload_statistics

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 309

1.12.1.4.5 User-defined Named Parameters

You can also define your own parameters. These are especially useful for RDBMSs that don't allow user-defined
variables.

User-defined parameters are defined (and set to null) when first referenced. They must start with ui and a
period (ui.) if the parameter will only be referenced (input-only) and u and a period (u.) if the parameter will be
updated (in/out). A user-defined parameter lasts for one synchronization; it is set to null at the start of every
synchronization.

A typical use of user-defined parameters is to access state information without having to store it in a table
(requiring potentially complex joins).

Example

For example, assume you create a stored procedure called MyCustomProc that sets a variable called var1 to
'custom_value':

CREATE PROCEDURE MyCustomProc(IN username VARCHAR(128), INOUT var1 VARCHAR(128)
)
begin
 SET var1 = 'custom_value'; end

The following begin_synchronization script defines the user-defined parameter var1 and sets the value to
'custom_value':

CALL ml_add_connection_script ('version1',
 'begin_synchronization', '{call MyCustomProc({ml s.username}, {ml u.var1})}');

The following download_cursor table script references var1, whose value is 'custom_value':

CALL ml_add_table_script ('version1',
 'MyTable',
 'download_cursor', 'select pk,col1 from MyTable where u_name = {ml s.username} and
some_other_column = {ml ui.var1}');

Assume you have another stored procedure called MyPFDProc that defines its first parameter as INOUT. The
following prepare_for_download script changes the value of var1 to 'pfd_value':

CALL ml_add_connection_script ('version1',
 'prepare_for_download', '{call MyPFDProc({ml u.var1})}');

The following begin_download script references var1, whose value is now 'pfd_value':

CALL ml_add_connection_script ('version1',
 'begin_download',

310 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 'insert into SomeTable values({ml s.username}, {ml ui.var1})');

1.12.1.4.6 Authentication Parameters

In MobiLink scripts, authentication parameters can be specified using named parameters.

If named parameters are used, the authentication parameters must be prefaced with the letter a, such as {ml a.
1}. The parameters must be numbers starting at 1, with a limit of 255. Each parameter can be a maximum of
4000 bytes. The values are sent up from MobiLink clients.

When used in the authenticate_* scripts, authentication parameters pass authentication information.

Authentication parameters can be used in all other events (except begin_connection and end_connection) to
pass information from MobiLink clients. This technique is a convenient way to do something that you could
otherwise do by uploading rows to a table. With authentication parameters the values are available prior to the
table's upload events.

On SQL Anywhere remotes, you pass the information with the dbmlsync -ap option. On UltraLite remotes, you
pass the information with auth_parms and num_auth_parms.

Example

For UltraLite remote databases, pass the parameters using the num_auth_parms and auth_parms fields in the
ul_sync_info struct. num_auth_parms is a count of the number of parameters, from 0 to 255. auth_parms is a
pointer to an array of strings. During synchronization the authentication parameters are obfuscated in the
same way as passwords. If num_auth_parms is 0, set auth_parms to null. The following is an example of
passing parameters in UltraLite:

ul_char * Params[3] = { UL_TEXT("param1"), UL_TEXT("param2"), UL_TEXT("param3") };
...
info.num_auth_parms = 3; info.auth_parms = Params;

For SQL Anywhere remote databases, you pass authentication parameters using the dbmlsync -ap option, in a
comma-separated list. For example, the following command line passes three parameters:

dbmlsync -ap "param1,param2,param3"

On the server, you reference the authentication parameters using the order in which they were sent up. In this
example, the authenticate_parameters script could be:

CALL my_auth_parm ({ml s.authentication_status},
 {ml s.remote_id},
 {ml s.username},
 {ml a.1},
 {ml a.2},
 {ml a.3})

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 311

Related Information

-ap dbmlsync Option
Authentication Parameters Synchronization Parameter
Number of Authentication Parameters Synchronization Parameter

1.12.1.5 Script Versions

Scripts are organized into groups called script versions. By specifying a particular script version, MobiLink
clients can select which set of synchronization scripts are used to process the upload and prepare the
download.

Application of Script Versions

Script versions allow you to organize your scripts into sets, which are run under different circumstances. This
ability provides flexibility and is especially useful in the following circumstances:

Customizing applications

Using a different set of scripts to process information from different types of remote users. For example,
you could write a different set of scripts for use when managers synchronize their databases than would be
used for other people in the organization. Although you could achieve the same functionality with one set
of scripts, these scripts would be more complicated.
Upgrading applications

When you want to upgrade a database application, new scripts may be needed because the new version of
your application may handle data differently. New scripts are almost always necessary when the remote
database changes. It is usually impossible to upgrade all users simultaneously. Since both old and new
scripts can coexist on the server, all users can synchronize no matter which version of your application
they are using.
Maintaining multiple applications

A single MobiLink server may need to synchronize two entirely different applications. For example, some
employees may use a sales application, whereas others require an application designed for inventory
control. When two applications require different sets of data, you can create two versions of the
synchronization scripts, one script version for each application.
Setting properties for the script version

Use the ml_add_property system procedure to ad or delete MobiLink properties for your script version that
can be referenced from classes in .NET or Java synchronization logic.

Assigning script version names

A script version name is a string. You specify this name when you add a script to the consolidated database. For
example, if you add your scripts with the ml_add_connection_script and the ml_add_table_script stored

312 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a55fbd6ce21014bd63fcbe9d1783ec.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/827069946ce210149b8fb8817b97768b.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8270721e6ce210149c45a9dd64e20068.html

procedures, the script version name is the first parameter. Alternatively, if you add your scripts using SQL
Central, you are prompted for the script version name.

You cannot use the following names for script versions: ml_sis_1 or ml_qa_1. These names are used internally
by MobiLink.

 Caution
It is strongly recommended that your script version names do not start with ml_. Script versions starting
with ml_ are reserved for internal use.

Specifying a Script Version for a Synchronization

If no script version is specified at the remote site when synchronization is initiated, the synchronization fails.

ml_global Script Version

You can create a script version called ml_global that is used differently from other script versions. If you create
a script version called ml_global, you define it once and then the connection scripts associated with it are
automatically used in all synchronizations. You never explicitly specify ml_global as a script version from a
synchronization client.

If you define a script in the ml_global script version and then you define a script for the same event in the script
version that you specify for the synchronization, the script from the specified script version is used. Scripts in
the ml_global script version are only used if they are not defined in the primary script version that is being
synchronized.

The ml_global script version can only contain connection-level scripts. It is optional, and may not be useful if
you are using only one script version.

In this section:

Adding a Script Version to a Consolidated Database [page 314]
A script version identifies a set of scripts. When working in SQL Central, you must add a script version
name to your consolidated database before you can add any connection scripts.

Removing a Script Version From a Consolidated Database [page 315]
Use the following procedure to remove a script version and its associated scripts from the consolidated
database.

Related Information

Script Versions and Subscriptions
ml_add_property System Procedure [page 605]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 313

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a978336ce210149f45bddbe899af9a.html

1.12.1.5.1 Adding a Script Version to a Consolidated Database

A script version identifies a set of scripts. When working in SQL Central, you must add a script version name to
your consolidated database before you can add any connection scripts.

Context

When adding scripts with system procedures, if you specify a new script version name it is automatically added
with the script.

In SQL Central, only one script version is allowed per synchronization model and it is by default given the same
name as the synchronization model.

To perform schema changes without synchronizing, you must add a script version to the synchronization
subscription using SQL syntax.

You can add a script version in the same operation as adding a connection script or table script using system
procedures.

Procedure

1. From the View menu, click Folders.
2. In the left pane of SQL Central, expand your MobiLink project name, then expand the consolidated

database you want to work with.
You are connected to the consolidated database based on the connection information that was provided
when you added the consolidated database to your project.

3. Click the Versions folder and click File New Version .
4. Follow the instructions in the Create Script Version Wizard.

Results

The script version is created.

Related Information

MobiLink Server System Procedures [page 582]

314 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.12.1.5.2 Removing a Script Version From a Consolidated
Database

Use the following procedure to remove a script version and its associated scripts from the consolidated
database.

Procedure

1. From the View menu, click Folders.
2. In the left pane of SQL Central, expand your MobiLink project name, then expand the consolidated

database you want to work with.
You are connected to the consolidated database based on the connection information that was provided
when you added the consolidated database to your project.

3. Under your consolidated database in the left pane, click Versions.
A list of the script versions appears in the right pane.

4. In the right pane, right-click the script version you want to remove and select Delete.
5. Click Yes.

Results

The script version and its associated scripts are removed from the consolidated database.

1.12.1.6 Scripts Required for Synchronization

When you run the MobiLink server, certain scripts are required. Which scripts are required is determined by
whether you are doing a bi-directional, upload-only, or download-only synchronization.

For bi-directional or upload-only synchronization, MobiLink requires the following table scripts:

• upload_delete (if uploading deleted rows using SQL)
• upload_insert (if uploading inserted rows using SQL)
• upload_update (if uploading updated rows using SQL)
• Or, if you are processing the upload by direct row handling, MobiLink requires a script for the

handle_UploadData connection event.

For bi-directional or download-only synchronization, MobiLink expects every table in the synchronization to
have both a download_cursor and a download_delete_cursor. Or, if you are processing the download by direct
row handling, MobiLink requires that you specify a handle_DownloadData connection script. This script can be
empty and you can process the download in any other event.

All required scripts must be specified. If a required script is missing the synchronization aborts. If there is a
data script that you want ignored, use the prefix --{ml_ignore}.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 315

Related Information

Ignored Scripts [page 320]

1.12.1.7 Script Additions and Deletions

When you use the Create Synchronization Model Wizard, scripts are automatically added to the consolidated
database when you deploy the model.

When you create synchronization scripts outside SQL Central, you must add them to MobiLink system tables in
the consolidated database. For SQL scripts, the entire script is saved in the MobiLink system table. For Java
or .NET scripts, the method name is registered in the system table. The method for storing scripts and method
names is similar.

If you are using SQL Central, you must add a script version to the database before you can add individual
scripts.

Add or Delete All Types of Scripts (System Procedures)

You can add scripts to a consolidated database or delete scripts from a consolidated database using stored
procedures that are installed when you set up your consolidated database.

The following stored procedures can be used to add or delete scripts:

• ml_add_connection_script system procedure
• ml_add_table_script system procedure
• ml_add_dnet_connection_script system procedure
• ml_add_dnet_table_script system procedure
• ml_add_java_connection_script system procedure
• ml_add_java_table_script system procedure

In this section:

Adding a Connection Script [page 317]
Use the following procedure to add a connection script using SQL Central.

Deleting a Connection Script [page 318]
Use the following procedure to delete a connection script using SQL Central.

Adding a Table Script [page 319]
Use the following procedure to add a table script using SQL Central.

Deleting a Table Script [page 319]
Use the following procedure to delete a table script.

Direct Inserts of Scripts [page 320]
Use stored procedures or SQL Central to insert scripts into the system tables.

Ignored Scripts [page 320]

316 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

If an upload stream contains insert, update, or delete data for a table that has no upload_insert,
upload_update, and upload_delete script in the consolidated database, or if there is no download script
(download_cursor and download_delete_cursor scripts) for the table, then the MobiLink server issues
an error and aborts the synchronization.

Related Information

MobiLink Server System Tables [page 156]
Adding a Script Version to a Consolidated Database [page 314]
ml_add_connection_script System Procedure [page 589]
ml_add_table_script System Procedure [page 609]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_dnet_table_script System Procedure [page 592]
ml_add_java_connection_script System Procedure [page 593]
ml_add_java_table_script System Procedure [page 595]

1.12.1.7.1 Adding a Connection Script

Use the following procedure to add a connection script using SQL Central.

Prerequisites

If you are using SQL Central, you must add a script version to the database before you can add individual
scripts.

Procedure

1. From the View menu, click Folders.
2. In the left pane of SQL Central, expand your MobiLink project name, then expand the consolidated

database you want to work with. You are connected to the consolidated database based on the connection
information that was provided when you added the consolidated database to your project.

3. Click Connection Scripts and click New Connection Script .
4. Follow the instructions in the Create Connection Script Wizard.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 317

Results

The connection script is created.

Related Information

Adding a Script Version to a Consolidated Database [page 314]

1.12.1.7.2 Deleting a Connection Script

Use the following procedure to delete a connection script using SQL Central.

Procedure

1. From the View menu, click Folders.
2. In the left pane of SQL Central, expand your MobiLink project name, then expand the consolidated

database you want to work with.
You are connected to the consolidated database based on the connection information that was provided
when you added the consolidated database to your project.

3. Expand Connection Scripts.
4. Right-click a connection script and click Delete.
5. Click Yes.

Results

The connection script is deleted.

318 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.12.1.7.3 Adding a Table Script

Use the following procedure to add a table script using SQL Central.

Procedure

1. From the View menu, click Folders.
2. In the left pane of SQL Central, expand your MobiLink project name, then expand the consolidated

database you want to work with.
You are connected to the consolidated database based on the connection information that was provided
when you added the consolidated database to your project.

3. Expand Synchronized Tables.

4. Right-click the table and click New Table Script .
5. Follow the instructions in the Create Table Script Wizard.

Results

The table script is created.

1.12.1.7.4 Deleting a Table Script

Use the following procedure to delete a table script.

Procedure

1. From the View menu, click Folders.
2. In the left pane of SQL Central, expand your MobiLink project name, then expand the consolidated

database you want to work with.
You are connected to the consolidated database based on the connection information that was provided
when you added the consolidated database to your project.

3. Expand Synchronized Tables.
4. Expand the table.
5. Right-click the table script and click Delete.
6. Click Yes.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 319

Results

The table script is deleted.

1.12.1.7.5 Direct Inserts of Scripts

Use stored procedures or SQL Central to insert scripts into the system tables.

However, in some rare cases you may need to use an INSERT statement to directly insert the scripts. For
example, versions of some RDBMSs may have length limitations that make it difficult to use stored procedures.

The format of the INSERT statements that are required to directly insert scripts can be found in the source
code for the ml_add_connection_script and ml_add_table_script stored procedures. The source code for these
stored procedures is located in the MobiLink setup scripts. There is a different setup script for each supported
RDBMS. The setup scripts are all located in %SQLANY17%\MobiLink\Setup and are called:

Consolidated database Setup file

Adaptive Server Enterprise syncase.sql

IBM DB2 LUW (deprecated) syncdb2.sql

Microsoft Azure syncmss.sql

Microsoft SQL Server syncmss.sql

MySQL syncmys.sql

Oracle syncora.sql

SAP HANA synchana.sql

SAP IQ synciq.sql

SQL Anywhere syncsa.sql

Related Information

MobiLink Server System Tables [page 156]

1.12.1.7.6 Ignored Scripts

If an upload stream contains insert, update, or delete data for a table that has no upload_insert,
upload_update, and upload_delete script in the consolidated database, or if there is no download script
(download_cursor and download_delete_cursor scripts) for the table, then the MobiLink server issues an error
and aborts the synchronization.

The warning messages can be suppressed with the -zwd MobiLink server command option, however, this
option suppresses the warning messages for all the synchronization tables.

320 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The MobiLink server treats any connection and table scripts that contain the prefix --{ml_ignore} differently.
The MobiLink server recognizes these scripts as intentionally ignored scripts. More precisely, if an upload
stream contains insert, update, or delete data for a synchronization table that has an upload_insert,
upload_update, or upload_delete script with the prefix --{ml_ignore}, the MobiLink server does not execute
these scripts against the consolidated database and continues the synchronization without showing any error
or warning messages. The uploaded rows are ignored.

When a table is downloaded, both the download_cursor and download_delete_cursor scripts must be defined.
To prevent downloading rows, define either or both of these scripts as --{ml_ignore}, as required.

1.12.1.8 Scripts to Upload Rows

To inform the MobiLink server on how to process the upload data received from the remote databases, you
define upload scripts. You write separate scripts to handle rows that are updated, inserted, or deleted at the
remote database.

A simple implementation would perform corresponding actions (update, insert, delete) at the consolidated
database.

The MobiLink server uploads data in a single transaction.

Notes

• The begin_upload and end_upload scripts for each remote table hold logic that is independent of the
individual rows being updated.

• The upload consists of single row inserts, updates, and deletes. These actions are typically performed
using upload_insert, upload_update, and upload_delete scripts.

• To prepare the upload for SQL Anywhere clients, the dbmlsync utility requires access to all transaction logs
written since the last successful synchronization.

In this section:

upload_insert Scripts [page 322]
The MobiLink server uses this event during processing of the upload to handle rows inserted into the
remote database.

upload_update Scripts [page 322]
The MobiLink server uses this event during processing of the upload to handle rows updated at the
remote database. The following UPDATE statement could be used as an upload_update script for the
emp table.

upload_delete Scripts [page 323]
The MobiLink server uses this event during processing of the upload to handle rows deleted from the
remote database. The following statement shows how to use the upload_delete statement.

upload_fetch Scripts [page 324]
The upload_fetch script is a SELECT statement that defines a cursor in the consolidated database
table.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 321

Related Information

Events During Upload [page 342]
.NET Synchronization Techniques [page 553]
Transaction Log Files

1.12.1.8.1 upload_insert Scripts

The MobiLink server uses this event during processing of the upload to handle rows inserted into the remote
database.

The following is an INSERT statement used in an upload_insert script.

INSERT INTO emp (emp_id, emp_name) VALUES ({ ml r.emp_id }, { ml r.emp_name });

Notes

• When using question marks instead of named parameters as placeholders, the upload_new_row_insert
and upload_old_row_insert events accept remote_id and user_name as extra parameters. These
parameters must appear before the full column list of the table.

Related Information

upload_insert Table Event [page 506]

1.12.1.8.2 upload_update Scripts

The MobiLink server uses this event during processing of the upload to handle rows updated at the remote
database. The following UPDATE statement could be used as an upload_update script for the emp table.

UPDATE emp SET emp_name = {ml r.emp_name} WHERE emp_id = {ml o.emp_id};

322 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af61f86ce21014a5ffe4d902227df8.html

Notes

• When using question marks instead of named parameters as placeholders, the number of parameters can
be equal to one of the following (the use of question marks in SQL scripts has been deprecated):
• The number of non-primary key columns + primary key columns.
• 2 * (the number of non-primary key columns + primary key columns).

The column order must consist of non-primary key columns first, followed by one of the following:
• The primary key columns.
• All the columns.

Related Information

upload_update Table Event [page 522]

1.12.1.8.3 upload_delete Scripts

The MobiLink server uses this event during processing of the upload to handle rows deleted from the remote
database. The following statement shows how to use the upload_delete statement.

DELETE FROM emp WHERE emp_id = {ml r.emp_id};

Notes

• When using question marks instead of named parameters as placeholders, the number of parameters
must be equal to one of the following (the use of question marks in SQL scripts has been deprecated):
• The number of primary key columns.
• The number of all columns.

Related Information

upload_delete Table Event [page 500]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 323

1.12.1.8.4 upload_fetch Scripts

The upload_fetch script is a SELECT statement that defines a cursor in the consolidated database table.

This cursor is used to compare the old values of updated rows, as received from the remote database, against
the current value in the consolidated database. In this way, the upload_fetch script identifies conflicts when
updates are being processed.

Given a synchronized table defined as:

CREATE TABLE uf_example (pk1 integer NOT NULL,
 pk2 integer NOT NULL,
 val varchar(200), PRIMARY KEY(pk1, pk2));

Then one possible upload_fetch script for this table is:

SELECT pk1, pk2, val FROM uf_example WHERE pk1 = {ml r.pk1} AND pk2 = {ml r.pk2}

The MobiLink server requires the WHERE clause of the query in the upload_fetch script to identify exactly one
row in the consolidated database to be checked for conflicts.

Related Information

upload_fetch Table Event [page 502]

1.12.1.9 Scripts to Download Rows

There are two scripts that can be used for processing each table during the download transaction. These are
the download_cursor script, which performs inserts and updates, and the download_delete_cursor script,
which performs deletes.

These scripts are either SELECT statements or calls to procedures that return result sets. The MobiLink server
downloads the result set of the script to the remote database. The MobiLink client automatically inserts or
updates rows based on the download_cursor script result set, and deletes rows based on the
download_delete_cursor event.

The MobiLink server downloads data in a single transaction.

Notes

• Like the upload, the download starts and ends with connection events. Other events are table-level events.
• The begin_download and end_download scripts for each remote table hold logic that is independent of the

individual rows being updated.

324 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

• The download does not distinguish between inserts and updates. The script associated with the
download_cursor event is a SELECT statement that defines the rows to be downloaded. The client detects
whether the row exists or not and then it performs the appropriate insert or update operation.

• For timestamp-based downloads, you specify the last_table_download parameter to ensure that only
changes since the last synchronization are downloaded. For example, the download_cursor or
download_delete_cursor SQL script could include the line:

WHERE Customer.last_modified >= {ml s.last_table_download}

• At the end of the download processing, the client automatically deletes rows if necessary to avoid
referential integrity violations.

• If you change the SendDownloadAck setting to ON, the download transaction is committed but the
acknowledgement scripts are not executed until the acknowledgement is received.
By default, SendDownloadAck is set to OFF.

 Caution
Do not synchronize shadow tables that were created by previous deployments (for example, tables ending
with _mod or _del should not be synchronized). These tables are only needed by the consolidated
database to track modified or deleted rows.

In this section:

download_cursor Scripts [page 326]
You write download_cursor scripts to download rows from the consolidated database to your remote
database. Similarly, you write download_delete_cursor scripts to download rows to delete from the
remote database.

download_delete_cursor Scripts [page 327]
You write download_delete_cursor scripts to delete rows from your remote database. You must write
one of these scripts for each table in the remote database participating in the download. If you do not
want to delete rows, define each script as --{ml_ignore}.

Related Information

Result Sets from Stored Procedure Calls [page 147]
Events During Download [page 345]
Last Download Times in Scripts [page 117]
Referential Integrity and Synchronization
SendDownloadAck (sa) Extended Option
Send Download Acknowledgement Synchronization Parameter
nonblocking_download_ack Connection Event [page 466]
publication_nonblocking_download_ack Connection Event [page 472]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 325

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bbaa2d6ce210148c40dd378ab29a59.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ab67096ce21014a3c2a1eb5b8c399b.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8270dff66ce21014afaf975243962456.html

1.12.1.9.1 download_cursor Scripts

You write download_cursor scripts to download rows from the consolidated database to your remote database.
Similarly, you write download_delete_cursor scripts to download rows to delete from the remote database.

You must write both of these scripts for each table in the remote database for which you want to download
changes. You can use other scripts to customize the download process, but no others are necessary.

• Each download_cursor script that you want to download rows must contain a SELECT statement or a call
to a procedure that contains a SELECT statement.

• If you do not want download rows, define the script as --{ml_ignore}. Alternatively, you can use the
ml_add_missing_dnld_scripts system procedure to define missing download scripts as ignored.

• The download_cursor script must select all columns that correspond to the columns in the corresponding
table in the remote database. The columns in the consolidated database can have different names than the
corresponding columns in the remote database, but they must be of compatible types.

Example

The following script could serve as a download_cursor script for a remote table that holds employee
information. This script downloads information about all the employees.

SELECT emp_id, emp_fname, emp_lname FROM employee;

The MobiLink server passes specific parameters to some scripts. The MobiLink server substitutes the value of
the parameter before executing the statement on the consolidated database. The use of question marks has
been deprecated in SQL scripts. The following script shows how you can use named parameters:

CALL ml_add_table_script('Lab',
 'ULOrder',
 'download_cursor',
 'SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc, o.quant, o.notes,
o.status
 FROM ULOrder o
 WHERE o.last_modified >= {ml s.last_table_download} AND o.emp_name = {ml s.username}')

Notes

• All cursor scripts must select the columns in the same order as the columns are defined in the remote
database. Where column names or table structure is different in the consolidated database, columns
should be selected in the correct order for the remote database, or equivalently, the reference database.
Columns are assigned to columns in the remote database based on their order in the SELECT statement.

• Row values can be selected from a single table or from a join of multiple tables.
• The remote table need not have the same name as the table in the consolidated database. The script itself

need not include the name of the remote table. The name of the remote table is identified by an entry in the

326 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

ml_table MobiLink system table. Use SQL Central to view the remote tables listed together with their
scripts.

Related Information

Partitioned Rows Among Remote Databases [page 121]
download_delete_cursor Scripts [page 327]
download_cursor Table Event [page 393]
ml_add_missing_dnld_scripts System Procedure [page 600]

1.12.1.9.2 download_delete_cursor Scripts

You write download_delete_cursor scripts to delete rows from your remote database. You must write one of
these scripts for each table in the remote database participating in the download. If you do not want to delete
rows, define each script as --{ml_ignore}.

Alternatively, you can use the ml_add_missing_dnld_scripts system procedure to define missing download
scripts as ignored.

You cannot just delete rows from the consolidated database and have them disappear from remote databases.
You need to keep track of the primary keys for deleted rows, so that you can select those primary keys with
your download_delete_cursor. There are two common techniques for achieving this:

Logical deletes

Do not physically delete the row in the consolidated database. Instead, have a status column that keeps
track of whether rows are valid. This simplifies the download_delete_cursor. However, the download_cursor
and other applications may need to be modified to recognize and use the status column. If you have a last
modified column that holds the time of deletion, and if you also keep track of the last download time for
each remote, then you can physically delete the row once all remote download times are newer than the
time of deletion.
Shadow table

For each table for which you want to track deletes, create a shadow table with two columns, one holding
the primary key for the table, and the other holding a timestamp. Create a trigger that inserts the primary
key and timestamp into the shadow table whenever a row is deleted. Your download_delete_cursor can
then select from this shadow table. As with logical deletes, you can delete the row from the shadow table
once all remote databases have downloaded the corresponding data.

The MobiLink server deletes rows in the remote database by selecting primary key values from the
consolidated database and passing those values to the remote database. If the values match those of a primary
key in the remote database, then that row is deleted.

• Each download_delete_cursor script that you want to download deletes must contain a SELECT statement
or a call to a stored procedure that returns a result set. The MobiLink server uses this statement to define a
cursor in the consolidated database.

• If you always want a download_delete_cursor to select no rows, define the script as --{ml_ignore}.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 327

• This statement must select all the columns that correspond to the primary key columns in the table in the
remote database. The columns in the consolidated database can have different names than the
corresponding columns in the remote database, but they must be of compatible types.

• The values must be selected in the same order as the corresponding columns are defined in the remote
database. That order is the order of the columns in the CREATE TABLE statement used to make the table,
not the order they appear in the statement that defines the primary key.

• If you delete a parent record at the remote database via a download_delete_cursor, the child records are
automatically deleted as well.

Deleting All the Rows in a Table

When MobiLink detects a download_delete_cursor with a row that contains all nulls, it deletes all the data in the
remote table. The number of nulls in the download_delete_cursor can be the number of primary key columns
or the total number of columns in the table.

For example, the following download_delete_cursor SQL script deletes every row in a table in which there are
two primary key columns. This example works for SQL Anywhere, Adaptive Server Enterprise, Microsoft Azure,
and Microsoft SQL Server databases.

SELECT NULL, NULL

In IBM DB2 LUW and Oracle consolidated databases, specify a dummy table to select null. For IBM DB2 LUW
9.5 and 9.7, you can use the following syntax:

SELECT CAST(NULL AS INTEGER), CAST(NULL AS INTEGER) FROM SYSIBM.SYSDUMMY1

 Note
Support for IBM DB2 consolidated databases is deprecated.

For Oracle consolidated databases, use the following syntax:

SELECT NULL, NULL FROM DUAL

For SAP HANA consolidated databases, use the following syntax:

SELECT NULL, NULL, FROM DUMMY

Example

The following example is a download_delete_cursor script for a remote table that holds employee information.
The MobiLink server uses this SQL statement to define the delete cursor. This script deletes information about
all orders that are both in the consolidated and remote databases at the time the script is executed.

SELECT order_id FROM ULorder

328 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The download_delete_cursor accepts the parameters last_table_download and username. The following script
shows how you can use each parameter to narrow your selection.

SELECT order_id FROM ULOrder
WHERE last_modified >= {ml s.last_table_download}
 AND status = 'Approved' AND user_name = {ml s.username}

Another strategy is to allow the client application to delete the rows itself. This method is possible only when a
rule identifies the unnecessary rows. For example, rows might contain a timestamp that indicates an expiry
date. Before you delete the rows at the remote, use the STOP SYNCHRONIZATION DELETE statement to stop
these deletes being uploaded during the next synchronization. Be sure to execute START SYNCHRONIZATION
DELETE immediately afterward if you want other deletes to be synchronized in the normal fashion.

Notes

• The download_delete_cursor script must contain primary key columns in the same order as they are
defined in the remote database.

• You can use the referential integrity checking built into all MobiLink clients to delete rows in an efficient
manner by deleting only the parent rows.

Related Information

Deletes [page 142]
Partitioned Rows Among Remote Databases [page 121]
Snapshot Synchronization [page 119]
Referential Integrity and Synchronization
Temporarily Stopping the Synchronization of Deletes [page 143]
ml_add_missing_dnld_scripts System Procedure [page 600]
download_cursor Table Event [page 393]
download_delete_cursor Table Event [page 396]
STOP SYNCHRONIZATION DELETE Statement [MobiLink]

1.12.1.10 Scripts to Handle Errors

An error in a synchronization script occurs when an operation in the script fails while the MobiLink server is
executing it.

For SQL scripts, the DBMS returns a SQLCODE and error message to the MobiLink server indicating the nature
of the error. Each consolidated database DBMS has its own set of SQLCODEs and messages. By default, the
MobiLink server rolls back the transaction in the consolidated database, logs the error, and aborts the
synchronization.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 329

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bbaa2d6ce210148c40dd378ab29a59.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/817b1fad6ce21014a04bf481ba9650af.html

When an error occurs during the invocation of a SQL data script, the MobiLink server invokes the handle_error
or handle_odbc_error events. When these error-handling scripts are defined, the MobiLink server invokes them
and passes several parameters providing information about the nature and context of the error. One parameter
is an output value, called the action_code, to tell MobiLink server how to respond to the error. The action_code
tells the MobiLink server to either ignore the error or abort the synchronization.

The error-handling scripts do not get invoked for all SQL errors. Only data scripts cause the error-handling
scripts to be invoked. When errors occur in non-data scripts, the MobiLink server rolls back the transaction in
the consolidated database, logs the error, and aborts the synchronization.

If your consolidated DBMS supports exception handling, consider using it instead of the error-handling scripts,
particularly if you need to ignore certain errors in data scripts. Using exception handling will almost always
perform better than the error-handling scripts.

If the handle_error or handle_odbc_error script itself causes an error, the MobiLink server rolls back the
transaction in the consolidated database, logs the error, and aborts the synchronization.

Error Handling Actions

Some actions you may want to take in an error-handling script are:

• Ignore the error, but log it in an audit table.
• Instruct the MobiLink server to rollback the synchronization.
• Send an email alert message.

Handling Multiple Errors in a Single SQL Statement

ODBC allows multiple errors per SQL statement, and some RDBMSs make use of this feature. Microsoft SQL
Server, for example, can have two errors for a single statement. The first is the actual error, and the second is
usually an informational message telling you why the current statement has been terminated.

When a single SQL statement causes multiple errors, the handle_error script is invoked once per error. The
MobiLink server uses the most severe action code (that is, the numerically greatest) to determine the action to
take. The same applies to the handle_error script.

If the handle_error script itself causes a SQL error, then the default action code (3000) is assumed.

In this section:

Error Reporting [page 331]
Since errors cause a rollback in the consolidated database by default, it is difficult to create a log of
errors and their resolutions within the consolidated database due to the rollback.

Related Information

handle_error Connection Event [page 440]

330 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

handle_odbc_error Connection Event [page 445]
report_error Connection Event [page 476]
report_odbc_error Connection Event [page 480]

1.12.1.10.1 Error Reporting

Since errors cause a rollback in the consolidated database by default, it is difficult to create a log of errors and
their resolutions within the consolidated database due to the rollback.

The report_error and report_odbc_error events let you create a proper record of user-defined script errors
because they are invoked on a different database connection than the synchronization. These error-reporting
scripts are invoked immediately after the error-handling scripts are invoked, and are immediately followed by a
commit.

The error-reporting scripts get invoked for all SQL errors that occur in user defined scripts. When errors occur
in user-defined scripts, the MobiLink server rolls back the transaction in the consolidated database, logs the
error, and aborts the synchronization.

If your consolidated DBMS supports an out-of-band (outside of the current database connection) mechanism
for reporting activity from SQL, consider using that mechanism instead of the error-reporting scripts defined
by MobiLink.

Example

The following report_error script, which consists of a single insert statement, adds the script parameters into a
table, along with the current date and time. The script does not commit this change because the MobiLink
server always does so automatically.

INSERT INTO errors VALUES(
 CURRENT DATE,
 {ml s.action_code},
 {ml s.error_code},
 {ml s.error_message},
 {ml s.username}, {ml s.table});

Related Information

handle_error Connection Event [page 440]
handle_odbc_error Connection Event [page 445]
report_error Connection Event [page 476]
report_odbc_error Connection Event [page 480]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 331

1.12.2 Synchronization Events

A MobiLink synchronization is made up of many events.

In this section:

Overview of MobiLink Events [page 336]
When a synchronization request occurs and the MobiLink server decides that a new consolidated
database connection must be created, the begin_connection event is fired and synchronization starts.

Data Scripts [page 346]
Scripts that directly handle row data are called data scripts. All other scripts are non-data scripts. The
distinction between a data script and a non-data script is sometimes important. For example, only data
scripts can reference the named parameters for column values.

authenticate_file_transfer Connection Event [page 348]
Implements custom authentication for file transfers using the mlfiletransfer utility or the
MLFileDownload method.

authenticate_file_upload Connection Event [page 349]
Implements custom authentication for file transfers using the mlfiletransfer utility or the MLFileUpload
method.

authenticate_parameters Connection Event [page 351]
Receives values from the remote database that can be used to authenticate beyond a user ID and
password. The values can also be used to arbitrarily customize each synchronization.

authenticate_user Connection Event [page 354]
Implements custom user authentication.

authenticate_user_hashed Connection Event [page 360]
Implements a custom user authentication mechanism.

begin_connection Connection Event [page 364]
Invoked at the time the MobiLink server connects to the consolidated database server.

begin_connection_autocommit Connection Event [page 365]
Invoked at the time MobiLink server connects to the consolidated database server, temporarily allowing
you to execute a script when autocommit is on.

begin_download Connection Event [page 366]
Processes any statements just before the MobiLink server commences preparing the download.

begin_download Table Event [page 368]
Processes statements related to a specific table just before preparing the download inserts, updates,
and deletions.

begin_download_deletes Table Event [page 371]
Processes statements related to a specific table just before fetching a list of rows to be deleted from
the specified table in the remote database.

begin_download_rows Table Event [page 372]
Processes statements related to a specific table just before fetching a list of rows to be inserted or
updated in the specified table in the remote database.

begin_publication Connection Event [page 374]
Provides useful information about the publication(s) being synchronized. This script may also be used
to manage generation numbers for file-based downloads.

332 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

begin_synchronization Connection Event [page 377]
Processes statements in preparation for the synchronization process.

begin_synchronization Table Event [page 380]
Processes statements related to a specific table at the beginning of the synchronization.

begin_upload Connection Event [page 383]
Processes any statements just before the MobiLink server commences processing the uploaded
inserts, updates, and deletes.

begin_upload Table Event [page 385]
Processes statements related to a specific table just before the MobiLink server commences
processing the uploaded inserts, updates, and deletes.

begin_upload_deletes Table Event [page 388]
Processes statements related to a specific table just before uploading deleted rows from the specified
table in the remote database.

begin_upload_rows Table Event [page 391]
Processes statements related to a specific table just before uploading inserts and updates from the
specified table in the remote database.

download_cursor Table Event [page 393]
A data script that defines a cursor to select rows to download and insert and update in the given table
in the remote database.

download_delete_cursor Table Event [page 396]
A data script that defines a cursor to select rows that are to be deleted in the remote database.

download_statistics Connection Event [page 398]
Provides access to synchronization statistics for download operations.

download_statistics Table Event [page 401]
Provides access to synchronization statistics for download operations by table.

end_connection Connection Event [page 405]
Processes any statements just before the MobiLink server closes a connection with the consolidated
database server, either in preparation to shut down or when a connection is removed from the
connection pool.

end_download Connection Event [page 407]
Processes any statements just after the MobiLink server concludes preparation of the download data.

end_download Table Event [page 409]
Processes statements related to a specific table just after the MobiLink server concludes preparing the
download rows.

end_download_deletes Table Event [page 412]
Processes statements related to a specific table just after preparing a list of rows to be deleted from the
specified table in the remote database.

end_download_rows Table Event [page 413]
Processes statements related to a specific table just after preparing a list of rows to be inserted or
updated in the specified table in the remote database.

end_publication Connection Event [page 415]
Provides useful information about the publication(s) being synchronized.

end_synchronization Connection Event [page 418]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 333

Processes statements at the end of the synchronization process.

end_synchronization Table Event [page 421]
Processes statements at the end of the synchronization process.

end_upload Connection Event [page 424]
Processes any statements just after the MobiLink server concludes processing uploaded inserts,
updates, and deletes.

end_upload Table Event [page 426]
Processes statements related to a specific table just after the MobiLink server concludes processing of
uploaded inserts, updates, and deletions.

end_upload_deletes Table Event [page 429]
Processes statements related to a specific table just after applying deletes uploaded from the specified
table in the remote database.

end_upload_rows Table Event [page 432]
Processes statements related to a specific table just after applying uploaded inserts and updates from
the specified table in the remote database.

generate_next_last_download_timestamp Connection Event [page 435]
The script is used to invoke a user-defined algorithm to generate the next_last_download_timestamp.

handle_DownloadData Connection Event [page 437]
A non-SQL data script used by direct row handling to create a set of rows to download.

handle_error Connection Event [page 440]
Executed whenever the MobiLink server encounters a SQL error while invoking a data script.

handle_odbc_error Connection Event [page 445]
Executed whenever the MobiLink server encounters an ODBC error while invoking a data script.

handle_UploadData Connection Event [page 448]
A non-SQL data script used by direct row handling to process uploaded rows.

modify_error_message Connection Event [page 454]
The script can be used to customize the message text (error, warning, and information) that is sent to
remote databases.

modify_last_download_timestamp Connection Event [page 457]
The script can be used to modify the last download time for the current synchronization.

modify_next_last_download_timestamp Connection Event [page 460]
The script can be used to modify the last download time for the next synchronization.

modify_user Connection Event [page 463]
Modify the MobiLink user name.

nonblocking_download_ack Connection Event [page 466]
When you use download acknowledgement, this script provides a place to record the information that a
download has been applied successfully, or to trigger business logic that depends on the download
being confirmed as applied.

prepare_for_download Connection Event [page 470]
Processes any required operations between the upload and download transactions.

publication_nonblocking_download_ack Connection Event [page 472]
When you use download acknowledgement, this script provides a place to record the information that a
publication has been successfully downloaded.

334 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

report_error Connection Event [page 476]
Allows you to log errors and to record the actions selected by the handle_error script.

report_odbc_error Connection Event [page 480]
Allows you to log errors and to record the actions selected by the handle_odbc_error script.

resolve_conflict Table Event [page 483]
Defines a process for resolving a conflict in a specific table.

synchronization_statistics Connection Event [page 487]
Tracks synchronization statistics.

synchronization_statistics Table Event [page 491]
Provides access to synchronization statistics.

time_statistics Connection Event [page 494]
Tracks time statistics by user and event.

time_statistics Table Event [page 497]
Tracks time statistics.

upload_delete Table Event [page 500]
A data script that provides an event that the MobiLink server uses during processing of the upload to
handle rows deleted from the remote database.

upload_fetch Table Event [page 502]
A data script that fetches rows from a synchronized table in the consolidated database for row-level
conflict detection.

upload_fetch_column_conflict Table Event [page 504]
A data script that fetches rows from a synchronized table in the consolidated database for column-level
conflict detection.

upload_insert Table Event [page 506]
A data script that provides an event that the MobiLink server uses during processing of the upload to
handle rows inserted into the remote database.

upload_new_row_insert Table Event [page 508]
Conflict resolution scripts for statement-based uploads commonly require access to the old and new
values of rows uploaded from the remote database. This data script event allows you to handle the new,
updated values of rows uploaded from the remote database.

upload_old_row_insert Table Event [page 510]
Conflict resolution scripts for statement-based uploads commonly require access to the old and new
values of rows uploaded from the remote database. This data script event allows you to handle the old
values of rows uploaded from the remote database.

upload_statistics Connection Event [page 513]
Provides access to synchronization statistics for upload operations.

upload_statistics Table Event [page 517]
Provides access to synchronization statistics for upload operations for a specific table.

upload_update Table Event [page 522]
A data script that provides an event that the MobiLink server uses during processing of the upload to
handle rows updated at the remote database.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 335

1.12.2.1 Overview of MobiLink Events
When a synchronization request occurs and the MobiLink server decides that a new consolidated database
connection must be created, the begin_connection event is fired and synchronization starts.

Following the synchronization, the consolidated database connection is placed in a connection pool, and
MobiLink again waits for a synchronization request. If another synchronization request for the same version is
received, then MobiLink handles the next synchronization request on the same connection. Before a
connection is eventually dropped from the connection pool, the end_connection event is fired.

There are many events in each synchronization. Most events are organized by the transaction containing them.

In this section:

Transactions Within a Synchronization [page 337]
Within each synchronization, the following transactions may occur.

The Upload Transaction [page 337]
The upload transaction applies changes uploaded from a remote database.

The Download Transaction [page 338]
The download transaction fetches rows from the consolidated database. It begins with the
begin_download event.

The Non-Blocking Download Acknowledgement Transaction [page 339]
The non-blocking download acknowledgement transaction is only performed when a download
acknowledgement is received. This transaction has two purposes. The scripts
publication_nonblocking_download_ack and nonblocking_download_ack are run in this transaction;
they help download status tracking. Secondly, download timestamps in the MobiLink system tables are
updated during this transaction.

MobiLink Event Model Notes [page 339]
Keep the following points in mind:

MobiLink Complete Event Model [page 340]
This representation of the MobiLink event model assumes a full synchronization (not upload-only or
download-only) with no errors.

Events During Upload [page 342]
The following pseudocode illustrates how upload events and upload scripts are invoked.

336 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Events During Download [page 345]
The following pseudocode provides an overview of the sequence in which download events, and the
script of the same name, are invoked.

1.12.2.1.1 Transactions Within a Synchronization

Within each synchronization, the following transactions may occur.

• authentication
• begin synchronization
• upload
• prepare for download
• download
• end synchronization
• non-blocking download acknowledgement

In addition, you can have two connection transactions. A begin connection transaction occurs right after a
consolidated database connection is made, and an end connection transaction occurs when the connection is
closed.

The primary phases of a synchronization are the upload and download transactions. The events contained in
the upload and download transactions are outlined in the following topics.

1.12.2.1.2 The Upload Transaction

The upload transaction applies changes uploaded from a remote database.

The begin_upload event marks the beginning of the upload transaction. The upload transaction is a two-part
process. First, inserts and updates are uploaded for all remote tables, and second, deletes are uploaded for all
remote tables.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 337

The end_upload event marks the end of the upload transaction.

You can specify multiple upload transactions with the dbmlsync -tu option.

1.12.2.1.3 The Download Transaction

The download transaction fetches rows from the consolidated database. It begins with the begin_download
event.

The download transaction is a two-part process. For each table, first deletes are downloaded, and then update/
insert rows (upserts) are downloaded. The end_download event ends the download transaction.

338 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.12.2.1.4 The Non-Blocking Download Acknowledgement
Transaction

The non-blocking download acknowledgement transaction is only performed when a download
acknowledgement is received. This transaction has two purposes. The scripts
publication_nonblocking_download_ack and nonblocking_download_ack are run in this transaction; they help
download status tracking. Secondly, download timestamps in the MobiLink system tables are updated during
this transaction.

This transaction may not be performed on the same database connection as the other events for the target
synchronization so no connection level variables may be referenced in this transaction.

1.12.2.1.5 MobiLink Event Model Notes

Keep the following points in mind:

• Usually, if you have not defined a script for a given event, the default action is to do nothing.
• The begin_connection and end_connection events are connection-level events. They are independent of

any single synchronization and have no parameters.
• Some events are invoked once per synchronization for each table being synchronized. Scripts associated

with these events are called table-level scripts.
While each table can have its own table scripts, you can also write table-level scripts that are shared by
several tables.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 339

• Some events, such as begin_synchronization, occur at both the connection level and the table level. You
can supply both connection and table scripts for these events.

• The COMMIT statements illustrate how the synchronization process is broken up into distinct transactions.

 Caution
There should be no implicit or explicit commit or rollback in your SQL synchronization scripts or the
procedures or triggers that are called from your SQL synchronization scripts. COMMIT or ROLLBACK
statements within SQL scripts alter the transactional nature of the synchronization steps. If you use them,
MobiLink cannot guarantee the integrity of your data in the event of a failure.

Related Information

Scripts to Upload Rows [page 321]
Scripts to Download Rows [page 324]

1.12.2.1.6 MobiLink Complete Event Model

This representation of the MobiLink event model assumes a full synchronization (not upload-only or download-
only) with no errors.

The following pseudocode provides an overview of the sequence in which events, and the scripts of the same
names, are invoked.

-- MobiLink complete event model. Legend:
- // This is a comment.
- <name>
 The pseudocode for <name> is listed separately
 in a later section, under a banner:

 name

- VariableName <- value
 Assign the given value to the given variable name.
 Variable names are in mixed case.
- event_name
 If you have defined a script for the given event name,
 it is invoked.
--
CONNECT to consolidated database
begin_connection_autocommit
begin_connection
COMMIT
for each synchronization request with
 the same script version {
 <synchronize>
}
end_connection
COMMIT
DISCONNECT from consolidated database
--

340 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

synchronize
--
<authenticate>
<begin_synchronization>
<upload>
<prepare_for_download>
<download>
<end_synchronization>
--
authenticate
--
Status <- 1000
UseDefaultAuthentication <- TRUE
if(authenticate_user script is defined) {
 UseDefaultAuthentication <- FALSE
 TempStatus <- authenticate_user
 if(TempStatus > Status) {
 Status <- TempStatus
 }
}
if(authenticate_user_hashed script is defined) {
 UseDefaultAuthentication <- FALSE
 TempStatus <- authenticate_user_hashed
 if(TempStatus > Status) {
 Status <- TempStatus
 }
}
 if(authenticate_parameters script is defined) {
 UseDefaultAuthentication <- FALSE
 TempStatus <- authenticate_parameters
 if(TempStatus > Status) {
 Status <- TempStatus
 }
}
if(UseDefaultAuthentication) {
 if(the user exists in the ml_user table) {
 if(ml_user.hashed_password column is not NULL) {
 if(password matches ml_user.hashed_password) {
 Status <- 1000
 } else {
 Status <- 4000
 }
 } else {
 Status <- 1000
 }
 } else if(-zu+ was on the command line) {
 Status <- 1000
 } else {
 Status <- 4000
 }
}
if(Status >= 3000) {
 // Abort the synchronization.
} else { // UserName defaults to MobiLink user name // sent from the remote.
 if(modify_user script is defined) {
 UserName <- modify_user
 // The new value of UserName is later passed to // all scripts that expect the MobiLink user name. }
}
COMMIT
--
begin_synchronization
--
begin_synchronization // Connection event.
for each table being synchronized {

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 341

 begin_synchronization // Call the table level script.
}
for each publication being synchronized {
 begin_publication
}
COMMIT
--
end_synchronization
--
for each publication being synchronized {
 if((not error) or (begin_publication script was processed)) {
 end_publication
 }
}
for each table being synchronized {
 if((not error) or (begin_synchronization table script was processed)) {
 end_synchronization // Table event.
 }
}
if((not error) or (begin_synchronization connection script was processed))
{
 end_synchronization // Connection event. }

Related Information

Events During Upload [page 342]
Events During Download [page 345]
prepare_for_download Connection Event [page 470]

1.12.2.1.7 Events During Upload

The following pseudocode illustrates how upload events and upload scripts are invoked.

The pseudocode uses the following conventions:

A script is defined as a real script

This means the script is defined as a real script that will be executed against the consolidated database
during synchronization.
A script is defined as an ignored script

This means the script is defined as an ignored script using "--{ml_ignore}".
A script is defined

This means the script is defined as a real or an ignored script.
A script is not defined

This means there is no script defined for the event at all. You must define it as an ignored script if it is a
required script, but you do not want to use that script.

These events take place at the upload location in the complete event model.

342 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Overview of the Upload

-- upload
--
begin_upload // Connection event
for each table being synchronized {
 begin_upload // Table event
}
handle_UploadData
for each table being synchronized {
 begin_upload_rows
 for each uploaded INSERT or UPDATE for this table {
 if(INSERT) {
 <upload_inserted_row>
 }
 if(UPDATE) {
 <upload_updated_row>
 }
 }
 end_upload_rows
}
for each table being synchronized IN REVERSE ORDER {
 begin_upload_deletes
 for each uploaded DELETE for this table {
 <upload_deleted_row>
 }
 end_upload_deletes
}
For each table being synchronized {
 if(begin_upload table script was processed) {
 end_upload // Table event
 }
}
if(begin_upload connection script was processed) {
 end_upload // Connection event
}
for each table being synchronized {
 upload_statistics // Table event.
}
upload_statistics // Connection event. COMMIT

Upload Inserts

-- <upload_inserted_row>
--
// NOTES:
// - Only table scripts for the current table are involved.
if(upload_insert script is real) {
 upload_insert
} else if(handle_uploadData script is real or
 upload_insert script is defined as an ignored script) {
 // Ignore the insert. (Only ignored in SQL, possibly handled by
handle_uploadData.)
} else {
 error }

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 343

Upload Updates

-- upload_updated_row
--
// NOTES:
// - Only table scripts for the current table are involved.
// - Both the old (original) and new rows are uploaded for
// each update.
ConflictsAreExpected <- (
 upload_new_row_insert script is defined or
 upload_old_row_insert script is defined)
Conflicted <- FALSE
if(upload_update script is real) {
 if(upload_fetch or upload_fetch_column_conflict script is real) {
 if(ConflictsAreExpected) {
 FETCH using upload_fetch INTO current_row
 if(current_row <> old row) {
 Conflicted <- TRUE
 } else {
 upload_update
 }
 } else {
 error
 }
 } else if(upload_fetch and upload_fetch_column_conflict scripts are not
defined) {
 if(ConflictsAreExpected) {
 error
 } else {
 // No conflict detection and resolution by the MobiLink server
 // The upload_update script should handle conflict detection and
resolution
 upload_update
 }
 } else {
 // the upload_fetch script cannot defined as an ignored script
 error
 }
} else if(handle_uploadData script is defined or upload_update script is
defined as an ignored script) {
 // Ignore the upload update (Only ignored in SQL, possibly handled by
handle_uploadData.)
} else {
 error
}
if(Conflicted) {
 if(upload_old_row_insert script is real) {
 upload_old_row_insert
 } else if(upload_old_row_insert script is defined as ignored script) {
 // Ignore the old value
 } else {
 error
 }
 if(upload_new_row_insert script is real) {
 upload_new_row_insert
 } else if(upload_new_row_insert script is defined as ignored script) {
 // Ignore the new value
 } else {
 error
 }
 if(no error) {
 resolve_conflict
 } }

344 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Upload Deletes

-- upload_deleted_row
--
// NOTES:
// - Only table scripts for the current table are involved.
if(upload_delete is real) {
 upload_delete
} else if(handle_UploadData script is real or
 upload_delete script is defined as an ignored script) {
 // Ignore this delete. (Only ignored in SQL, possibly handled by
handle_uploadData.)
} else {
 error }

1.12.2.1.8 Events During Download

The following pseudocode provides an overview of the sequence in which download events, and the script of
the same name, are invoked.

These events take place at the download location in the complete event model provided in the overview of
MobiLink events.

-- prepare_for_download
--
generate_next_last_download_timestamp
modify_last_download_timestamp
fetch the next download timestamp from consolidated
prepare_for_download
--
download
--
begin_download // Connection event.
for each table being synchronized {
 begin_download // Table event.
}
 handle_DownloadData
 for each table being synchronized {
 begin_download_deletes
 for each row in download_delete_cursor {
 if(all primary key columns are NULL) {
 send TRUNCATE to remote
 } else {
 send DELETE to remote
 }
 }
 end_download_deletes
 begin_download_rows
 for each row in download_cursor {
 send INSERT ON EXISTING UPDATE to remote
 }
 end_download_rows
 }
 modify_next_last_download_timestamp
 for each table being synchronized {
 if(begin_download table script was processed) {
 end_download // Table event

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 345

 }
}
if(begin_download connect script was processed) {
 end_download // Connection event
}
 for each table being synchronized {
 download_statistics // Table event.
}
download_statistics // Connection event. COMMIT

Notes

• The download stream does not distinguish between inserts and updates. The script associated with the
download_cursor event is a SELECT statement that specifies the rows to be downloaded. The client
detects whether the row exists and then it performs the appropriate insert or update operation.

• At the end of the download processing, the client automatically deletes rows that violate referential
integrity.

Related Information

Overview of MobiLink Events [page 336]
Referential Integrity and Synchronization

1.12.2.2 Data Scripts

Scripts that directly handle row data are called data scripts. All other scripts are non-data scripts. The
distinction between a data script and a non-data script is sometimes important. For example, only data scripts
can reference the named parameters for column values.

The following events have data scripts associated with them:

• download_cursor table event
• download_delete_cursor table event
• handle_UploadData connection event
• handle_DownloadData connection event
• upload_delete table event
• upload_fetch table event
• upload_fetch_column_conflict table event
• upload_insert table event
• upload_new_row_insert table event
• upload_old_row_insert table event
• upload_update table event

346 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bbaa2d6ce210148c40dd378ab29a59.html

Java and .NET Data Scripts Returning SQL (Removed)

Starting in version 16, the ability for Java and .NET scripting logic to return strings that are interpreted by
MobiLink server as SQL scripts has been removed in all scripts. If your non-data scripts need to cause changes
in the consolidated database, they should do so directly from Java or .NET.

Following is an example of how a script can be updated. The first example uses SQL and the second example
does not.

public String beginDownloadConnection(Timestamp ts,
 String user)
 throws java.sql.SQLException
{
 doSomeWork(ts, user);
 return("CALL do_some_sql({ml s.last_download}, {ml s.username})"); }

public void beginDownloadConnection(Timestamp ts,
 String user)
 throws java.sql.SQLException
{
 doSomeWork(ts, user);

 Connection conn = DBConnectionContext.getConnection();
 PreparedStatement stmt = conn.prepareStatement("CALL do_some_sql(?,?)");
 stmt.setTimestamp(1, ts);
 stmt.setString(2, user);
 stmt.executeUpdate(); }

For data scripts, in order to upload and download table row data values, all of the Java and .NET events need to
be re-written using direct row handling via the handle_UploadData and handle_DownloadData events.

Related Information

Direct Row Handling [page 558]
download_cursor Table Event [page 393]
download_delete_cursor Table Event [page 396]
handle_UploadData Connection Event [page 448]
handle_DownloadData Connection Event [page 437]
upload_delete Table Event [page 500]
upload_fetch Table Event [page 502]
upload_fetch_column_conflict Table Event [page 504]
upload_insert Table Event [page 506]
upload_new_row_insert Table Event [page 508]
upload_old_row_insert Table Event [page 510]
upload_update Table Event [page 522]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 347

1.12.2.3 authenticate_file_transfer Connection Event

Implements custom authentication for file transfers using the mlfiletransfer utility or the MLFileDownload
method.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.file_authentication_code INTEGER. Required. This is an INOUT
parameter. It indicates the overall suc
cess of the authentication.

If this value is 1000-1999, file transfer is
allowed. If this value is 2000-2999, file
transfer is not allowed.

1

s.filename VARCHAR(128). Required. This INOUT
parameter is the name of the file that is
being transferred that is to be authenti
cated. Do not include a path and do not
use ellipsis (three dots), comma, for
ward slash (/) or backslash (\). The file
must be located in the root transfer di
rectory that you specified with the
mlsrv17 -ftr or -ftru option, or in one of
the subdirectories that are automati
cally created. If this is not set explicitly,
the default is the filename that was
passed to the MobiLink server by the
client.

2

s.username VARCHAR(128). The MobiLink user
name.

3

s.subdir VARCHAR(128). This optional INOUT
parameter sets the subdirectory loca
tion for the files to be transferred. To
use the root directory, set this option to
null. This option must not include ellip
sis (three dots), comma, forward slash
(/) or backslash (\). This defaults to re
mote_key if it is not set explicitly.

Not applicable

348 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_key VARCHAR(128). Optional IN parameter
to specify a remote key for the file
transfer.

Not applicable

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Remarks

The MobiLink server executes this event before allowing any download file transfer using the mlfiletransfer
utility or MLFileDownload method. It is executed after the user has authenticated using regular authentication.
If this script is not defined, the file transfer is allowed.

The MLFileDownload method can only be used by UltraLite clients.

Related Information

Script Additions and Deletions [page 316]
MobiLink File Transfers
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
-ftr mlsrv17 Option [page 64]
-ftru mlsrv17 Option [page 65]
MobiLink File Transfer Utility (mlfiletransfer)
SQL-.NET Data Types [page 546]

1.12.2.4 authenticate_file_upload Connection Event

Implements custom authentication for file transfers using the mlfiletransfer utility or the MLFileUpload
method.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 349

https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826e25986ce210149298f5642b6389ee.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac09836ce21014913ed9c27368e76d.html

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.file_authentication_code INTEGER. Required. This is an INOUT
parameter. It indicates the overall suc
cess of the authentication.

If this value is 1000-1999, file transfer is
allowed. If this value is 2000-2999, file
transfer is not allowed.

1

s.filename VARCHAR(128). Required. This INOUT
parameter is the name of the file that is
being transferred that is to be authenti
cated. Do not include a path and do not
use ellipsis (three dots), comma, for
ward slash (/) or backslash (\). The file
must be located in the root transfer di
rectory that you specified with the
mlsrv17 -ftr or -ftru option, or in one of
the subdirectories that are automati
cally created. If this is not set explicitly,
the default is the filename that was
passed to the MobiLink server by the
client.

2

s.file_size INTEGER. This optional IN parameter
can be used to limit the size of file that
can be uploaded.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

3

s.subdir VARCHAR(128). This optional INOUT
parameter sets the subdirectory loca
tion for the files to be transferred. To
use the root directory, set this option to
null. This option must not include ellip
sis (three dots), comma, forward slash
(/) or backslash (\). This defaults to re
mote_key if it is not set explicitly.

Not applicable

s.remote_key VARCHAR(128). Optional IN parameter
to specify a remote key for the file
transfer.

Not applicable

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

350 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

The MobiLink server executes this event before allowing any download file transfer using the mlfiletransfer
utility or MLFileUpload method. It is executed after the user has authenticated using regular authentication. If
this script is not defined, the file transfer is allowed.

The MLFileUpload method can only be used by UltraLite clients.

Related Information

Script Additions and Deletions [page 316]
MobiLink File Transfers
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
-ftr mlsrv17 Option [page 64]
-ftru mlsrv17 Option [page 65]
MobiLink File Transfer Utility (mlfiletransfer)
SQL-.NET Data Types [page 546]

1.12.2.5 authenticate_parameters Connection Event

Receives values from the remote database that can be used to authenticate beyond a user ID and password.
The values can also be used to arbitrarily customize each synchronization.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.authentication_status INTEGER. This is an INOUT parameter. 1

s.authentication_message VARCHAR(1024). This is an INOUT pa
rameter. Provides an authentication
message.

Not applicable

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 351

https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826e25986ce210149298f5642b6389ee.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac09836ce21014913ed9c27368e76d.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

a.N (one or more) VARCHAR(4000). For example, named
parameters could be a.1 a.2.

3 or higher

Parameter Description

authentication_status

The authentication_status parameter is required. It indicates the overall success of the authentication, and
can be set to one of the following values:

Returned Value authentication_status Description

V <= 1999 1000 Authentication succeeded.

1000 <= V <= 2999 2000 Authentication succeeded: password
expiring soon.

3000 <= V <= 3999 3000 Authentication failed: password ex
pired.

4000 <= V <= 4999 4000 Authentication failed.

5000 <= V <= 5999 5000 Unable to authenticate because the
remote ID is already in use. Try the
synchronization again later.

6000 <= V 4000 If the returned value is greater than
5999, MobiLink interprets it as a re
turned value of 4000 (authentication
failed).

authentication_message

This optional parameter provides an authentication message.

This named parameter is initialized to NULL before its first use by a user authentication script. Its returning
message is then passed into the next user authentication script, if the script takes this named parameter.
The final message is translated into the character set of the remote database.

If no error occurred during execution of the user authentication scripts, this message is then sent to the
client by the MobiLink server before precessing the upload stream, regardless of the user authentication
status.

352 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

This message is sent to the client, even if the user authentication failed.
remote_ID

The MobiLink remote ID. You can only reference the remote ID if you are using named parameters.
script_version

This optional parameter specifies that the MobiLink server passes the script version string used for the
current synchronization to this parameter. Question marks cannot be used to specify this parameter.
username

This parameter is the MobiLink user name. VARCHAR(128).
remote a.N

The Nth authentication parameter sent up from the remote client.

Remarks

The number of remote parameters must match the number expected by the authenticate_parameters script or
an error results. An error also occurs if parameters are sent from the client and there is no script for this event.

You can send strings (or parameters in the form of strings) from both SQL Anywhere and UltraLite clients. This
allows you to have authentication beyond a user ID and password. It also means that you can customize your
synchronization based on the value of parameters, and do this in a pre-synchronization phase, during
authentication. These parameters may also be referenced from any synchronization script.

The MobiLink server executes this event upon starting each synchronization. It is executed in the same
transaction as the authenticate_user event.

You can use this event to replace the built-in MobiLink authentication mechanism with a custom mechanism.
You may want to call into the authentication mechanism of your DBMS, or you may want to implement features
not present in the MobiLink built-in mechanism.

If the authenticate_user or authenticate_user_hashed scripts are invoked and return an error, this event is not
called.

SQL scripts for the authenticate_parameters event must be implemented as stored procedures.

Example

For UltraLite remote databases, pass the parameters using the num_auth_parms and auth_parms fields in the
ul_sync_info struct. num_auth_parms is a count of the number of parameters, from 0 to 255. auth_parms is a
pointer to an array of strings. To prevent the strings from being viewed as plain text, the strings are sent using
the same obfuscation as passwords. If num_auth_parms is 0, set auth_parms to null. The following is an
example of passing parameters in UltraLite:

ul_char * Params[3] = { UL_TEXT("param1"), UL_TEXT("param2"), UL_TEXT("param3") };
...
info.num_auth_parms = 3; info.auth_parms = Params;

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 353

For SQL Anywhere remote databases, you pass parameters using the dbmlsync -ap option, in a comma-
separated list. For example, the following command line passes three parameters:

dbmlsync -ap "param1,param2,param3"

In this example, the authenticate_parameters script could be:

CALL my_auth_parm ({ml s.authentication_status},
 {ml s.remote_id},
 {ml s.username},
 {ml a.1},
 {ml a.2},
 {ml a.3})

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Authentication Parameters [page 311]
MobiLink Users in a Synchronization System
Remote IDs and MobiLink User Names in Scripts
Custom User Authentication
SQL-Java Data Types [page 530]
authenticate_user Connection Event [page 354]
authenticate_user_hashed Connection Event [page 360]
begin_synchronization Connection Event [page 377]
-ap dbmlsync Option
Authentication Parameters Synchronization Parameter
Number of Authentication Parameters Synchronization Parameter
SQL-.NET Data Types [page 546]

1.12.2.6 authenticate_user Connection Event

Implements custom user authentication.

Parameters

In the following table, the description indicates the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If

354 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a623126ce21014bdc88c54825281c4.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a55fbd6ce21014bd63fcbe9d1783ec.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/827069946ce210149b8fb8817b97768b.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8270721e6ce210149c45a9dd64e20068.html

you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.authentication_status INTEGER. This is an INOUT parameter. 1

s.authentication_message VARCHAR(1024). This is an INOUT pa
rameter. Provides an authentication
message.

Not applicable

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.password VARCHAR(128). The password for au
thentication purposes. If the user does
not supply a password, this value is null.

3

s.new_password VARCHAR(128). The new password, if
this is being used to reset the pass
word. If the user does not change their
password, this value is null.

4

s.new_remote_id VARCHAR(128). The MobiLink remote
ID, if the remote ID is new in the consoli
dated database. If the remote ID is not
new, the value is null.

s.new_username VARCHAR(128). The MobiLink user
name, if the username is new in the
consolidated database. If the user
name is not new, the value is null.

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

Use MobiLink built-in user authentication mechanism.

Remarks

The MobiLink server executes this event upon starting each synchronization. It is executed in a transaction
before the begin_synchronization transaction.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 355

You can use this event to replace the built-in MobiLink authentication mechanism with a custom mechanism.
You may want to call into the authentication mechanism of your DBMS, or you may want to implement features
not present in the MobiLink built-in mechanism, such as password expiry or a minimum password length.

The parameters used in an authenticate_user event are as follows:

authentication_status

The authentication_status parameter is required. It indicates the overall success of the authentication, and
can be set to one of the following values:

Returned Value authentication_status Description

V <= 1999 1000 Authentication succeeded.

2000 <= V <= 2999 2000 Authentication succeeded: password
expiring soon.

3000 <= V <= 3999 3000 Authentication failed: password ex
pired.

4000 <= V <= 4999 4000 Authentication failed.

5000 <= V <= 5999 5000 Unable to authenticate because the
remote ID is already in use. Try the
synchronization again later.

6000 <= V 4000 If the returned value is greater than
5999, MobiLink interprets it as a re
turned value of 4000.

The value is sent to the client so it can be used to customize authentication behavior at the client.

authentication_message

This optional parameter provides an authentication message.

This named parameter is initialized to NULL before its first use by a user authentication script. Its returning
message is then passed into the next user authentication script, if the script takes this named parameter.
The final message is translated into the character set of the remote database.

If no error occurred during execution of the user authentication scripts, this message is then sent to the
client by the MobiLink server before precessing the upload stream, regardless of the user authentication
status.

This message is sent to the client, even if the user authentication failed.
username

This optional parameter is the MobiLink user name.
remote_id

The MobiLink remote ID. You can only reference the remote ID if you are using named parameters.
password

This optional parameter indicates the password for authentication purposes. If the user does not supply a
password, this is null.
new_password

This optional parameter indicates a new password. If the user does not change their password, this is null.
new_remote_id

356 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

This optional parameter indicates a new remote ID. If the remote ID is not new, this is null.
new_username

This optional parameter indicates a new user name. If the user name is not new, this is null.
script_version

This optional parameter specifies that the MobiLink server passes the script version string used for the
current synchronization to this parameter. Question marks cannot be used to specify this parameter.

SQL scripts for the authenticate_user event must be implemented as stored procedures.

When the two authentication scripts are both defined, and both scripts return different authentication_status
codes, the higher value is used.

The authenticate_user script is executed in a transaction along with all authentication scripts. This transaction
always commits.

SQL Example

A typical authenticate_user script is a call to a stored procedure. The order of the parameters in the call must
match the order above. The following example uses ml_add_connection_script to assign the event to a stored
procedure called my_auth.

CALL ml_add_connection_script('ver1', 'authenticate_user', 'call my_auth ({ml s.authentication_status}, {ml
s.username})')

The following SQL Anywhere stored procedure uses only the user name to authenticate, it has no password
check. The procedure ensures only that the supplied user name is one of the employee IDs listed in the
ULEmployee table.

CREATE PROCEDURE my_auth(inout @auth_status int, in @user_name varchar(128)) BEGIN
 IF EXISTS
 (SELECT * FROM ulemployee
 WHERE emp_id = @user_name)
 THEN
 MESSAGE 'OK' type info to client;
 SET @auth_status = 1000;
 ELSE
 MESSAGE 'Not OK' type info to client;
 SET @auth_status = 4000;
 END IF END

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 357

Java Example

The following call to a MobiLink system procedure registers a Java method called authenticateUser as the
script for the authenticate_user event when synchronizing the script version ver1. This syntax is for SQL
Anywhere consolidated databases.

CALL ml_add_java_connection_script('ver1', 'authenticate_user',
 'ExamplePackage.ExampleClass.authenticateUser')

The following is the sample Java method authenticateUser. It calls Java methods that check and, if needed,
change the user's password.

public void authenticateUser(com.sap.ml.script.InOutInteger authStatus,
 String user,
 String pwd,
 String newPwd)
 throws java.sql.SQLException {
 // A real authenticate_user handler would
 // handle more authentication code states.
 _curUser = user;
 if(checkPwd(user, pwd)) {
 // Authentication successful.
 if(newPwd != null) {
 // Password is being changed.
 if(changePwd(user, pwd, newPwd)) {
 // Authentication OK and password change OK.
 // Use custom code.
 authStatus.setValue(1001);
 } else {
 // Authentication OK but password
 // change failed. Use custom code.
 java.lang.System.err.println("user: "
 + user + " pwd change failed!");
 authStatus.setValue(1002);
 }
 } else {
 authStatus.setValue(1000);
 }
 } else {
 // Authentication failed.
 authStatus.setValue(4000);
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called AuthUser as the script for
the authenticate_user connection event when synchronizing the script version ver1. This syntax is for SQL
Anywhere consolidated databases.

CALL ml_add_dnet_connection_script('ver1', 'authenticate_user',
 'TestScripts.Test.AuthUser')

358 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following is the sample .NET method AuthUser. It calls .NET methods that check and, if needed, change
the user's password.

namespace TestScripts { public class Test {
 string _curUser = null;
public void AuthUser(
 ref int authStatus,
 string user,
 string pwd,
 string newPwd) {
 // A real authenticate_user handler would
 // handle more authentication code states.
 _curUser = user;
 if(CheckPwd(user, pwd)) {
 // Authentication successful.
 if(newPwd != null) {
 // Password is being changed.
 if(ChangePwd(user, pwd, newPwd)) {
 // Authentication OK and password change OK.
 // Use custom code.
 authStatus = 1001;
 } else {
 // Authentication OK but password
 // change failed. Use custom code.
 System.Console.WriteLine("user: "
 + user + " pwd change failed!");
 authStatus = 1002;
 }
 } else {
 authStatus = 1000 ;
 }
 } else {
 // Authentication failed.
 authStatus = 4000;
 } }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink Users in a Synchronization System
Remote IDs and MobiLink User Names in Scripts
Custom User Authentication
SQL-Java Data Types [page 530]
authenticate_user_hashed Connection Event [page 360]
authenticate_parameters Connection Event [page 351]
Authentication Value Synchronization Parameter
sp_hook_dbmlsync_upload_end
modify_user Connection Event [page 463]
begin_synchronization Connection Event [page 377]
SQL-.NET Data Types [page 546]
.NET Synchronization Example [page 556]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 359

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a623126ce21014bdc88c54825281c4.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826948b46ce21014bd3da4e9314d6e52.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af42406ce210148814d00e0abb382e.html

1.12.2.7 authenticate_user_hashed Connection Event

Implements a custom user authentication mechanism.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.authentication_status INTEGER. This is an INOUT parameter. 1

s.authentication_message VARCHAR(1024). This is an INOUT pa
rameter. Provides an authentication
message.

Not applicable

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.hashed_password BINARY(32). If the user does not supply
a password, this value is null.

3

s.hashed_new_password BINARY(32). If this event is not being
used to change the user's password,
this value is null.

4

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

Use MobiLink built-in user authentication mechanism.

360 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

This event is identical to authenticate_user except for the passwords, which are in the same hashed form as
those stored in the ml_user.hashed_password column. Passing the passwords in hashed form provides
increased security.

A one-way hash is used. A one-way hash takes a password and converts it to a byte sequence that is
(essentially) unique to each possible password. The one-way hash lets password authentication take place
without having to store the actual password in the consolidated database.

Due to incremental improvements in the quality of the hash across MobiLink versions, this script can be called
multiple times during an authentication sequence for a user.

When authenticate_user and authenticate_user_hashed are both defined, and both scripts return different
authentication_status codes, the higher value is used.

SQL Example

A typical authenticate_user_hashed script is a call to a stored procedure. The order of the parameters in the
call must match the order above. The following example calls ml_add_connection_script to assign the event to
a stored procedure called my_auth.

CALL ml_add_connection_script('ver1', 'authenticate_user_hashed',
 'call my_auth (
 {ml s.authentication_status},
 {ml s.username},
 {ml s.hashed_password})')

The following SQL Anywhere stored procedure uses both the user name and password to authenticate. The
procedure ensures only that the supplied user name is one of the employee IDs listed in the ULEmployee table.
The procedure assumes that the Employee table has a binary(20) column called hashed_pwd.

CREATE PROCEDURE my_auth(inout @authentication_status integer,
 in @user_name varchar(128),
 in @hpwd binary(32))
BEGIN
 IF EXISTS
 (SELECT * FROM ulemployee
 WHERE emp_id = @user_name
 and hashed_pwd = @hpwd)
 THEN
 message 'OK' type info to client;
 RETURN 1000;
 ELSE
 message 'Not OK' type info to client;
 RETURN 4000;
 END IF END

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 361

Java Example

The following call to a MobiLink system procedure registers a Java method called authUserHashed as the
script for the authenticate_user_hashed event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1', 'authenticate_user_hashed', 'ExamplePackage.ExampleClass.authUserHashed')

The following is the sample Java method authUserHashed. It calls Java methods that check and, if needed,
change the user's password.

public void authUserHashed(com.sap.ml.script.InOutInteger authStatus,
 String user,
 byte pwd[],
 byte newPwd[])
 throws java.sql.SQLException {
 // A real authenticate_user_hashed handler
 // would handle more auth code states.
 _curUser = user;
 if(checkPwdHashed(user, pwd)) {
 // Authorization successful.
 if(newPwd != null) {
 // Password is being changed.
 if(changePwdHashed(user, pwd, newPwd)) {
 // Authorization OK and password change OK.
 // Use custom code.
 authStatus.setValue(1001);
 } else {
 // Auth OK but password change failed.
 // Use custom code
 java.lang.System.err.println("user: " + user
 + " pwd change failed!");
 authStatus.setValue(1002);
 }
 } else {
 authStatus.setValue(1000);
 }
 } else {
 // Authorization failed.
 authStatus.setValue(4000);
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called AuthUserHashed as the
script for the authenticate_user_hashed connection event when synchronizing the script version ver1. This
syntax is for SQL Anywhere consolidated databases.

CALL ml_add_dnet_connection_script('ver1',
 'authenticate_user_hashed',
 'TestScripts.Test.AuthUserHashed')

362 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following is the sample .NET method AuthUserHashed.

namespace TestScripts { public class Test {
 string _curUser = null;
public void AuthUserHashed(
 ref int authStatus,
 string user,
 byte[] pwdHash,
 byte[] newPwdHash) {
 // A real authenticate_user_hashed handler
 // would handle more auth code states.
 _curUser = user;
 if(CheckPwdHashed(user, pwdHash)) {
 // Authorization successful.
 if(newPwdHash != null) {
 // Password is being changed.
 if(ChangePwdHashed(user, pwdHash, newPwdHash)) {
 // Authorization OK and password change OK.
 // Use custom code.
 authStatus = 1001;
 } else {
 // Auth OK but password change failed.
 // Use custom code
 System.Console.WriteLine("user: " + user
 + " pwd change failed!");
 authStatus = 1002;
 }
 } else {
 authStatus = 1000;
 }
 } else {
 // Authorization failed.
 authStatus = 4000;
 } }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink Users in a Synchronization System
Remote IDs and MobiLink User Names in Scripts
Custom User Authentication
SQL-Java Data Types [page 530]
authenticate_user Connection Event [page 354]
authenticate_parameters Connection Event [page 351]
SQL-.NET Data Types [page 546]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 363

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81a623126ce21014bdc88c54825281c4.html

1.12.2.8 begin_connection Connection Event

Invoked at the time the MobiLink server connects to the consolidated database server.

Parameters

None.

Default Action

None.

Remarks

The MobiLink synchronization opens consolidated database connections on demand as synchronization
requests come in. When a MobiLink client connects to the MobiLink server, the MobiLink server temporarily
allocates one connection with the consolidated database server for all of the database activity for that
synchronization. This event may not be called if the MobiLink server is using a connection from the connection
pool.

 Note
This script is not generally used in Java or .NET, because instead of database variables you would use
member variables in this class instance, and prepare the members in the constructor.

SQL Example

The following SQL script works with a SQL Anywhere consolidated database. Two variables are created, one for
the last_download timestamp, and one for employee ID.

CALL ml_add_connection_script('custdb',
 'begin_connection',
 'create variable @LastDownload timestamp; create variable @EmployeeID integer;')

Related Information

Script Additions and Deletions [page 316]

364 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

end_connection Connection Event [page 405]
-cn mlsrv17 Option [page 55]
-w mlsrv17 Option [page 96]

1.12.2.9 begin_connection_autocommit Connection Event

Invoked at the time MobiLink server connects to the consolidated database server, temporarily allowing you to
execute a script when autocommit is on.

Parameters

None.

Default Action

Autocommit is off.

Remarks

When the MobiLink server connects to the consolidated database, it turns off autocommit so that it can roll
back the upload and download if an error occurs, preserving your data integrity.

However, if you are using an Adaptive Server Enterprise consolidated database, you cannot perform DDL
functions such as creating temporary tables unless autocommit is on. If you are using an Adaptive Server
Enterprise consolidated database, run your DDL commands in the begin_connection_autocommit event. When
the event is finished, autocommit is turned off.

Begin_connection_autocommit scripts must be written so that they are repeatable. This is because if an error
or deadlock occurs, the MobiLink server needs to retry the script (since it cannot roll it back).

This event only executes if a script has been defined for the event.

Related Information

Script Additions and Deletions [page 316]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 365

1.12.2.10 begin_download Connection Event

Processes any statements just before the MobiLink server commences preparing the download.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_download TIMESTAMP. The oldest download time
of any synchronized table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this event as the first step in the processing of downloaded information.
Download information is processed in a single transaction. The execution of this event is the first action in this
transaction.

366 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Example

The following example calls ml_add_connection_script to assign the event to a stored procedure called
SetDownloadParameters.

CALL ml_add_connection_script ('Lab',
 'begin_download', 'CALL SetDownloadParameters({ml s.last_table_download}, {ml s.username})')

Java Example

The following call to a MobiLink system procedure registers a Java method called beginDownloadConnection
as the script for the begin_download connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('example_ver',
 'begin_download', 'ExamplePackage.ExampleClass.beginDownloadConnection')

The following is the sample Java method beginDownloadConnection. It calls a Java method (prepDeleteTables)
that prepares the delete tables using a JDBC connection that was set earlier.

public void beginDownloadConnection(Timestamp ts,
 String user)
 throws java.sql.SQLException {
 prepDeleteTables (_syncConn, ts, user); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginDownload as the script
for the begin_download connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'begin_download',
 'TestScripts.Test.BeginDownload')

The following is the sample .NET method BeginDownload. It calls a .NET method (prepDeleteTables) that
prepares the delete tables using a database connection that was set earlier.

public void BeginDownload(DateTime timestamp,
 string user) {
 prepDeleteTables (_syncConn, ts, user); }

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 367

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
end_download Connection Event [page 407]
SQL-.NET Data Types [page 546]

1.12.2.11 begin_download Table Event

Processes statements related to a specific table just before preparing the download inserts, updates, and
deletions.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_table_download TIMESTAMP. The last download time for
the table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

368 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Default Action

None.

Remarks

The MobiLink server executes this event as the first step in preparing download information for a specific table.
The download information is prepared in its own transaction. The execution of this event is the first table-
specific action in the download transaction.

You can have one begin_download script for each table in the remote database. The script is only invoked when
that table is synchronized.

SQL Example

The following call to the MobiLink system procedure ml_add_table_script calls the BeginTableDownload
procedure. This syntax is for a SQL Anywhere 16 consolidated database.

CALL ml_add_table_script('version1',
 'Leads',
 'begin_download',
 'CALL BeginTableDownLoad(
 {ml s.username}, {ml s.table})');

The following SQL statements create the BeginTableDownload procedure. It records the download attempt in a
table.

CREATE PROCEDURE BeginTableDownload(MLUser varchar(128),
 TableName varchar(128))
BEGIN
 INSERT INTO DownloadAttempts (MLUser, TableName, LastDownload); END

Java Example

The following call to a MobiLink system procedure registers a Java method called beginDownloadTable as the
script for the begin_download table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'begin_download',
 'ExamplePackage.ExampleClass.beginDownloadTable')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 369

The following is the sample Java method beginDownloadTable. It prints a message to the MobiLink message
log. (Printing a message to the MobiLink message log might be useful at development time but would slow
down a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void beginDownloadTable(
 String user,
 String table) {
 java.lang.System.out.println("Beginning to process download for: " + table); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginTableDownload as the
script for the begin_download table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'begin_download',
 'TestScripts.Test.BeginTableDownload')

The following is the sample .NET method BeginTableDownload. It prints a message to the MobiLink message
log. (Printing a message to the MobiLink message log might be useful at development time but would slow
down a production server.)

namespace TestScripts { public class Test {
 string _curUser = null;
public void BeginTableDownload(
 string user,
 string table) {
 System.Console.WriteLine("Beginning to process download for: " + table); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
end_download Table Event [page 409]
SQL-.NET Data Types [page 546]

370 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.12 begin_download_deletes Table Event

Processes statements related to a specific table just before fetching a list of rows to be deleted from the
specified table in the remote database.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_table_download TIMESTAMP. The last download time for
the table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

This event is executed immediately before fetching a list of rows to be deleted from the named table in the
remote database.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 371

 Note
For each download table, the begin_download_deletes, download_delete_cursor, and
end_download_deletes events are invoked in sequence. Consider implementing all of the download delete
logic for a table in a download_delete_cursor event implemented as a single stored procedure that returns
a result set containing all of the rows to be deleted from the remote table. The reduced number of script
invocations may result in improved download performance.

You can have one begin_download_deletes script for each table in the remote database.

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
begin_download_rows Table Event [page 372]
end_download_rows Table Event [page 413]
SQL-.NET Data Types [page 546]

1.12.2.13 begin_download_rows Table Event

Processes statements related to a specific table just before fetching a list of rows to be inserted or updated in
the specified table in the remote database.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_table_download TIMESTAMP. The last download time for
the table.

1

372 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

This event is executed immediately before fetching the rows to be inserted or updated in the named table in the
remote database.

 Note
For each download table, the begin_download_deletes, download_delete_cursor, and
end_download_deletes events are invoked in sequence. Consider implementing all of the download delete
logic for a table in a download_delete_cursor event implemented as a single stored procedure that returns
a result set containing all of the rows to be deleted from the remote table. The reduced number of script
invocations may result in improved download performance.

You can have one begin_download_rows script for each table in the remote database.

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
begin_download_deletes Table Event [page 371]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 373

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

end_download_deletes Table Event [page 412]
SQL-.NET Data Types [page 546]

1.12.2.14 begin_publication Connection Event

Provides useful information about the publication(s) being synchronized. This script may also be used to
manage generation numbers for file-based downloads.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.generation_number INTEGER. This is an INOUT parameter.
If your deployment does not use file-
based downloads, this parameter can
be ignored. The default is 1.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.publication_name VARCHAR(128). The name of the publi
cation.

3

s.last_publication_upload TIMESTAMP. The time of the last suc
cessful upload of this publication.

4

s.last_publication_download TIMESTAMP. The last download time for
the publication.

5

s.subscription_id VARCHAR(128). The remote subscrip
tion ID.

6

374 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

The default generation number is 1. If no script is defined for this event, the generation number sent to the
remote database is always 1.

Remarks

This event lets you design synchronization logic based on the publications currently being synchronized. This
event is invoked in the same transaction as the begin_synchronization event, and is invoked after the
begin_synchronization event. It is invoked once per publication being synchronized.

One potential use for this event is to affect what is downloaded based on the publication used. For example,
consider a table that is part of both a priority publication (PriorityPub) and a publication for all tables
(AllTablesPub). A script for the begin_publication event could store the publication names in a Java class or a
SQL variable or package. Download scripts could then behave differently based on whether the publication
being synchronized is PriorityPub or AllTablesPub.

If an UltraLite remote database is synchronizing with UL_SYNC_ALL, this event is invoked once with the
publication name 'unknown'.

Generation number

The generation_number parameter is specifically for file-based downloads. The output value of the generation
number is passed from the begin_publication script to the end_publication script. The meaning of the
generation_number depends on whether the current synchronization is being used to create a download file, or
whether the current synchronization has an upload.

In file-based downloads, changes to generation numbers are used to force an upload before the download.
While generation numbers remain unchanged, remote databases can process many file-based downloads
without requiring an upload. The number is stored in the download file. During a synchronization that has an
upload, one generation number is output for every subscription to a publication. They are sent to the remote
database in the upload acknowledgement, and stored in SYSSYNC.generation_number.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 375

SQL Example

You may want to record the information for each publication being synchronized. The following example calls
ml_add_connection_script to assign the event to a stored procedure called RecordPubSync.

CALL ml_add_connection_script('version1',
 'begin_publication',
 '{CALL RecordPubSync(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name},
 {ml s.last_publication_upload},
 {ml s.last_publication_download}, {ml s.subscription_id})}');

Java Example

The following call to a MobiLink system procedure registers a Java method called beginPublication as the script
for the begin_publication connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'begin_publication', 'ExamplePackage.ExampleClass.beginPublication')

The following is the sample Java method beginPublication. It saves the name of each publication for later use.

package ExamplePackage; public class ExampleClass
{
 java.util.ArrayList<String> _publicationNames;
 int _numPublications = 0;
 public void beginPublication(com.sap.ml.script.InOutInteger
generation_number,
 String user,
 String pub_name)
 {
 _numPublications++;
 _publicationNames.add(pub_name);
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginPub as the script for
the begin_publication connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'begin_publication',
 'TestScripts.Test.BeginPub')

376 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following is the sample .NET method BeginPub. It saves the name of each publication for later use.

using System.Collections.Generic; namespace TestScripts
{
 class Test
 {
 List<string> _publicationNames = new List<string>();
 int _numPublications = 0;
 public void BeginPub(ref int generation_number,
 string user,
 string pub_name)
 {
 _numPublications++;
 _publicationNames.Add(pub_name);
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink File-based Download [page 270]
MobiLink Generation Numbers [page 277]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
end_publication Connection Event [page 415]
SQL-.NET Data Types [page 546]

1.12.2.15 begin_synchronization Connection Event

Processes statements in preparation for the synchronization process.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 377

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.new_remote_id VARCHAR(128). The MobiLink remote
ID, if the remote ID is new in the consoli
dated database. If the remote ID is not
new, the value is null.

s.new_username VARCHAR(128). The MobiLink user
name, if the user name is new in the
consolidated database. If the user
name is not new, the value is null.

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this event after receiving everything from the MobiLink client that is required to
begin synchronization.

The begin_synchronization script is useful for maintaining statistics. This is because the end_synchronization
script is invoked even if there is an error or conflict, so while the upload transaction is rolled back, things like
statistics are maintained.

SQL Example

You may want to store the username value in a temporary table or variable if you are going to reference that
value many times in subsequent scripts.

CALL ml_add_connection_script ('version1',
 'begin_synchronization', 'set @EmployeeID = {ml s.username}');

378 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Java Example

The following call to a MobiLink system procedure registers a Java method called
beginSynchronizationConnection as the script for the begin_synchronization connection event when
synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'begin_synchronization',
 'ExamplePackage.ExampleClass.beginSynchronizationConnection')

The following is the sample Java method beginSynchronizationConnection. It saves the name of the
synchronizing user for later use.

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void beginSynchronizationConnection(
 String user) {
 _curUser = user; }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginSync as the script for
the begin_synchronization connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1', 'begin_synchronization',
 'TestScripts.Test.BeginSync')

The following is the sample .NET method BeginSync. It saves the name of the synchronizing user for later use.

namespace TestScripts { public class Test {
 string _curUser = null;
public void BeginSync(
 string user) {
 _curUser = user; }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
end_synchronization Connection Event [page 418]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 379

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

begin_synchronization Table Event [page 380]
SQL-.NET Data Types [page 546]

1.12.2.16 begin_synchronization Table Event

Processes statements related to a specific table at the beginning of the synchronization.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.new_remote_id VARCHAR(128). The MobiLink remote
ID, if the remote ID is new in the consoli
dated database. If the remote ID is not
new, the value is null.

s.new_username VARCHAR(128). The MobiLink user
name, if the user name is new in the
consolidated database. If the user
name is not new, the value is null.

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

380 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Default Action

None.

Remarks

The MobiLink server executes this event after receiving everything from the MobiLink client that is required to
begin synchronization.

You can have one begin_synchronization script for each table in the remote database. The event is only invoked
when the table is synchronized.

SQL Example

The begin_synchronization table event is used to set up the synchronization of a particular table. The following
SQL script registers a script that creates a temporary table for storing rows during synchronization. This
syntax is for a SQL Anywhere consolidated database.

CALL ml_add_table_script('ver1',
 'sales_order',
 'begin_synchronization',
 'CREATE TABLE #sales_order (
 id integer NOT NULL default autoincrement,
 cust_id integer NOT NULL,
 order_date date NOT NULL,
 fin_code_id char(2) NULL,
 region char(7) NULL,
 sales_rep integer NOT NULL,
 PRIMARY KEY (id),)')

Java Example

The following call to a MobiLink system procedure registers a Java method called beginSynchronizationTable
as the script for the begin_synchronization table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'begin_synchronization', 'ExamplePackage.ExampleClass.beginSynchronizationTable')

The following is the sample Java method beginSynchronizationTable. It adds the current table name to a list of
table names contained in this instance.

package ExamplePackage; import java.util.ArrayList;

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 381

import java.sql.Timestamp;
class ExampleClass
{
 ArrayList<String> _tableList;
 String _curTable;
 public void beginSynchronizationTable(String user,
 String table)
 {
 _curTable = table;
 _tableList.add(table);
 }
 public void endTableDownload(Timestamp ts,
 String user,
 String table)
 {
 _curTable = null;
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginTableSync as the script
for the begin_synchronization table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script ('ver1',
 'table1',
 'begin_synchronization', 'TestScripts.Test.BeginTableSync')

The following is the sample .NET method BeginTableSync. It adds the current table name to a list of table
names contained in this instance.

using System.Collections.Generic; using System;
namespace TestScripts
{
 class Test
 {
 List<string> _tableList = new List<string>();
 string _curTable = "";
 public void BeginSynchronizationTable(string user,
 string table)
 {
 _curTable = table;
 _tableList.Add(table);
 }
 public void EndTableDownload(DateTime timestamp,
 string user,
 string table)
 {
 _curTable = null;
 }
 }
}

382 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
end_synchronization Table Event [page 421]
begin_synchronization Connection Event [page 377]
SQL-.NET Data Types [page 546]

1.12.2.17 begin_upload Connection Event

Processes any statements just before the MobiLink server commences processing the uploaded inserts,
updates, and deletes.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 383

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Default Action

None.

Remarks

The MobiLink server executes this event as the first step in the processing of uploaded rows. Uploaded rows
are processed in a single transaction. The execution of this event is the first action in this transaction.

SQL Example

The begin_upload connection event is used to perform whatever steps you need performed before uploading
rows. The following SQL script creates a temporary table for storing old and new row values for conflict
processing of the sales_order table. This example works with a SQL Anywhere consolidated database.

CALL ml_add_connection_script('version1',
 'begin_upload',
 'CREATE TABLE #sales_order_conflicts (
 id integer NOT NULL default autoincrement,
 cust_id integer NOT NULL,
 order_date date NOT NULL,
 fin_code_id char(2) NULL,
 region char(7) NULL,
 sales_rep integer NOT NULL,
 new_value char(1) NOT NULL, PRIMARY KEY (id))')

Java Example

The following call to a MobiLink system procedure registers a Java method called beginUploadConnection as
the script for the begin_upload connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'begin_upload', 'ExamplePackage.ExampleClass.beginUploadConnection ')

The following is the sample Java method beginUploadConnection. It prints a message to the MobiLink message
log. (Printing a message to the MobiLink message log might be useful at development time but would slow
down a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void beginUploadConnection(String user) {
 java.lang.System.out.println(
 "Starting upload for user: " + user);

384 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginUpload as the script for
the begin_upload connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'begin_upload',
 'TestScripts.Test.BeginUpload')

The following C# example saves the current user name for use in a later event.

namespace TestScripts { public class Test {
 string _curUser = null;
public void BeginUpload(string curUser) {
 _curUser = curUser; }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
end_upload Connection Event [page 424]
begin_upload Table Event [page 385]
SQL-.NET Data Types [page 546]

1.12.2.18 begin_upload Table Event

Processes statements related to a specific table just before the MobiLink server commences processing the
uploaded inserts, updates, and deletes.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 385

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this event as the first step in the processing of uploaded rows. Uploaded rows
are processed in a single transaction. The execution of this event is the first table-specific action in this
transaction.

You can have one begin_upload script for each table in the remote database. The script is only invoked when
the table is actually synchronized.

SQL Example

When uploading rows from a remote you may want to place the changes in an intermediate table and manually
process changes. You can delete from a global temporary table in this event, in preparation for receiving the
new rows.

CALL ml_add_table_script('version1',
 'Leads',
 'begin_upload',

386 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 'DELETE FROM T_Leads')

Java Example

The following call to a MobiLink system procedure registers a Java method called beginUploadTable as the
script for the begin_upload table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'begin_upload',
 'ExamplePackage.ExampleClass.beginUploadTable')

The following is the sample Java method beginUploadTable. It prints a message to the MobiLink message log.
(Printing a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void beginUploadTable(
 String user,
 String table) {
 java.lang.System.out.println("Beginning to process upload for: " + table); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginTableUpload as the
script for the begin_upload table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'begin_upload',
 'TestScripts.Test.BeginTableUpload')

The following is the sample .NET method BeginTableUpload. It prints a message to the MobiLink message log.
(Printing a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

namespace TestScripts { public class Test {
 string _curUser = null;
public void BeginTableUpload(
 string user,
 string table) {
 System.Console.WriteLine("Beginning to process upload for: " + table); }}}

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 387

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
end_upload Table Event [page 426]
begin_upload Connection Event [page 383]
SQL-.NET Data Types [page 546]

1.12.2.19 begin_upload_deletes Table Event

Processes statements related to a specific table just before uploading deleted rows from the specified table in
the remote database.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

388 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Default Action

None.

Remarks

This event occurs immediately before applying the changes that result from rows deleted from the named
remote table.

You can have one begin_upload_deletes script for each table in the remote database. The script is only invoked
when the table is actually synchronized.

SQL Example

The begin_upload_deletes table event is used to perform whatever steps you need performed after uploading
inserts and updates for a particular table, but before deletes are uploaded for that table. The following SQL
script creates a temporary table for storing deletes temporarily during upload. This syntax is for a SQL
Anywhere consolidated database.

CALL ml_add_table_script('ver1',
 'sales_order',
 'begin_upload_deletes',
 'CREATE TABLE #sales_order_deletes (
 id integer NOT NULL default autoincrement,
 cust_id integer NOT NULL,
 order_date date NOT NULL,
 fin_code_id char(2) NULL,
 region char(7) NULL,
 sales_rep integer NOT NULL, PRIMARY KEY (id))')

Java Example

The following call to a MobiLink system procedure registers a Java method called beginUploadDeletes as the
script for the begin_upload_deletes table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'begin_upload_deletes', 'ExamplePackage.ExampleClass.beginUploadDeletes')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 389

The following is the sample Java method beginUploadDeletes. It prints a message to the MobiLink message
log. (Printing a message to the MobiLink message log might be useful at development time but would slow
down a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void beginUploadDeletes(
 String user,
 String table)
 throws java.sql.SQLException {
 java.lang.System.out.println(
 "Starting upload deletes for table: " + table); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginUploadDeletes as the
script for the begin_upload_deletes table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'begin_upload_deletes',
 'TestScripts.Test.BeginUploadDeletes')

The following is the sample .NET method BeginUploadDeletes. It prints a message to the MobiLink message
log. (Printing a message to the MobiLink message log might be useful at development time but would slow
down a production server.)

namespace TestScripts { public class Test {
 string _curUser = null;
public void BeginUploadDeletes(
 string user,
 string table) {
 System.Console.WriteLine(
 "Starting upload deletes for table: " + table); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
end_upload_deletes Table Event [page 429]
SQL-.NET Data Types [page 546]

390 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.20 begin_upload_rows Table Event

Processes statements related to a specific table just before uploading inserts and updates from the specified
table in the remote database.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

This event occurs immediately before applying the changes that result from inserts and deletes to the remote
table named in the second parameter.

You can have one begin_upload_rows script for each table in the remote database. The script is only invoked
when the table is actually synchronized.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 391

SQL Example

The begin_upload_rows table event is used to perform whatever steps you need performed before uploading
inserts and updates for a particular table. The following script calls a stored procedure that prepares the
consolidated database for inserts and updates into the Inventory table:

CALL ml_add_table_script('MyCorp 1.0',
 'Inventory',
 'begin_upload_rows', 'CALL PrepareForUpserts()')

Java Example

The following call to a MobiLink system procedure registers a Java method called beginUploadRows as the
script for the begin_upload_rows table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'begin_upload_rows', 'ExamplePackage.ExampleClass.beginUploadRows')

The following is the sample Java method beginUploadRows. It prints a message to the MobiLink message log.
(Printing a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void beginUploadRows(
 String user,
 String table)
 throws java.sql.SQLException {
 java.lang.System.out.println(
 "Starting upload rows for table: " +
 table + " and user: " + user); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called BeginUploadRows as the
script for the begin_upload_rows table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'begin_upload_rows',
 'TestScripts.Test.BeginUploadRows')

392 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following is the sample .NET method BeginUploadRows. It prints a message to the MobiLink message log.
(Printing a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

namespace TestScripts { public class Test
 string _curUser = null;
public void BeginUploadRows(
 string user,
 string table) {
 System.Console.WriteLine(
 "Starting upload rows for table: " +
 table + " and user: " + user); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
end_upload_rows Table Event [page 432]
SQL-.NET Data Types [page 546]

1.12.2.21 download_cursor Table Event

A data script that defines a cursor to select rows to download and insert and update in the given table in the
remote database.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_table_download TIMESTAMP. The last download time for
the table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 393

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.username VARCHAR(128). The MobiLink user
name.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server uses the script to open a read-only cursor to fetch a list of rows to download to the remote
database.

You can have one download_cursor script for each table in the remote database.

To optimize performance of the download stage of synchronization to UltraLite clients, when the range of
primary key values is outside the current rows on the device, you should order the rows in the download cursor
by primary key. Downloads of large reference tables, for example, can benefit from this optimization.

Each download_cursor script must contain a SELECT statement or a call to a procedure that returns a result
set. The MobiLink server uses this statement to define a cursor in the consolidated database.

The script must select all columns that correspond to the columns in the corresponding table in the remote
database. The columns in the consolidated database can have different names than the corresponding
columns in the remote database, but they must be of compatible types.

The columns must be selected in the order that the corresponding columns are defined in the remote
database.

To avoid downloading unnecessary rows, consider using timestamp-based downloads. When using timestamp-
based downloads, include a line similar to the following in the WHERE clause of your download_cursor script:

AND last_modified >= {ml s.last_table_download}

This script must be implemented in SQL. For Java or .NET processing of rows, use direct row handling.

If you are considering using READPAST table hints in download_cursor scripts because you are doing lots of
updates that affect download performance, consider using snapshot isolation for downloads instead. The
READPAST table hint can cause problems if used in download_cursor scripts. When using timestamp-based

394 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

downloads, the READPAST hint can cause rows to be missed, and can cause a row to never be downloaded to a
remote database. For example:

• A row is added to the consolidated database and committed. The row has a last_modified column with a
time of yesterday.

• The same row is updated but not committed.
• A remote database with a last_download time of last week synchronizes.
• A download_cursor script attempts to select the row using READPAST, and skips the row.
• The transaction that updated the row is rolled back. The next last download time for the remote is

advanced to today.

From this point on, the row is never downloaded unless it is updated. A possible workaround is to implement a
generate_next_last_download_timestamp or modify_next_last_download_timestamp script and set the last
download time to be the start time of the oldest open transaction.

SQL Example

The following example comes from an Oracle installation, although the statement is valid against all supported
databases. This example downloads all rows that have been changed since the last time the user downloaded
data, and that match the user name in the emp_name column.

CALL ml_add_table_script('Lab',
 'ULOrder',
 'download_cursor',
 'SELECT order_id,
 cust_id,
 prod_id,
 emp_id,
 disc,
 quant,
 notes,
 status
 FROM ULOrder
 WHERE last_modified >= {ml s.last_table_download} AND emp_name = {ml s.username}')

Related Information

Direct Row Handling [page 558]
Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
Scripts to Download Rows [page 324]
download_cursor Scripts [page 326]
Partitioned Rows Among Remote Databases [page 121]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 395

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

download_delete_cursor Table Event [page 396]
FROM Clause

1.12.2.22 download_delete_cursor Table Event

A data script that defines a cursor to select rows that are to be deleted in the remote database.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_table_download TIMESTAMP. The last download time for
the table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server opens a read-only cursor to fetch a list of rows to download, and then delete from the
remote database. This script must contain a SELECT statement that returns the primary key values of the rows
to be deleted from the table in the remote database.

396 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/3be4b5016c5f10149f10a6db96ba7e52.html

You can have one download_delete_cursor script for each table in the remote database.

If the download_delete_cursor has nulls for the primary key columns for one or more rows in a table, then the
MobiLink server tells the remote database to delete all the rows in the table.

Rows deleted from the consolidated database cannot appear in a result set defined by a
download_delete_cursor event, and so are not automatically deleted from the remote database. One technique
for identifying rows to be deleted from remote databases is to add a column to the consolidated database table
identifying a row as inactive.

To avoid downloading unnecessary rows to delete, consider using timestamp-based downloads. Include a line
similar to the following in the WHERE clause of your download_delete_cursor script:

AND last_modified >= {ml s.last_table_download}

This script must be implemented in SQL. For Java or .NET processing of rows, use Direct row handling.

It can be problematic using READPAST table hints in a download_delete_cursor. For details, see the
download_cursor event.

SQL Example

This example is taken from the Contact sample and can be found in Samples\MobiLink\Contact
\build_consol.sql. It deletes from the remote database any customers who have been changed since the
last time this user downloaded data (Customer.last_modified >= {ml s.last_table_download}),
and either

• do not belong to the synchronizing user (SalesRep.username != {ml s.username}), or
• are marked as inactive in the consolidated database (Customer.active = 0).

CALL ml_add_table_script('ver1',
 'table1',
 'download_delete_cursor',
 'SELECT cust_id FROM Customer key join SalesRep
 WHERE Customer.last_modified >= {ml s.last_table_download} AND (SalesRep.username != {ml s.username} OR Customer.active = 0)')

Related Information

Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
Scripts to Download Rows [page 324]
Partitioned Rows Among Remote Databases [page 121]
download_delete_cursor Scripts [page 327]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 397

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Direct Row Handling [page 558]
download_cursor Table Event [page 393]
FROM Clause

1.12.2.23 download_statistics Connection Event

Provides access to synchronization statistics for download operations.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark, but you cannot mix names
and question marks within a script. In SQL scripts, you can specify event parameters by name or with a
question mark. Using question marks has been deprecated. Use named parameters instead. You cannot mix
names and question marks within a script. If you use question marks, the parameters must be in the order
shown below and are optional only if no subsequent parameters are specified (for example, you must use
parameter 1 if you are going to use parameter 2). If you use named parameters, you can specify any subset of
the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name as specified in your SYNCHRONI
ZATION USER definition.

1

s.warnings INTEGER. The number of warnings is
sued.

2

s.errors INTEGER. The number of errors, includ
ing handled errors, that occurred.

3

s.fetched_rows INTEGER. The number of rows fetched
by the download_cursor script.

4

s.deleted_rows INTEGER. The number of rows fetched
by the download_delete_cursor script.

5

s.filtered_rows INTEGER. The number of rows from the
fetched_rows parameter actually sent
to the remote. This reflects download
filtering of uploaded values.

6

398 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/3be4b5016c5f10149f10a6db96ba7e52.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.bytes INTEGER. The number of bytes sent to
the remote database as the download.

7

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The download_statistics event allows you to gather, for any user, statistics on downloads. The
download_statistics connection script is called just before the commit at the end of the download transaction.

 Note
Depending on the command line, not all warnings are logged. The warnings count passed to this script is
the number of warnings that would be logged when no warnings are disabled, which may be more than the
number of warnings logged.

SQL Example

The following example inserts synchronization statistics into a table called download_audit.

CALL ml_add_connection_script('ver1',
 'download_statistics',
 'INSERT INTO download_audit(
 user_name,
 warnings,
 errors,
 fetched_rows,
 deleted_rows,
 filtered_rows,
 bytes)
 VALUES (
 {ml s.username},
 {ml s.warnings},
 {ml s.errors},
 {ml s.fetched_rows},
 {ml s.deleted_rows},

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 399

 {ml s.filtered_rows}, {ml s.bytes})')

Once vital statistics are inserted into the audit table, you may use these statistics to monitor your
synchronizations and make optimizations where applicable.

Java Example

The following call to a MobiLink system procedure registers a Java method called
downloadStatisticsConnection as the script for the download_statistics event when synchronizing the script
version ver1.

CALL ml_add_java_connection_script('ver1',
 'download_statistics', 'ExamplePackage.ExampleClass.downloadStatisticsConnection')

The following is the sample Java method downloadStatisticsConnection. It prints the number of fetched rows
to the MobiLink message log. (Printing the number of fetched rows to the MobiLink message log might be
useful at development time but would slow down a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void downloadStatisticsConnection(
 String user,
 int warnings,
 int errors,
 int fetchedRows,
 int deletedRows,
 int filteredRows,
 int bytes) {
 java.lang.System.out.println(
 "download connection stats fetchedRows: "
 + fetchedRows); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called DownloadStats as the script
for the download_statistics connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'download_statistics',
 'TestScripts.Test.DownloadStats')

The following is the sample .NET method DownloadStats. It prints the number of fetched rows to the MobiLink
message log. (Printing the number of fetched rows to the MobiLink message log might be useful at
development time but would slow down a production server.)

namespace TestScripts {

400 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 public class Test {
 string _curUser = null;
public void DownloadStats(
 string user,
 int warnings,
 int errors,
 int deletedRows,
 int fetchedRows,
 int downloadRows,
 int filteredRows,
 int bytes) {
 System.Console.WriteLine(
 "download connection stats fetchedRows: "
 + fetchedRows); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink Profiler [page 247]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
download_statistics Table Event [page 401]
upload_statistics Connection Event [page 513]
upload_statistics Table Event [page 517]
synchronization_statistics Connection Event [page 487]
synchronization_statistics Table Event [page 491]
time_statistics Connection Event [page 494]
time_statistics Table Event [page 497]
SQL-.NET Data Types [page 546]

1.12.2.24 download_statistics Table Event

Provides access to synchronization statistics for download operations by table.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 401

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name as specified in your SYNCHRONI
ZATION USER definition.

1

s.table VARCHAR(128). The table name. 2

s.warnings INTEGER. The number of warnings is
sued.

3

s.errors INTEGER. The number of errors, includ
ing handled errors, that occurred.

4

s.fetched_rows INTEGER. The number of rows fetched
by the download_cursor script.

5

s.deleted_rows INTEGER. The number of rows fetched
by the download_delete_cursor script.

6

s.filtered_rows INTEGER. The number of rows filtered
from the fetched_rows. This reflects
download filtering of uploaded values.

7

s.bytes INTEGER. The number of bytes sent to
the remote database as the download.

8

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The download_statistics event allows you to gather, for any user and table, statistics on downloads as they
apply to that table. The download_statistics table script is called just before the commit at the end of the
download transaction.

402 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 Note
Depending on the command line, not all warnings are logged. The warnings count passed to this script is
the number of warnings that would be logged when no warnings are disabled, which may be more than the
number of warnings logged.

SQL Example

The following example inserts synchronization statistics into a table called download_audit. Once vital statistics
are inserted into the audit table, you may use these statistics to monitor your synchronizations and make
optimizations where applicable.

CALL ml_add_table_script('ver1',
 'table1',
 'download_statistics',
 'INSERT INTO download_audit (
 user_name,
 table, warnings,
 errors,
 fetched_rows,
 deleted_rows,
 filtered_rows,
 bytes)
 VALUES (
 {ml s.username},
 {ml s.table},
 {ml s.warnings},
 {ml s.errors},
 {ml s.fetched_rows},
 {ml s.deleted_rows},
 {ml s.filtered_rows}, {ml s.bytes})')

Java Example

The following call to a MobiLink system procedure registers a Java method called downloadStatisticsTable as
the script for the download_statistics table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'download_statistics', 'ExamplePackage.ExampleClass.downloadStatisticsTable')

The following is the sample Java method downloadStatisticsTable. It prints some statistics for this table to the
MobiLink message log. (Printing statistics for a table to the MobiLink message log might be useful at
development time but would slow down a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void downloadStatisticsTable(

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 403

 String user,
 String table,
 int warnings,
 int errors,
 int fetchedRows,
 int deletedRows,
 int filteredRows,
 int bytes) {
 java.lang.System.out.println("download table stats "
 + "table: " + table + "bytes: " + bytes); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called DownloadTableStats as the
script for the download_statistics table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'download_statistics',
 'TestScripts.Test.DownloadTableStats')

The following is the sample .NET method DownloadTableStats. It prints some statistics for this table to the
MobiLink message log. (Printing statistics for a table to the MobiLink message log might be useful at
development time but would slow down a production server.)

namespace TestScripts { public class Test {
 string _curUser = null;
public void DownloadTableStats(
 string user,
 string table,
 int warnings,
 int errors,
 int fetchedRows,
 int deletedRows,
 int filteredRows,
 int bytes) {
 System.Console.WriteLine("download table stats "
 + "table: " + table + "bytes: " + bytes); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink Profiler [page 247]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
download_statistics Connection Event [page 398]

404 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

upload_statistics Connection Event [page 513]
upload_statistics Table Event [page 517]
synchronization_statistics Connection Event [page 487]
synchronization_statistics Table Event [page 491]
time_statistics Connection Event [page 494]
time_statistics Table Event [page 497]
SQL-.NET Data Types [page 546]

1.12.2.25 end_connection Connection Event

Processes any statements just before the MobiLink server closes a connection with the consolidated database
server, either in preparation to shut down or when a connection is removed from the connection pool.

Parameters

None.

Default Action

None.

Remarks

You can use the end_connection script to perform an action of your choice just before closing a connection
between the MobiLink server and the consolidated database server.

This script is normally used to complete any actions started by the begin_connection script and free any
resources acquired by it.

SQL Example

The following SQL script drops a temporary table that was created by the begin_connection script. This syntax
is for a SQL Anywhere consolidated database. Strictly speaking, this table doesn't need to be dropped
explicitly, since SQL Anywhere does this automatically when the connection is destroyed. Whether a temporary
table needs to be dropped explicitly depends on your consolidated database type.

CALL ml_add_connection_script('version 1.0',

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 405

 'end_connection', 'DROP TABLE #sync_info')

Java Example

The following call to a MobiLink system procedure registers a Java method called endConnection as the script
for the end_connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'end_connection', 'ExamplePackage.ExampleClass.endConnection')

The following is the sample Java method endConnection. It prints a message to the MobiLink message log.
(Printing a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void endConnection() {
 java.lang.System.out.println("Ending connection."); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndConnection as the script
for the end_connection connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'end_connection',
 'TestScripts.Test.EndConnection')

The following is the sample .NET method EndConnection. It prints a message to the MobiLink message log.
(Printing a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

namespace TestScripts { public class Test {
 string _curUser = null;
public void EndConnection() {
 System.Console.WriteLine("Ending connection."); }}}

Related Information

Script Additions and Deletions [page 316]

406 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

begin_connection Connection Event [page 364]

1.12.2.26 end_download Connection Event

Processes any statements just after the MobiLink server concludes preparation of the download data.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_download TIMESTAMP. The oldest download time
of any synchronized table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this script after all download rows have been fetched from the consolidated
database. The execution of this script is the last non-statistical action in the download.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 407

SQL Example

The following example shows one possible use of an end_download connection script. This script deletes rows
from a temporary table used to help generate the download.

CALL ml_add_connection_script('ver1',
 'end_download', 'DELETE FROM TempDownloadTable where user = {ml s.username}')

Java Example

The following call to a MobiLink system procedure registers a Java method called endDownloadConnection as
the script for the end_download connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'end_download', 'ExamplePackage.ExampleClass.endDownloadConnection')

The following is the sample Java method endDownloadConnection. It prints a message to the MobiLink
message log. (Printing a message to the MobiLink message log might be useful at development time but would
slow down a production server.)

package ExamplePackage; import java.sql.*;
public class ExampleClass {
 String _curUser = null;
public void endDownloadConnection(
 Timestamp ts,
 String user)
{
 java.lang.System.out.println("Ending download for user: " + user); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndDownload as the script
for the end_download connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'end_download', 'TestScripts.Test.EndDownload')

The following is the sample .NET method EndDownload. It prints a message to the MobiLink message log.
(Printing a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

public void EndDownload(DateTime timestamp,

408 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 string user) {
 System.Console.WriteLine("Ending download for user: " + user); }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
begin_download Connection Event [page 366]
SQL-.NET Data Types [page 546]

1.12.2.27 end_download Table Event

Processes statements related to a specific table just after the MobiLink server concludes preparing the
download rows.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_table_download TIMESTAMP. The last download time for
the table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 409

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this script after all download rows have been fetched from the consolidated
database. The execution of this script is the last table-specific, non-statistical action in the download
transaction.

You can have one end_download script for each table in the remote database.

SQL Example

The end_download table event is used to perform whatever steps you need performed after downloading a
particular table. The following SQL Anywhere SQL script drops a temporary table created by a
prepare_for_download script to hold download rows for the sales_summary table.

CALL ml_add_table_script('MyCorp 1.0',
 'sales_summary',
 'end_download', 'DROP TABLE #sales_summary_download')

Java Example

The following call to a MobiLink system procedure registers a Java method called endDownloadTable as the
script for the end_download table event when synchronizing the script version ver1.

CALL ml_add_java_table_script ('ver1',
 'table1',
 'end_download', 'ExamplePackage.ExampleClass.endDownloadTable')

410 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following is the sample Java method endDownloadTable. It resets the current table member variable.

public void endDownloadTable(Timestamp ts,
 String user,
 String table) {
 _curTable = null; }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndTableDownload as the
script for the end_download table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'end_download',
 'TestScripts.Test.EndTableDownload')

The following is the sample .NET method EndTableDownload. It resets the current table member variable.

public void EndTableDownload DateTime timestamp,
 string user,
 string table) {
 _curTable = null; }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
begin_download Table Event [page 368]
end_download Connection Event [page 407]
SQL-.NET Data Types [page 546]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 411

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.28 end_download_deletes Table Event

Processes statements related to a specific table just after preparing a list of rows to be deleted from the
specified table in the remote database.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_table_download TIMESTAMP. The last download time for
the table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

This script is executed immediately after preparing a list of rows to be deleted from the named table in the
remote database.

412 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 Note
For each download table, the begin_download_deletes, download_delete_cursor, and
end_download_deletes events are invoked in sequence. Consider implementing all of the download delete
logic for a table in a download_delete_cursor event implemented as a single stored procedure that returns
a result set containing all of the rows to be deleted from the remote table. The reduced number of script
invocations may result in improved download performance.

You can have one end_download_deletes script for each table in the remote database.

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
begin_download_deletes Table Event [page 371]
end_download Connection Event [page 407]
begin_download_rows Table Event [page 372]
end_download_rows Table Event [page 413]
download_delete_cursor Table Event [page 396]
SQL-.NET Data Types [page 546]

1.12.2.29 end_download_rows Table Event

Processes statements related to a specific table just after preparing a list of rows to be inserted or updated in
the specified table in the remote database.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 413

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_table_download TIMESTAMP. The last download time for
the table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.table VARCHAR(128). The table name. 3

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

This script is executed immediately after preparing the stream of rows to be inserted or updated in the named
table in the remote database.

 Note
For each download table, the begin_download_deletes, download_delete_cursor, and
end_download_deletes events are invoked in sequence. Consider implementing all of the download delete
logic for a table in a download_delete_cursor event implemented as a single stored procedure that returns
a result set containing all of the rows to be deleted from the remote table. The reduced number of script
invocations may result in improved download performance.

You can have one end_download_rows script for each table in the remote database.

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts

414 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
begin_download_rows Table Event [page 372]
end_download Connection Event [page 407]
end_download_deletes Table Event [page 412]
begin_download_deletes Table Event [page 371]
SQL-.NET Data Types [page 546]

1.12.2.30 end_publication Connection Event

Provides useful information about the publication(s) being synchronized.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.generation_number INTEGER. If your deployment does not
use file-based downloads, this parame
ter can be ignored. The default value is
1.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.publication_name VARCHAR(128). The name of the publi
cation.

3

s.last_publication_upload TIMESTAMP. Last successful upload
time of this publication.

4

s.last_publication_download TIMESTAMP. The last download time of
this publication.

5

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 415

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.subscription_id VARCHAR(128). The remote subscrip
tion ID.

6

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

This event lets you design synchronization logic based on the publications currently being synchronized. This
event is invoked in the same transaction as the end_synchronization event, and is invoked before the
end_synchronization event. It is invoked once per publication being synchronized.

If the current synchronization successfully applied an upload, the last_upload parameter contains the time this
latest upload was applied. The last_publication_download is the same value that was passed to the download
scripts as the last download time.

If an UltraLite remote database is synchronizing with UL_SYNC_ALL, this event is invoked once with the name
'unknown'.

Generation number

The generation_number parameter is specifically for file-based downloads. In file-based downloads, changes to
generation numbers are used to force an upload before the download when the file is applied at the remote.
The number is stored in the download file.

The output value of the generation number is passed from the begin_publication script to the end_publication
script. The meaning of the generation_number depends on whether the current synchronization is being used
to create a download file, or whether the current synchronization has an upload.

416 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Example

You may want to record the information for each publication being synchronized. The following example calls
ml_add_connection_script to assign the event to a stored procedure called RecordPubEndSync.

CALL ml_add_connection_script('version1',
 'end_publication',
 'CALL RecordPubEndSync(
 {ml s.generation_number},
 {ml s.username},
 {ml s.publication_name},
 {ml s.last_publication_upload}, {ml s.last_publication_download})');

Java Example

The following call to a MobiLink system procedure registers a Java method called endPublication as the script
for the end_publication connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'end_publication', 'ExamplePackage.ExampleClass.endPublication')

The following is the sample Java method endPublication. It outputs a message to the MobiLink message log.
(Printing a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

package ExamplePackage; import java.sql.*;
public class ExampleClass {
 String _curUser = null;
public void endPublication(
 int generation_number,
 String user,
 String pub_name,
 Timestamp last_publication_upload,
 Timestamp last_publication_download) {
 java.lang.System.out.println(
 "Finished synchronizing publication " + pub_name); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndPub as the script for the
end_publication connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'end_publication',
 'TestScripts.Test.EndPub'

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 417

)

The following is the sample .NET method endPub. It outputs a message to the MobiLink message log. (Printing
a message to the MobiLink message log might be useful at development time but would slow down a
production server.)

public void EndPub(int generation_number,
 string user,
 string pub_name,
 DateTime last_publication_upload,
 DateTime last_publication_download) {
 System.Console.Write(
 "Finished synchronizing publication " + pub_name); }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink File-based Download [page 270]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
begin_publication Connection Event [page 374]
SQL-.NET Data Types [page 546]

1.12.2.31 end_synchronization Connection Event

Processes statements at the end of the synchronization process.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

418 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.synchronization_ok INTEGER. This value is 1 for a success
ful synchronization and 0 for an unsuc
cessful synchronization.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this script after synchronization is complete.

This script is executed within a separate transaction after the download transaction. If no download
acknowledgement is expected, the remote database may finish its synchronization and disconnect before the
end_synchronization script begins or completes.

The end_synchronization script is useful for maintaining statistics. This is because if the begin_synchronization
script is called, the end_synchronization script is invoked even if there is an error in any previous transaction,
so while the upload transaction is rolled back, statistics are maintained.

SQL Example

The following SQL script calls a system procedure that records the end time of the synchronization attempt
along with its success or failure status. This syntax is for SQL Anywhere consolidated databases.

CALL ml_add_connection_script('ver1',
 'end_synchronization',
 'CALL RecordEndOfSyncAttempt(
 {ml s.username}, {ml s.synchronization_ok})')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 419

Java Example

The following call to a MobiLink system procedure registers a Java method called
endSynchronizationConnection as the script for the end_synchronization event when synchronizing the script
version ver1.

CALL ml_add_java_connection_script('ver1',
 'end_synchronization',
 'ExamplePackage.ExampleClass.endSynchronizationConnection')

The following is the sample Java method endSynchronizationConnection. It uses a JDBC connection to execute
an update. This syntax is for SQL Anywhere consolidated databases.

public void endSynchronizationConnection(String user)
 throws java.sql.SQLException {
 execUpdate(_syncConn,
 "UPDATE sync_count set count = count + 1 where user_id = '"
 + user + "' "); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndSync as the script for the
end_synchronization connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'end_synchronization',
 'TestScripts.Test.EndSync')

The following is the sample .NET method EndSync. It updates the table sync_count. This syntax is for SQL
Anywhere consolidated databases.

namespace TestScripts { public class Test {
 string _curUser = null;
public void EndSync(
 string user) {
 return(
 "UPDATE sync_count set count = count + 1 where user_id = '"
 + user + "' "); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]

420 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
begin_synchronization Connection Event [page 377]
begin_synchronization Table Event [page 380]
end_synchronization Table Event [page 421]
SQL-.NET Data Types [page 546]

1.12.2.32 end_synchronization Table Event

Processes statements at the end of the synchronization process.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.synchronization_ok INTEGER. This value is 1 for a success
ful synchronization and 0 for an unsuc
cessful synchronization.

3

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 421

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Default Action

None.

Remarks

The MobiLink server executes this script after an application has synchronized and is about to disconnect from
the MobiLink server, and before the connection level script of the same name.

You can have one end_synchronization script for each table in the remote database.

SQL Example

The following SQL Anywhere SQL script drops a temporary table created by the begin_synchronization script.

CALL ml_add_table_script('ver1',
 'sales_order',
 'end_synchronization', 'DROP TABLE #sales_order')

Java Example

The following call to a MobiLink system procedure registers a Java method called endSynchronizationTable as
the script for the end_synchronization table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'end_synchronization', 'ExamplePackage.ExampleClass.endSynchronizationTable')

The following is the sample Java method endSynchronizationTable.

package ExamplePackage; import com.sap.ml.script.*;
import java.sql.*;
public class ExampleClass {
 private DBConnectionContext _cc = null;
 public ExampleClass(DBConnectionContext cc) {
 _cc = cc;
 }
 public void endSynchronizationTable() throws SQLException {
 try(Connection conn = _cc.getConnection()) {
 try(PreparedStatement stmt = conn.prepareStatement("DROP
TABLE #sales_order")) {
 stmt.executeUpdate();
 }
 }

422 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 }
}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndTableSync as the script
for the end_synchronization table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'end_synchronization',
 'TestScripts.Test.EndTableSync')

The following is the sample .NET method EndSynchronizationTable.

using Sap.MobiLink.Script; namespace TestScripts {
 public class ExampleClass {
 DBConnectionContext _cc = null;
 ExampleClass(DBConnectionContext cc) {
 _cc = cc;
 }
 public void EndSynchronizationTable() {
 DBConnection conn = _cc.GetConnection();
 try {
 DBCommand cmd = conn.CreateCommand();
 try {
 cmd.CommandText = "DROP TABLE #sales_order";
 cmd.Prepare();
 cmd.ExecuteNonQuery();
 } finally {
 cmd.Close();
 }
 } finally {
 conn.Close();
 }
 }
 }
}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
begin_synchronization Table Event [page 380]
end_synchronization Connection Event [page 418]
SQL-.NET Data Types [page 546]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 423

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.33 end_upload Connection Event

Processes any statements just after the MobiLink server concludes processing uploaded inserts, updates, and
deletes.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this script as the last step in the processing of uploaded information. Upload
information is processed in a single transaction. The execution of this script is the last action in this transaction
before statistical scripts.

424 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Example

The following SQL Anywhere SQL script calls the EndUpload stored procedure.

CALL ml_add_connection_script('ver1',
 'end_upload', 'CALL EndUpload({ml s.username});')

Java Example

The following call to a MobiLink system procedure registers a Java method called endUploadConnection as the
script for the end_upload connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'end_upload', 'ExamplePackage.ExampleClass.endUploadConnection')

The following is the sample Java method endUploadConnection. It calls a method to perform operations on the
database.

public void endUploadConnection(String user) { // Clean up new and old tables.
 Iterator two_iter = _tables_with_ops.iterator();
 while(two_iter.hasNext()) {
 TableInfo cur_table = (TableInfo)two_iter.next();
 dumpTableOps(_sync_conn, cur_table);
 }
 _tables_with_ops.clear(); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndUpload as the script for
the end_upload connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'end_upload',
 'TestScripts.Test.EndUpload')

The following is the sample .NET method EndUpload.

using Sap.MobiLink.Script; namespace TestScripts {
 public class ExampleClass {
 DBConnectionContext _cc = null;
 ExampleClass(DBConnectionContext cc) {
 _cc = cc;
 }

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 425

 public void EndUpload(string userName) {
 DBConnection conn = _cc.GetConnection();
 try {
 DBCommand cmd = conn.CreateCommand();
 try {
 cmd.CommandText = "CALL EndUpload(?)";
 cmd.Prepare();
 DBParameter parm = new DBParameter();
 parm.DbType = SQLType.SQL_CHAR;
 parm.Value = userName;
 cmd.Parameters.Add(parm);
 cmd.ExecuteNonQuery();
 } finally {
 cmd.Close();
 }
 } finally {
 conn.Close();
 }
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
begin_upload Connection Event [page 383]
end_upload Table Event [page 426]
SQL-.NET Data Types [page 546]

1.12.2.34 end_upload Table Event

Processes statements related to a specific table just after the MobiLink server concludes processing of
uploaded inserts, updates, and deletions.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

426 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this script as the last step in the processing of uploaded information. Upload
information is processed in a separate transaction. The execution of this script is the last table-specific action
in this transaction.

You can have one end_upload script for each table in the remote database.

SQL Example

The following call to a MobiLink system procedure assigns the end_upload event to a stored procedure called
ULCustomerIDPool_maintain.

CALL ml_add_table_script('custdb',
 'ULCustomerIDPool',
 'end_upload', '{ CALL ULCustomerIDPool_maintain({ml s.username}) }')

The following SQL statements create the ULCustomerIDPool_maintain stored procedure. This procedure
inserts new primary keys, to replace the keys used by the rows just uploaded, into a primary key pool that gets
downloaded to the remote database later in the same synchronization.

CREATE PROCEDURE ULCustomerIDPool_maintain (IN syncuser_id INTEGER) BEGIN

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 427

 DECLARE pool_count INTEGER;
 -- Determine how many ids to add to the pool
 SELECT COUNT(*) INTO pool_count
 FROM ULCustomerIDPool WHERE pool_emp_id = syncuser_id;
 -- Top up the pool with new ids
 WHILE pool_count < 20 LOOP
 INSERT INTO ULCustomerIDPool (pool_emp_id) VALUES (syncuser_id);
 SET pool_count = pool_count + 1;
 END LOOP; END

Java Example

The following call to a MobiLink system procedure registers a Java method called endUploadTable as the script
for the end_upload table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'end_upload', 'ExamplePackage.ExampleClass.endUploadTable')

The following is the sample Java method endUploadTable. It generates a delete for a table with a name related
to the passed-in table name. This syntax is for SQL Anywhere consolidated databases.

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void endUploadTable(
 String user,
 String table) {
 return("DELETE from '" + table + "_temp'"); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndUpload as the script for
the end_upload table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'end_upload',
 'TestScripts.Test.EndUpload')

The following .NET example moves rows inserted into a temporary table into the table passed into the script.

using Sap.MobiLink.Script; namespace TestScripts
{
 public class Test
 {
 DBConnection _curConn = null;

428 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 public Test(DBConnectionContext cc)
 {
 _curConn = cc.GetConnection();
 }
 public void EndUpload(string user, string table)
 {
 DBCommand stmt = _curConn.CreateCommand();
 // Move the uploaded rows to the destination table.
 stmt.CommandText = "INSERT INTO "
 + table
 + " SELECT * FROM dnet_ul_temp";
 stmt.ExecuteNonQuery();
 stmt.Close();
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
begin_upload Table Event [page 385]
end_upload Connection Event [page 424]
SQL-.NET Data Types [page 546]

1.12.2.35 end_upload_deletes Table Event

Processes statements related to a specific table just after applying deletes uploaded from the specified table in
the remote database.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 429

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

This script is run immediately after applying the changes that result from rows deleted in the given remote
table.

You can have one end_upload_deletes script for each table in the remote database.

SQL Example

You can use this event to process rows deleted during the upload on an intermediate table. You can compare
the rows in the base table with rows in the intermediate table and decide what to do with the deleted row.

The following call to a MobiLink system procedure assigns the EndUploadDeletesLeads stored procedure to the
end_upload_deletes event.

CALL ml_add_table_script('version1',
 'Leads',
 'end_upload_deletes', 'call EndUploadDeletesLeads()');

The following SQL statement creates the EndUploadDeletes stored procedure.

CREATE PROCEDURE EndUploadDeletesLeads () Begin
 FOR names AS curs CURSOR FOR

430 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 SELECT LeadID
 FROM Leads
 WHERE LeadID NOT IN (SELECT LeadID FROM T_Leads)
 DO
 CALL decide_what_to_do(LeadID)
 END FOR; end

Java Example

The following call to a MobiLink system procedure registers a Java method called endUploadDeletes as the
script for the end_upload_deletes table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'end_upload_deletes', 'ExamplePackage.ExampleClass.endUploadDeletes')

The following is the sample Java method endUploadDeletes. It calls a Java method that manipulates the
database.

public void endUploadDeletes(String user,
 String table)
 throws java.sql.SQLException {
 processUploadedDeletes(_syncConn, table); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndUploadDeletes as the
script for the end_upload_deletes table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'end_upload_deletes',
 'TestScripts.Test.EndUploadDeletes')

The following is the sample .NET method EndUploadDeletes. It calls a .NET method that manipulates the
database.

namespace TestScripts { public class Test {
 string _curUser = null;
public void EndUploadDeletes(
 string user,
 string table) {
 processUploadedDeletes(_syncConn, table); }}}

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 431

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
begin_upload_deletes Table Event [page 388]
SQL-.NET Data Types [page 546]

1.12.2.36 end_upload_rows Table Event

Processes statements related to a specific table just after applying uploaded inserts and updates from the
specified table in the remote database.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

432 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Default Action

None.

Remarks

This script is run immediately after applying the changes that result from modifications to the given remote
table.

You can have one end_upload_rows script for each table in the remote database.

SQL Example

The following call to a MobiLink system procedure registers a SQL method called EndUploadRows as the script
for the end_upload_rows table event when synchronizing the script version ver1.

CALL ml_add_table_script('version1',
 'table1',
 'end_upload_rows',
 'CALL EndUploadRows(
 { ml s.username }, { ml s.table })')

The following is the sample SQL method EndUploadRows. It calls a SQL method that manipulates the
database.

CREATE PROCEDURE EndUploadRows (IN username VARCHAR(128)
 IN tablename VARCHAR{128})
BEGIN
 CALL decide_what_to_do(tablename); END;

Java Example

The following call to a MobiLink system procedure registers a Java method called endUploadRows as the script
for the end_upload_rows table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'end_upload_rows', 'ExamplePackage.ExampleClass.endUploadRows')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 433

The following is the sample Java method endUploadRows. It calls a Java method that manipulates the
database.

public void endUploadRows(String user,
 String table)
 throws java.sql.SQLException {
 processUploadedRows(_syncConn, table); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndUploadRows as the script
for the end_upload_rows table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'end_upload_rows',
 'TestScripts.Test.EndUploadRows')

The following is the sample .NET method endUploadRows. It calls a .NET method that manipulates the
database.

public void EndUploadRows(string user,
 string table) {
 processUploadedRows(_syncConn, table); }}}

Related Information

Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
begin_upload_rows Table Event [page 391]
SQL-.NET Data Types [page 546]

434 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.37 generate_next_last_download_timestamp
Connection Event

The script is used to invoke a user-defined algorithm to generate the next_last_download_timestamp.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.next_last_download TIMESTAMP. This is an INOUT parame
ter. The MobiLink server initializes this
parameter with the last_down
load_timestamp, a timestamp used to
generate a download stream in the cur
rent synchronization.

1

s.username VARCHAR(128). The MobiLink user
name.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Remarks

This script is invoked in the prepare_for_download transaction, right before the prepare_for_download script is
called.

Use this event with caution, especially with consolidated databases that support a snapshot isolation level,
such as, SQL Anywhere, Oracle, Microsoft SQL Server, Microsoft Azure, and IBM DB2 LUW 9.7. The MobiLink
server always uses the snapshot isolation level for download with Oracle. By default, it also uses the snapshot

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 435

isolation level for download with SQL Anywhere, Microsoft SQL Server, and Microsoft Azure when the snapshot
isolation level is enabled on the database.

 Note
Support for IBM DB2 consolidated databases is deprecated.

For robust timestamp-based synchronization, the output of next_last_download must be the earlier of:

1. the current timestamp
2. the starting timestamp of the earliest open transaction updating (for example, inserting, updating or

deleting) any table or view used to construct the download.

This script can also be specified as an ignored script using the --{ml_ignore} clause. When this script is defined
as an ignored script, the MobiLink server does not call this script and does not use MobiLink internal logic to
generate the next last download timestamp. Instead, the MobiLink server sends back to the client the last
download timestamp that was sent by the client in the current synchronization. You can use this technique for
synchronizations that always download all the rows from the consolidated database for all the synchronization
tables. However, for timestamp-based synchronization, you should define this script as a real script using the
appropriate business logic to generate the next last download timestamp. Alternatively, don't define any script
for this event and the MobiLink server uses its internal logic to generate the next last download timestamp.

Example

The generate_next_last_download_timestamp script can be used in the MobiLink server to generate UTC time-
based downloads. Here are the steps to set up a UTC time based download for Oracle using SQL:

1. Assume you have a sync table called my_table that is defined as follows:

CREATE TABLE my_table (pk INT PRIMARY KEY NOT NULL, c1 VARCHAR(100) ,
 last_modified TIMESTAMP DEFAULT
SYS_EXTRACT_UTC(SYSTIMESTAMP))

2. Create a stored procedure called GenerateNextDownloadTimestamp to get the starting time of the
earliest open transaction in UTC in the Oracle database:

 CREATE PROCEDURE GenerateNextDownloadTimestamp (p_ts IN OUT TIMESTAMP) AS
BEGIN
 SELECT SYS_EXTRACT_UTC(NVL(MIN(TO_TIMESTAMP(START_TIME, 'mm/dd/rr
hh24:mi:ss')),
 SYSTIMESTAMP))
 INTO p_ts FROM GV$TRANSACTION; END;

3. Call the ml_add_connect_script to install the script:

call ml_add_connection_script('my_script_version',
 'generate_next_last_download_timestamp', '{ call GenerateNextDownloadTimestamp({ml s.next_last_download}) }')

 Note
The MobiLink server logon ID must have a SELECT privilege on GV_$TRANSACTION.

436 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
How Download Timestamps Are Generated and Used [page 118]
SQL-Java Data Types [page 530]
modify_next_last_download_timestamp Connection Event [page 460]
modify_last_download_timestamp Connection Event [page 457]
SQL-.NET Data Types [page 546]

1.12.2.38 handle_DownloadData Connection Event

A non-SQL data script used by direct row handling to create a set of rows to download.

Parameters

None.

Default Action

None.

Remarks

The handle_DownloadData event allows you to determine what operations to download to MobiLink clients
using direct row handling.

Direct row handling is used to synchronize to data sources other than MobiLink supported consolidated
databases.

To create the direct download, you can use the DownloadData and DownloadTableData classes in the MobiLink
server API for Java or .NET.

For Java, the DBConnectionContext getDownloadData method returns a DownloadData instance for the
current synchronization. DownloadData encapsulates all download operations to send to a remote client. You
can use the DownloadData getDownloadTables and getDownloadTableByName methods to obtain a
DownloadTableData instance. DownloadTableData encapsulates download operations for a particular table.
You can use the getUpsertPreparedStatement method to obtain prepared statements for insert and update

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 437

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

operations. You can use the DownloadTableData getDeletePreparedStatement method to obtain prepared
statements for delete operations.

For .NET, the DBConnectionContext GetDownloadData method returns a DownloadData instance for the
current synchronization. DownloadData encapsulates all download operations to send to a remote client. You
can use the DownloadData GetDownloadTables and GetDownloadTableByName methods to obtain a
DownloadTableData instance. DownloadTableData encapsulates download operations for a particular table.
You can use the GetUpsertCommand method to obtain commands for insert and update operations. You can
use the DownloadTableData getDeleteCommand method to obtain commands for delete operations.

You can create the download in handle_DownloadData or another synchronization event. MobiLink provides
this flexibility so that you can set the download when data is uploaded or when particular events occur. To
create the direct download in an event other than handle_DownloadData, you must create a
handle_DownloadData script whose method does nothing. Except in upload-only synchronization, the
MobiLink server requires that at a minimum, a handle_DownloadData script be defined to enable direct row
handling of downloads.

If you create the direct download in an event other than handle_DownloadData, the event must not be before
the begin_synchronization event and cannot be after the end_download event.

 Note
This event cannot be implemented as SQL.

Java Example

The following call to a MobiLink system procedure registers a Java method called handleDownload for the
handle_DownloadData connection event when synchronizing the script version ver1. You run this system
procedure against your MobiLink consolidated database.

CALL ml_add_java_connection_script('ver1',
 'handle_DownloadData', 'MyPackage.MobiLinkOrders.handleDownload')

The following example shows you how to use the handleDownload method to create a download.

The following code sets up a class level DBConnectionContext instance in the constructor for a class called
MobiLinkOrders.

import com.sap.ml.script.*; import java.io.*;
import java.sql.*;
import java.lang.System;
public class MobiLinkOrders{
 DBConnectionContext _cc;
 public MobiLinkOrders(DBConnectionContext cc) {
 _cc = cc; }}

In your HandleDownload method, you use the DBConnectionContext getDownloadData method to return a
DownloadData instance for the current synchronization. The DownloadData getDownloadTableByName
method returns a DownloadTableData instance for the remoteOrders table. The DownloadTableData

438 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

getUpsertPreparedStatement method returns a java.sql.PreparedStatement. To add an operation to the
download, you set all column values and call the executeUpdate method.

The following is the handleDownload method of the MobiLinkOrders class. It adds two rows to the download for
a table called remoteOrders.

// Method used for the handle_DownloadData event. public void handleDownload() throws SQLException {
 // Get DownloadData instance for current synchronization.
 DownloadData downloadData = _cc.getDownloadData();

 // Get a DownloadTableData instance for the remoteOrders table.
 DownloadTableData td = downloadData.getDownloadTableByName("remoteOrders");
 // Get a java.sql.PreparedStatement for upsert (update/insert) operations.
 PreparedStatement upsertPS = td.getUpsertPreparedStatement();
 // Set values for one row.
 upsertPS.setInt(1, 2300);
 upsertPS.setInt(2, 100);
 // Add the values to the download.
 int updateResult = upsertPS.executeUpdate();
 // Set values for another row.
 upsertPS.setInt(1, 2301);
 upsertPS.setInt(2, 50);
 updateResult = upsertPS.executeUpdate();
 // ...
 upsertPS.close(); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called HandleDownload as the
script for the handle_DownloadData connection event when synchronizing the script version ver1. This syntax
is for SQL Anywhere consolidated databases.

CALL ml_add_dnet_connection_script('ver1', 'handle_DownloadData',
 'TestScripts.MobiLinkOrders.HandleDownload')

The following is the sample .NET method HandleDownload:

using System; using System.Data;
using System.IO;
using Sap.MobiLink.Script;
using Sap.MobiLink;
namespace MyScripts
{
 /// <summary>
 /// Tests that scripts are called correctly for most sync events.
 /// </summary>
 public class MobiLinkOrders
 {
 private DBConnectionContext _cc;
 public MobiLinkOrders(DBConnectionContext cc)
 {
 _cc = cc;
 }
 ~MobiLinkOrders()
 {

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 439

 }
 public void handleDownload()
 {
 // Get DownloadData instance for current synchronization.
 DownloadData my_dd = _cc.GetDownloadData();

 // Get a DownloadTableData instance for the remoteOrders table.
 DownloadTableData td = my_dd.GetDownloadTableByName("remoteOrders");
 // Get an IDbCommand for upsert (update/insert) operations.
 IDbCommand upsert_stmt = td.GetUpsertCommand();
 IDataParameterCollection parameters = upsert_stmt.Parameters;
 // Set values for one row.
 parameters[0] = 2300;
 parameters[1] = 100;
 // Add the values to the download.
 int update_result = upsert_stmt.ExecuteNonQuery();
 // Set values for another row.
 parameters[0] = 2301;
 parameters[1] = 50;
 update_result = upsert_stmt.ExecuteNonQuery();
 // ...
 }
 } }

Related Information

Data Scripts [page 346]
Direct Row Handling [page 558]
Direct Downloads [page 568]
Scripts Required for Synchronization [page 315]
Script Additions and Deletions [page 316]
handle_UploadData Connection Event [page 448]
ml_add_java_connection_script System Procedure [page 593]

1.12.2.39 handle_error Connection Event

Executed whenever the MobiLink server encounters a SQL error while invoking a data script.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

440 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.action_code INTEGER. This is an INOUT parameter.
Set this value to tell MobiLink server
how to respond to the error.

1

s.error_code INTEGER. The native RDBMS error
code.

2

s.error_message TEXT. The native RDBMS error mes
sage.

3

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

4

s.table VARCHAR(128). The table whose script
had the error. If the script is not a table
script, the table name is null.

5

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

The MobiLink server selects a default action. You can modify the action in the script, and return a value
instructing MobiLink how to proceed. The action_code parameter takes one of the following values:

1000

Skip the current row and continue processing.
3000

Rollback the current transaction and cancel the current synchronization. This is the default action code,
and is used when no handle_error script is defined or this script causes an error.
4000

Rollback the current transaction, cancel the synchronization, and shut down the MobiLink server.

Remarks

The MobiLink server sends in the current action code. Initially, this is set to 3000 for each set of errors caused
by a single SQL operation. Usually, there is only one error per SQL operation, but there may be more. If

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 441

uploading rows in batches using the -s mlsrv17 option, this handle_error script is called once per error in the
batch. During the same synchronization the action code passed into the first error is 3000. Subsequent calls
are passed in the action code returned by the previous call. MobiLink uses the highest numerical value returned
from multiple calls.

You can modify the action code in the script, and return a value instructing MobiLink how to proceed. The
action code tells the MobiLink server what to do next. Before it calls this script, the MobiLink server sets the
action code to a default value, which depends on the severity of the error. Your script may modify this value.
Your script must return or set an action code.

The error_code and message allow you to identify the nature of the error.

The MobiLink server executes this script if an ODBC error occurs while MobiLink is processing an insert,
update, or delete script during the upload transaction or is fetching download rows. If an ODBC error occurs at
another time, the MobiLink server calls the report_error or report_odbc_error script and aborts the
synchronization.

If the error happened while manipulating a particular table, the table name is supplied. Otherwise, this value is
null. The table name is the name of a table in the client application. This name may or may not have a direct
counterpart in the consolidated database, depending upon how your remote table names map to consolidated
tables.

SQL scripts for the handle_error event must be implemented as stored procedures.

You can return a value from the handle_error script one of the following ways:

• Pass the action_code parameter to an OUTPUT parameter of a procedure:

CALL my_handle_error({ml s.action_code}, {ml s.error_code}, {ml
s.error_message}, {ml s.username}, {ml s.table})

• Set the action_code via a procedure or function return value:

{ml s.action_code} = CALL my_handle_error({ml s.error_code}, {ml
s.error_message}, {ml s.username}, {ml s.table})

Most RDBMSs use the RETURN statement to set the return value from a procedure or function.

The CustDB sample application contains error handlers for various database-management systems.

SQL Example

The following example works with a SQL Anywhere consolidated database. It allows your application to ignore
redundant inserts.

The following call to a MobiLink system procedure assigns the ULHandleError stored procedure to the
handle_error event.

CALL ml_add_connection_script('ver1',
 'handle_error',
 'CALL ULHandleError(
 {ml s.action_code},
 {ml s.error_code},
 {ml s.error_message},
 {ml s.username},

442 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 {ml s.table})')

The following SQL statement creates the ULHandleError stored procedure.

CREATE PROCEDURE ULHandleError(INOUT action integer,
 IN error_code integer,
 IN error_message varchar(1000),
 IN user_name varchar(128),
 IN table_name varchar(128))
BEGIN
 -- -196 is SQLE_INDEX_NOT_UNIQUE
 -- -194 is SQLE_INVALID_FOREIGN_KEY
 IF error_code = -196 or error_code = -194 then
 -- ignore the error and keep going
 SET action = 1000;
 ELSE
 -- abort the synchronization
 SET action = 3000;
 END IF; END

Java Example

The following call to a MobiLink system procedure registers a Java method called handleError as the script for
the handle_error connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'handle_error', 'ExamplePackage.ExampleClass.handleError')

The following is the sample Java method handleError. It processes an error based on the data that is passed in.
It also determines the resulting error code.

package ExamplePackage; public class ExampleClass
{
 public void handleError(com.sap.ml.script.InOutInteger actionCode,
 int errorCode,
 String errorMessage,
 String user,
 String table)
 {
 // -196 is SQLE_INDEX_NOT_UNIQUE
 // -194 is SQLE_INVALID_FOREIGN_KEY
 if(errorCode == -196 || errorCode == -194) {
 // ignore the error and keep going
 actionCode.setValue(1000);
 } else {
 // abort the synchronization
 actionCode.setValue(3000);
 }
 } }

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 443

.NET Example

The following call to a MobiLink system procedure registers a .NET method called HandleError as the script for
the handle_error connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'handle_error', 'TestScripts.Test.HandleError')

The following is the sample .NET method HandleError.

namespace TestScripts {
 public class Test
 {
 public void HandleError(ref int actionCode,
 int errorCode,
 string errorMessage,
 string user,
 string table)
 {
 // -196 is SQLE_INDEX_NOT_UNIQUE
 // -194 is SQLE_INVALID_FOREIGN_KEY
 if(errorCode == -196 || errorCode == -194) {
 // ignore the error and keep going
 actionCode = 1000;
 } else {
 // abort the synchronization
 actionCode = 3000;
 }
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Data Scripts [page 346]
SQL-Java Data Types [page 530]
report_error Connection Event [page 476]
report_odbc_error Connection Event [page 480]
handle_odbc_error Connection Event [page 445]
-s mlsrv17 Option [page 81]
SQL-.NET Data Types [page 546]

444 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.40 handle_odbc_error Connection Event

Executed whenever the MobiLink server encounters an ODBC error while invoking a data script.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.action_code INTEGER. This is an INOUT parameter.
Set this value to tell the MobiLink server
how to respond to the error.

1

s.odbc_state VARCHAR(5). The ODBC SQLSTATE. 2

s.error_message TEXT. The ODBC error message 3

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

4

s.table VARCHAR(128). The table name. 5

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

The MobiLink server selects a default action. You can modify the action in the script, and return a value
instructing MobiLink how to proceed. The action_code parameter takes one of the following values:

1000

Skip the current row and continue processing.
3000

Rollback the current transaction and cancel the current synchronization. This is the default action code,
and is used when no handle_error script is defined or this script causes an error.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 445

4000

Rollback the current transaction, cancel the synchronization, and shut down the MobiLink server.

Remarks

The MobiLink server executes this script whenever it encounters an error flagged by the ODBC Driver Manager
if the error occurs while MobiLink is processing an insert, update, or delete script during the upload transaction
or is fetching download rows. If an ODBC error occurs at another time, the MobiLink server calls the
report_error or report_odbc_error script and aborts the synchronization.

The error codes allow you to identify the nature of the error.

The action code tells the MobiLink server what to do next. Before it calls this script, the MobiLink server sets
the action code to a default value, which depends on the severity of the error. Your script may modify this value.
Your script must return or set an action code.

The handle_odbc_error script is called after the handle_error and report_error scripts, and before the
report_odbc_error script.

When only one, but not both, error-handling script is defined, the return value from that script decides error
behavior. When both error-handling scripts are defined, the MobiLink server uses the numerically highest
action code. If both handle_error and handle_ODBC_error are defined, MobiLink uses the action code with the
highest numerical value returned from all calls.

SQL Example

The following example works with a SQL Anywhere consolidated database. It allows your application to ignore
ODBC integrity constraint violations.

The following call to a MobiLink system procedure assigns the HandleODBCError stored procedure to the
handle_odbc_error event.

CALL ml_add_connection_script('ver1',
 'handle_odbc_error',
 'CALL HandleODBCError(
 {ml s.action_code},
 {ml s.ODBC_state},
 {ml s.error_message},
 {ml s.username}, {ml s.table})')

The following SQL statement creates the HandleODBCError stored procedure.

CREATE PROCEDURE HandleODBCError(INOUT action integer,
 IN odbc_state varchar(5),
 IN error_message varchar(1000),
 IN user_name varchar(128),
 IN table_name varchar(128))
 BEGIN
 IF odbc_state = '23000' then

446 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 -- Ignore the error and keep going.
 SET action = 1000;
 ELSE
 -- Abort the synchronization.
 SET action = 3000;
 END IF; END

Java Example

The following call to a MobiLink system procedure registers a Java method called handleODBCError as the
script for the handle_odbc_error event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'handle_odbc_error',
 'ExamplePackage.ExampleClass.handleODBCError')

The following is the sample Java method handleODBCError. It processes an error based on the data that is
passed in. It also determines the resulting error code.

package ExamplePackage; public class ExampleClass
{
 public void handleODBCError(com.sap.ml.script.InOutInteger actionCode,
 String odbcState,
 String errorMessage,
 String user,
 String table)
 {
 if(odbcState == "23000") {
 // Ignore the error and keep going.
 actionCode.setValue(1000);
 } else {
 // Abort the synchronization.
 actionCode.setValue(3000);
 }
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called HandleODBCError as the
script for the handle_odbc_event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'handle_odbc_error', 'TestScripts.Test.HandleODBCError')

The following is the sample .NET method HandleODBCError.

namespace TestScripts

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 447

{
 public class Test
 {
 public void HandleODBCError(ref int actionCode,
 string odbcState,
 string errorMessage,
 string user,
 string table)
 {
 if(odbcState == "23000") {
 // Ignore the error and keep going.
 actionCode = 1000;
 } else {
 // Abort the synchronization.
 actionCode = 3000;
 }
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
handle_error Connection Event [page 440]
report_error Connection Event [page 476]
report_odbc_error Connection Event [page 480]
SQL-.NET Data Types [page 546]

1.12.2.41 handle_UploadData Connection Event

A non-SQL data script used by direct row handling to process uploaded rows.

Parameters

Parameter name for SQL scripts Description Order (deprecated for SQL)

UploadData A .NET or Java class encapsulating ta
ble operations uploaded by a MobiLink
client. This class is defined in the Mobi
Link server API for Java and .NET.

1

448 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The handle_UploadData event allows you to process the upload for MobiLink direct row handling. This event
fires once for each upload transaction in a synchronization, unless you are using transaction-level uploads, in
which case it fires for each transaction.

This event takes a single UploadData parameter. Your Java or .NET method can use the UploadData
getUploadedTables or getUploadedTableByName methods to obtain UploadedTableData instances.
UploadedTableData allows you to access insert, update, and delete operations uploaded by a MobiLink client in
the current synchronization.

Column names are always sent on the first synchronization to a MobiLink server instance by default, then
cached by MobiLink server to avoid re-sending. Optionally, you can establish column names using the
ml_add_column system procedure (deprecated). Otherwise you can refer to columns by index, as defined at
the remote database.

To get the uploaded pre-image columns for an update, use the SetOldRowValues and SetNewRowValues
methods.

 Note
This event cannot be implemented as SQL.

Java Examples

The following call to a MobiLink system procedure registers a Java method called handleUpload for the
handle_UploadData connection event when synchronizing the script version ver1. You run this system
procedure against your MobiLink consolidated database.

CALL ml_add_java_connection_script('ver1',
 'handle_UploadData', 'MyPackage.MyClass.handleUpload')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 449

The following Java method processes the upload for the remoteOrders table. The
UploadData.getUploadedTableByName method returns an UploadedTableData instance for the remoteOrders
table. The UploadedTableData getInserts method returns a java.sql.ResultSet instance representing new rows.

package MyPackage; import com.sap.ml.script.*;
import java.sql.*;
import java.io.*;
// ...
public class MyClass {
 String _curUser = null;
public void handleUpload(UploadData ut)
 throws SQLException, IOException {
 // Get an UploadedTableData instance representing the
 // remoteOrders table.
 UploadedTableData remoteOrdersTable =
ut.getUploadedTableByName("remoteOrders");
 // Get inserts uploaded by the MobiLink client.
 java.sql.ResultSet results = remoteOrdersTable.getInserts();
 while(results.next()) {
 // Get the primary key.
 int pk = results.getInt("pk");

 // Get the uploaded num_ordered value.
 int numOrdered = results.getInt("num_ordered");

 // The current insert row is now ready to be uploaded to wherever
 // you want it to go (a file, a web service, and so on).
 }

 results.close(); }}

The following example outputs insert, update and delete operations uploaded by a MobiLink remote database.
The UploadData getUploadedTables method returns UploadedTableData instances representing all tables
uploaded by a remote. The order of the tables in this array is the order in which they where uploaded by the
remote. The UploadedTableData getInserts, getUpdates, and getDeletes methods return standard JDBC result
sets. You can use the println method or output data to a text file or another location.

import com.sap.ml.script.*; import java.sql.*;
import java.io.*;
// ...
public void handleUpload(UploadData ud)
 throws SQLException, IOException {
 UploadedTableData tables[] = ud.getUploadedTables();
 for(int i = 0; i < tables.length; i++) {
 UploadedTableData currentTable = tables[i];
 println("table " + java.lang.Integer.toString(i) +
 " name: " + currentTable.getName());
 // Print out insert result set.
 println("Inserts");
 printRSInfo(currentTable.getInserts());
 // print out update result set
 println("Updates");
 printUpdateRSInfo(currentTable.getUpdates());
 // Print out delete result set.
 println("Deletes");
 printRSInfo(currentTable.getDeletes());
 } }

450 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The printRSInfo method prints out an insert, update, or delete result set and accepts a single java.sql.ResultSet
object. Detailed column information, including column labels, is provided by the ResultSetMetaData object
returned by the ResultSet getMetaData method. The printRow method prints out each row in a result set.

public void printRSInfo(ResultSet results) throws SQLException, IOException {

 // Obtain the result set metadata.
 ResultSetMetaData metaData = results.getMetaData();
 String columnHeading = "";
 // Print out column headings.
 for(int c = 1; c <= metaData.getColumnCount(); c++) {
 columnHeading += metaData.getColumnLabel(c);
 if(c < metaData.getColumnCount()) {
 columnHeading += ", ";
 }
 }
 println(columnHeading);
 while(results.next()) {
 // Print out each row.
 printRow(results, metaData.getColumnCount());
 }
 // Close the java.sql.ResultSet.
 results.close(); }

The printRow method, shown below, uses the ResultSet getString method to obtain each column value.

public void printRow(ResultSet results, int colCount) throws SQLException, IOException {
 String row = "(";

 for(int c = 1; c <= colCount; c++) {
 // Get a column value.
 String currentColumn = results.getString(c);

 // Check for null values.
 if(currentColumn == null) {
 currentColumn = "<NULL>";
 }
 // Add the column value to the row string.
 row += cur_col;
 if(c < colCount) {
 row += ", ";
 }
 }
 row += ")";
 // Print out the row.
 println(row); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called HandleUpload for the
handle_UploadData connection event when synchronizing the script version ver1. You run this system
procedure against your MobiLink consolidated database.

CALL ml_add_dnet_connection_script('ver1',
 'handle_UploadData',

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 451

 'TestScripts.Test.HandleUpload')

The following .NET method processes the upload for the remoteOrders table. This example makes use of the
SetOldRowValues and SetNewRowValues methods to access both the pre-image and post-image of each
update.

using System; using System.Data;
using System.IO;
using Sap.MobiLink.Script;
using Sap.MobiLink;
namespace MyScripts
{
 public class MyUpload
 {
 public MyUpload(DBConnectionContext cc)
 {
 }
 ~MyUpload()
 {
 }
 public void handleUpload(UploadData ut)
 {
 int i;
 UploadedTableData[] tables = ut.GetUploadedTables();
 for(i=0; i<tables.Length; i+=1) {
 UploadedTableData cur_table = tables[i];
 Console.Write("table " + i + " name: " + cur_table.GetName());

 // Print out insert result set.
 Console.Write("Inserts");
 printRSInfo(cur_table.GetInserts());
 // print out update result set
 Console.Write("Updates");
 printUpdateRSInfo(cur_table.GetUpdates());

 // Print out delete result set.
 Console.Write("Deletes");
 printRSInfo(cur_table.GetDeletes());
 }
 }
 public void printRSInfo(IDataReader dr)
 {
 // Obtain the result set metadata.
 DataTable dt = dr.GetSchemaTable();
 DataColumnCollection cc = dt.Columns;
 DataColumn dc;
 String columnHeading = "";
 // Print out column headings.
 for(int c=0; c < cc.Count; c = c + 1) {
 dc = cc[c];
 columnHeading += dc.ColumnName;
 if(c < cc.Count - 1) {
 columnHeading += ", ";
 }
 }
 Console.Write(columnHeading);
 while(dr.Read()) {
 // Print out each row.
 printRow(dr, cc.Count);
 }
 // Close the java.sql.ResultSet.
 dr.Close();
 }
 public void printUpdateRSInfo(UpdateDataReader utr)
 {
 // Obtain the result set metadata.

452 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 DataTable dt = utr.GetSchemaTable();
 DataColumnCollection cc = dt.Columns;
 DataColumn dc;
 String columnHeading = "TYPE, ";
 // Print out column headings.
 for(int c = 0; c < cc.Count; c = c + 1) {
 dc = cc[c];
 columnHeading += dc.ColumnName;
 if(c < cc.Count - 1) {
 columnHeading += ", ";
 }
 }
 Console.Write(columnHeading);
 while(utr.Read()) {
 // Print out the new values for the row.
 utr.SetNewRowValues();
 Console.Write("NEW:");
 printRow(utr, cc.Count);
 // Print out the old values for the row.
 utr.SetOldRowValues();
 Console.Write("OLD:");
 printRow(utr, cc.Count);
 }
 // Close the java.sql.ResultSet.
 utr.Close();
 }
 public void printRow(IDataReader dr, int col_count)
 {
 String row = "(";
 int c;

 for(c = 0; c < col_count; c = c + 1) {
 // Get a column value.
 String cur_col = dr.GetString(c);

 // Check for null values.
 if(cur_col == null) {
 cur_col = "<NULL>";
 }
 // Add the column value to the row string.
 row += cur_col;
 if(c < col_count) {
 row += ", ";
 }
 }
 row += ")";
 // Print out the row.
 Console.Write(row);
 }
 } }

Related Information

Data Scripts [page 346]
Direct Row Handling [page 558]
Direct Uploads [page 563]
Direct Upload Conflicts [page 564]
Scripts Required for Synchronization [page 315]
Script Additions and Deletions [page 316]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 453

handle_DownloadData Connection Event [page 437]
ml_add_java_connection_script System Procedure [page 593]

1.12.2.42 modify_error_message Connection Event

The script can be used to customize the message text (error, warning, and information) that is sent to remote
databases.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.error_message VARBINARY(1024). This is an INOUT
parameter, representing the error mes
sage.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.error_code INTEGER. The MobiLink error code as
sociated with the error_message.

3

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

454 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

This script gives you the ability to change the error_message into something the remote user and/or
application can understand better than the original message.

SQL scripts for the modify_error_message event must be implemented as stored procedures.

SQL Example

The following example downloads everything from one day ago, regardless of whether the databases were
synchronized since then.

The following SQL statement creates the ModifyLastErrorMessage stored procedure:

CREATE PROCEDURE ModifyLastErrorMessage(inout error_message VARBINARY(1024),
 in username VARCHAR(128),
 in error_code INT)
BEGIN
 SELECT dateadd(day, -1, last_download_time)
 INTO last_download_time END

The following call to a MobiLink system procedure assigns ModifyLastErrorMessage to the
modify_error_message connection event for the script version modify_ts_test:

CALL ml_add_connection_script('modify_ts_test',
 'modify_error_message',
 'CALL ModifyLastErrorMessage (
 {ml s.error_message},
 {ml s.username}, {ml s.error_code})');

Java Example

The following call to a MobiLink system procedure registers a Java method called modifyLastErrorMessage as
the script for the modify_error_message connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'modify_error_message', 'ExamplePackage.ExampleClass.modifyLastErrorMessage')

The following is the sample Java method modifyLastErrorMessage. It prints the current error message and
error code.

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void modifyLastErrorMessage(
 com.sap.ml.script.InOutString lastErrorMessage,

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 455

 String userName,
 int errorCode) {
 java.lang.System.out.println("error message: " +
 lastErrorMessage);
 java.lang.System.out.println("error code: " +
 String.valueOf(errorCode)); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called ModifyLastErrorMessage as
the script for the modify_error_message connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'modify_error_message', 'TestScripts.Test.ModifyLastErrorMessage')

The following is a sample .NET method ModifyLastErrorMessage. It prints the current error code and error
message.

namespace TestScripts { public class Test {
 string _curUser = null;
public void ModifyLastErrorMessage (
 ref string errorMessage,
 string userName,
 string errorCode) {
 System.Console.WriteLine("error message: " + errorMessage);
 System.Console.WriteLine("error code: " + errorCode); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
SQL-.NET Data Types [page 546]

456 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.43 modify_last_download_timestamp Connection
Event

The script can be used to modify the last download time for the current synchronization.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_download TIMESTAMP. The oldest download time
for any synchronized table. This is an
INOUT parameter.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

Use this script when you want to modify the last_download timestamp for the current synchronization. If this
script is defined, the MobiLink server uses the modified last_download timestamp as the last_download
timestamp passed to the download scripts. A typical use of this script is to recover from losing data on the

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 457

remote; you can reset the last_download timestamp to an early time such as 1900-01-01 00:00 so that the
next synchronization downloads all the data. Also, when updates to consolidated tables can be time-stamped
with times earlier than the time of the actual update, for example via DBMS replication, this script lets you
adjust the last download time to avoid missing these updates on download.

SQL scripts for the modify_last_download_timestamp event must be implemented as stored procedures.

This script is executed just before the prepare_for_download script, in the same transaction.

SQL Example

The following SQL statement creates a stored procedure. The following syntax is for Oracle consolidated
databases. When creating a stored procedure in Oracle that takes in a parameter and also passes out the
parameter, ensure that the parameter is marked as IN OUT, as shown below:

CREATE OR REPLACE PROCEDURE ModifyDownloadTimestamp (download_timestamp IN OUT TIMESTAMP,
 user_name IN VARCHAR)
AS
BEGIN
 -- N is the maximum replication latency in consolidated cluster
 download_timestamp := download_timestamp - 1; END;

The following syntax is for SQL Anywhere, Adaptive Server Enterprise, and Microsoft SQL Server consolidated
databases:

CREATE PROCEDURE ModifyDownloadTimestamp @download_timestamp DATETIME OUTPUT,
 @user_name VARCHAR(128)
 AS
 BEGIN
 -- N is the maximum replication latency in consolidated cluster
 SELECT @download_timestamp = @download_timestamp - N END

The following call to a MobiLink system procedure assigns the ModifyDownloadTimestamp stored procedure to
the modify_last_download_timestamp event. The following syntax is for a SQL Anywhere consolidated
database:

CALL ml_add_connection_script('my_version',
 'modify_last_download_timestamp',
 '{CALL ModifyDownloadTimestamp(
 {ml s.last_download}, {ml s.username}) }')

458 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Java Example

The following call to a MobiLink system procedure registers a Java method called
modifyLastDownloadTimestamp as the script for the modify_last_download_timestamp connection event
when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'modify_last_download_timestamp', 'ExamplePackage.ExampleClass.modifyLastDownloadTimestamp')

The following is the sample Java method modifyLastDownloadTimestamp. It prints the current and new
timestamp and modifies the timestamp that is passed in.

public void modifyLastDownloadTimestamp(Timestamp lastDownloadTime,
 String userName) {
 java.lang.System.out.println("old date: " +
 lastDownloadTime.toString());
 lastDownloadTime.setDate(
 lastDownloadTime.getDate() -1);
 java.lang.System.out.println("new date: " +
 lastDownloadTime.toString()); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called
ModifyLastDownloadTimestamp as the script for the modify_last_download_timestamp connection event
when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'modify_last_download_timestamp', 'TestScripts.Test.ModifyLastDownloadTimestamp')

The following is the sample .NET method ModifyLastDownloadTimestamp.

public void ModifyLastDownloadTimestamp(ref DateTime lastDownloadTime,
 string userName) {
 System.Console.WriteLine("old date: " +
 last_download_time.ToString());
 last_download_time = DateTime::Now;
 System.Console.WriteLine("new date: " +
 last_download_time.ToString()); }

Related Information

Script Parameters [page 294]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 459

Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
How Download Timestamps Are Generated and Used [page 118]
SQL-Java Data Types [page 530]
modify_next_last_download_timestamp Connection Event [page 460]
generate_next_last_download_timestamp Connection Event [page 435]
SQL-.NET Data Types [page 546]

1.12.2.44 modify_next_last_download_timestamp Connection
Event

The script can be used to modify the last download time for the next synchronization.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.next _last_download TIMESTAMP. This is an INOUT parame
ter. The MobiLink server generates this
value immediately after the upload is
committed.

1

s.last_download TIMESTAMP. This is the last download
time for the current synchronization.

2

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

3

460 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

This script allows you to change the next_last_download timestamp, which effectively changes the
last_download timestamp for the next synchronization. This allows you to reset the next synchronization
without affecting the current synchronization. During normal synchronization, the next_last_download is later
than, but also sometimes equal to, the last_download time.

SQL scripts for the modify_next_last_download_timestamp event must be implemented as stored procedures.
The MobiLink server passes in the next_last_download timestamp as the first parameter to the stored
procedure, and replaces the timestamp by the first value passed out by the stored procedure.

This script is executed in the download transaction, after downloading user tables, but the output value of your
stored procedure should correspond to the beginning of the download transaction so that rows changed during
the download transaction are downloaded on the next synchronization.

SQL Example

The following example shows one application of this script. Create a stored procedure. The following syntax is
for a SQL Anywhere consolidated database:

CREATE PROCEDURE ModifyNextDownloadTimestamp(inout next_last_download TIMESTAMP ,
 in last_download TIMESTAMP ,
 in user_name VARCHAR(128))
 BEGIN
 SELECT dateadd(hour, -1, next_last_download)
 INTO next_last_download END

Install the script into your SQL Anywhere consolidated database:

CALL ml_add_connection_script('modify_ts_test',
 'modify_next_last_download_timestamp',

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 461

 'CALL ModifyNextDownloadTimestamp (
 {ml s.next_last_download},
 {ml s.last_download}, {ml s.username})')

Java Example

The following call to a MobiLink system procedure registers a Java method called
modifyNextDownloadTimestamp as the script for the modify_next_last_download_timestamp connection
event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'modify_next_last_download_timestamp', 'ExamplePackage.ExampleClass.modifyNextDownloadTimestamp')

The following is the sample Java method modifyNextDownloadTimestamp. It sets the download timestamp
back an hour.

public void modifyNextDownloadTimestamp(Timestamp NextLastDownload,
 Timestamp lastDownload,
 String userName) {
 NextLastDownload.setHours(
 NextLastDownload.getHours() -1); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called
ModifyNextDownloadTimestamp as the script for the modify_next_last_download_timestamp connection
event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'modify_next_last_download_timestamp', 'TestScripts.Test.ModifyNextDownloadTimestamp')

The following is the sample .NET method ModifyNextDownloadTimestamp. It sets the download timestamp
back an hour.

using System; using System.Data;
namespace TestScripts {
public class Test {
 String _curUser = null;
public void ModifyNextDownloadTimestamp (
 ref DateTime next_last_download,
 DateTime last_download,
 string user_name) {
 next_last_download = next_last_download.AddHours(-1); }}}

462 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
How Download Timestamps Are Generated and Used [page 118]
SQL-Java Data Types [page 530]
modify_last_download_timestamp Connection Event [page 457]
generate_next_last_download_timestamp Connection Event [page 435]
SQL-.NET Data Types [page 546]

1.12.2.45 modify_user Connection Event

Modify the MobiLink user name.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name. This is an INOUT parameter.

1

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 463

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Default Action

None.

Remarks

This script is invoked at the end of the authentication transaction.

The MobiLink server provides the user name as a parameter when it calls scripts; the user name is sent by the
MobiLink client. Sometimes you may want to have an alternate user name. This script allows you to modify the
user name used in calling MobiLink scripts.

The username parameter must be long enough to hold the user name.

SQL scripts for the modify_user event must be implemented as stored procedures.

 Note
A more flexible approach to mapping the MobiLink user name is to use user-defined named parameters.

SQL Example

The following example maps a remote database user name to the ID of the user using the device, by using a
mapping table called user_device. This technique can be used when the same person has multiple remotes
(such as a PDA and a laptop) requiring the same synchronization logic (based on the user's name or id).

The following call to a MobiLink system procedure assigns the ModifyUser stored procedure to the
modify_user event. This syntax is for a SQL Anywhere consolidated database.

CALL ml_add_connection_script('ver1',
 'modify_user', 'call ModifyUser({ml s.username})')

The following SQL statement creates the ModifyUser stored procedure.

CREATE PROCEDURE ModifyUser(INOUT u_name varchar(128)) BEGIN
 SELECT user_name
 INTO u_name
 FROM user_device
 WHERE device_name = u_name; END

464 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Java Example

The following call to a MobiLink system procedure registers a Java method called modifyUser as the script for
the modify_user connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'modify_user', 'ExamplePackage.ExampleClass.modifyUser')

The following is the sample Java method modifyUser. It gets the user ID from the database and then uses it to
set the user name.

package ExamplePackage; import java.lang.Integer;
import java.sql.*;
import com.sap.ml.script.*;
public class ExampleClass
{
 DBConnectionContext curConn;
 public ExampleClass(DBConnectionContext cc)
 {
 curConn = cc;
 }
 public void modifyUser(InOutString ioUserName)
 throws SQLException
 {
 Connection conn = curConn.getConnection();
 PreparedStatement uidSelect =
 conn.prepareStatement("SELECT rep_id FROM SalesRep WHERE name = ?");
 try {
 uidSelect.setString(1, ioUserName.getValue());
 ResultSet uidResult = uidSelect.executeQuery();
 try {
 if(uidResult.next()) {
 ioUserName.setValue(Integer.toString(uidResult.getInt(1)));
 }
 } finally {
 uidResult.close();
 }
 } finally {
 uidSelect.close();
 }
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called ModUser as the script for the
modify_user connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'modify_user',
 'TestScripts.Test.ModUser')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 465

The following is the sample .NET method ModUser.

using Sap.MobiLink.Script; namespace TestScripts
{
 public class Test
 {
 DBConnectionContext curConn;
 public Test(DBConnectionContext cc)
 {
 curConn = cc;
 }
 public void ModifyUser(ref string ioUserName)
 {
 DBCommand cmd = curConn.GetConnection().CreateCommand();
 cmd.CommandText = "SELECT rep_id FROM SalesRep WHERE name = ?";
 cmd.Parameters[0] = ioUserName;
 DBRowReader r = cmd.ExecuteReader();
 object[] row;
 if((row = r.NextRow()) != null) {
 ioUserName = (string) row[0];
 }
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
User-defined Named Parameters [page 310]
SQL-Java Data Types [page 530]
authenticate_user Connection Event [page 354]
authenticate_user_hashed Connection Event [page 360]
SQL-.NET Data Types [page 546]

1.12.2.46 nonblocking_download_ack Connection Event

When you use download acknowledgement, this script provides a place to record the information that a
download has been applied successfully, or to trigger business logic that depends on the download being
confirmed as applied.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

466 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.last_download TIMESTAMP. This is the last download
time for the current synchronization.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Remarks

This event lets you record the time when the download was successfully applied at the remote database.

This event is only called when using download acknowledgement. The download transaction is committed and
the synchronization ends when the download is sent. This event is called when the synchronization client
acknowledges a successful download. This event is called on a new connection, after the end_synchronization
script of the original synchronization. The actions of this event are committed along with an update to the
download time in the MobiLink system tables.

Due to the special nature of this script, any connection-level variables set during the synchronization are not
available when this event is executed.

 Note
If the download is unsuccessful or if the network connection is dropped, there is no acknowledgement and
this script is not invoked. If timely download acknowledgement is critical to your business needs, you
should use the last_download parameter of the prepare_for_download script or the
last_publication_download parameter of the begin_publication script as backups for your download
acknowledgement processing.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 467

SQL Example

The following script adds a record to the table download_pubs_acked. The record contains the remote ID, the
first authentication parameter, and the download timestamp.

INSERT INTO download_pubs_acked(rem_id, auth_parm, last_download) VALUES({ml s.remote_id}, {ml a.1}, {ml s.last_download})

Java Example

The following call to a MobiLink system procedure registers a Java method called confirmDownload as the
script for the nonblocking_download_ack event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'nonblocking_download_ack', 'ExamplePackage.ExampleClass.confirmDownload')

The following is the sample Java method confirmDownload. It calls a Java method to perform business logic
based on the download being confirmed, up to the given timestamp, for the given user.

package ExamplePackage; import com.sap.ml.script.*;
import java.sql.*;
public class ExampleClass
{
 DBConnectionContext _cc;

 public ExampleClass(DBConnectionContext cc)
 {
 _cc = cc;
 }
 public void confirmDownload(String user,
 Timestamp ts)
 throws SQLException
 {
 Connection conn = _cc.getConnection();
 PreparedStatement stmt = conn.prepareStatement(
 "INSERT INTO download_pubs_acked(rem_id, last_download) " +
 "VALUES(?, ?)");
 stmt.setString(1, _cc.getRemoteID());
 stmt.setTimestamp(2, ts);
 stmt.executeUpdate();
 stmt.close();
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called ConfirmDownload as the
script for the nonblocking_download_ack connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(

468 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 'ver1',
 'nonblocking_download_ack',
 'TestScripts.Test.ConfirmDownload')

The following is the sample .NET method ConfirmDownload. It calls a .NET method to perform business logic
based on the download being confirmed, up to the given timestamp, for the given user.

using System; using Sap.MobiLink.Script;
namespace TestScripts
{
 public class Test
 {
 DBConnectionContext _cc;
 public Test(DBConnectionContext cc)
 {
 _cc = cc;
 }

 public void ConfirmDownload(string user,
 DateTime dt)
 {
 DBConnection conn = _cc.GetConnection();
 DBCommand cmd = conn.CreateCommand();
 cmd.CommandText =
 "INSERT INTO download_pubs_acked(rem_id, last_download) " +
 "VALUES(?, ?)";
 cmd.Parameters[0] = _cc.GetRemoteID();
 cmd.Parameters[1] = dt;
 cmd.ExecuteNonQuery();
 }
 } }

Related Information

SQL-Java Data Types [page 530]
publication_nonblocking_download_ack Connection Event [page 472]
SendDownloadAck (sa) Extended Option
Send Download Acknowledgement Synchronization Parameter
SQL-.NET Data Types [page 546]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 469

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ab67096ce21014a3c2a1eb5b8c399b.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8270dff66ce21014afaf975243962456.html

1.12.2.47 prepare_for_download Connection Event

Processes any required operations between the upload and download transactions.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.last_download TIMESTAMP. The oldest download time
of any synchronized table.

1

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The MobiLink server executes this script in a separate transaction, between the upload transaction and the
start of the download transaction.

470 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Example

The following call to a MobiLink system procedure registers a SQL stored procedure called
prepareForDownload as the script for the prepare_for_download event when synchronizing the script version
ver1.

CALL ml_add_connection_script('ver1',
 'prepare_for_download',
 'CALL prepareForDownload({ ml s.username })')

The following is the sample SQL method prepareForDownload. This stored procedure prepares downloads for
two tables. For example, it could take information from many tables and store it in temporary tables referenced
by the download_cursor scripts for tables T1 and T2.

CREATE PROCEDURE prepareForDownload (IN ts TIMESTAMP,
 IN "user" VARCHAR(128))
BEGIN
 CALL prepareT1Download(user, ts);
 CALL prepareT2Download(user, ts); END;

Java Example

The following call to a MobiLink system procedure registers a Java method called prepareForDownload as the
script for the prepare_for_download event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'prepare_for_download', 'ExamplePackage.ExampleClass.prepareForDownload')

The following is the sample Java method prepareForDownload. This method prepares downloads for two
tables. For example, it could take information from many tables, plus other information accessible from Java,
and store it in temporary tables referenced by the download_cursor scripts for tables T1 and T2.

public void prepareForDownload(Timestamp ts,
 String user) {
 prepareT1ForDownload(_syncconn, user, ts);
 prepareT2ForDownload(_syncconn, user, ts); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called PrepareForDownload as the
script for the prepare_for_download connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script(

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 471

 'ver1',
 'prepare_for_download',
 'TestScripts.Test.PrepareForDownload')

The following is the sample .NET method PrepareForDownload. This method prepares downloads for two
tables. For example, it could take information from many tables, plus other information accessible from .NET,
and store it in temporary tables referenced by the download_cursor scripts for tables T1 and T2.

public void PrepareForDownload(DateTime ts,
 string user) {
 PrepareT1ForDownload (_syncConn, user, ts);
 PrepareT2ForDownload (_syncConn, user, ts); }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
Last Download Times in Scripts [page 117]
SQL-Java Data Types [page 530]
end_upload Connection Event [page 424]
begin_download Connection Event [page 366]
SQL-.NET Data Types [page 546]

1.12.2.48 publication_nonblocking_download_ack Connection
Event

When you use download acknowledgement, this script provides a place to record the information that a
publication has been successfully downloaded.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

472 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.last_publication_download TIMESTAMP. The earliest last download
time of any synchronized table.

2

s.publication name VARCHAR(128). The name of the publi
cation.

3

s.subscription_id VARCHAR(128). The remote subscrip
tion ID.

4

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Remarks

This event lets you record the time when the download of this publication was successfully applied at the
remote database.

This event is only called when using download acknowledgement. When in non-blocking mode, the download
transaction is committed and the synchronization ends when the download is sent. When the synchronization
client acknowledges a successful download, this event is called once per publication in the download. This
event is called on a new connection and after the end_synchronization script of the original synchronization.
The actions of this event are committed along with an update to the download time in the MobiLink system
tables.

 Note
If the download is unsuccessful or if the network connection is dropped, there is no acknowledgement and
this script is not invoked. If timely download acknowledgement is critical to your business needs, you
should use the last_download parameter of the prepare_for_download script or the
last_publication_download parameter of the begin_publication script as backups for your download
acknowledgement processing.

Due to the special nature of this script, any connection-level variables set during the synchronization are not
available when this event is executed.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 473

SQL Example

The following script adds a record to a table called download_pubs_acked. The record contains the publication
name, the first authentication parameter, and a download timestamp.

INSERT INTO download_pubs_acked(pub_name, auth_parm, last_download) VALUES({ml s.publication_name}, {ml a.1}, {ml s.last_publication_download})

Java Example

The following call to a MobiLink system procedure registers a Java method called publicationDownloadACK as
the script for the publication_nonblocking_download_ack connection event when synchronizing the script
version ver1.

CALL ml_add_java_connection_script ('ver1',
 'publication_nonblocking_download_ack', 'ExamplePackage.ExampleClass.publicationDownloadACK')

The following is the sample Java method publicationDownloadACK. It performs some business logic by acting
on the confirmation if a particularly important publication was downloaded.

package ExamplePackage; import com.sap.ml.script.*;
import java.sql.*;
public class ExampleClass
{
 DBConnectionContext _cc;

 public ExampleClass(DBConnectionContext cc)
 {
 _cc = cc;
 }
 public void confirmDownload(String user,
 Timestamp ts,
 String pubName)
 throws SQLException
 {
 Connection conn = _cc.getConnection();
 PreparedStatement stmt = conn.prepareStatement(
 "INSERT INTO download_pubs_acked(rem_id, last_download, pub_name) " +
 "VALUES(?, ?, ?)");
 stmt.setString(1, _cc.getRemoteID());
 stmt.setTimestamp(2, ts);
 stmt.setString(3, pubName);
 stmt.executeUpdate();
 stmt.close();
 } }

474 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

.NET Example

The following call to a MobiLink system procedure registers a .NET method called EndTableDownload as the
script for the end_download table event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'publication_nonblocking_download_ack',
 'TestScripts.Test.EndTableDownload')

The following is the sample .NET method EndTableDownload. It performs some business logic by acting on the
confirmation if a particularly important publication was downloaded.

using System; using Sap.MobiLink.Script;
namespace TestScripts
{
 public class Test
 {
 DBConnectionContext _cc;
 public Test(DBConnectionContext cc)
 {
 _cc = cc;
 }

 public void ConfirmDownload(string user,
 DateTime dt,
 string pubName)
 {
 DBConnection conn = _cc.GetConnection();
 DBCommand cmd = conn.CreateCommand();
 cmd.CommandText =
 "INSERT INTO download_pubs_acked(rem_id, last_download, pub_name)
" +
 "VALUES(?, ?, ?)";
 cmd.Parameters[0] = _cc.GetRemoteID();
 cmd.Parameters[1] = dt;
 cmd.Parameters[2] = pubName;
 cmd.ExecuteNonQuery();
 }
 } }

Related Information

SQL-Java Data Types [page 530]
nonblocking_download_ack Connection Event [page 466]
SendDownloadAck (sa) Extended Option
Send Download Acknowledgement Synchronization Parameter
SQL-.NET Data Types [page 546]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 475

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ab67096ce21014a3c2a1eb5b8c399b.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/8270dff66ce21014afaf975243962456.html

1.12.2.49 report_error Connection Event

Allows you to log errors and to record the actions selected by the handle_error script.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.action_code INTEGER. This is an INOUT parameter.
This parameter is mandatory.

1

s.error_code INTEGER. The native DBMS error code. 2

s.error_message TEXT. The native DBMS error message. 3

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

4

s.table VARCHAR(128). The table whose script
caused the error.

5

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

476 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

This script allows you to log errors and to record the actions selected by the handle_error script. This script is
executed after the handle_error event, whether or not a handle_error script is defined. It is always executed in
its own transaction, on a different database connection than the synchronization connection (the
administrative/information connection).

The MobiLink server always reports an error if the error is recoverable and the MobiLink server is planning to
call the handle_error or handle_odbc_error script. For instance, if an error occurs when the MobiLink server is
trying to upload an insert, the MobiLink server reports this error and calls the hande_error script. If the action
returned from the handle_script is 1000, then the server ignores the error and continues the synchronization.
However, if the MobiLink server detects an error before sending anything to the consolidated database, the
server may not report the error because the error is not recoverable. More precisely, the MobiLink server
reports the errors generated by the ODBC driver and the consolidated database.

The error code and error message allow you to identify the nature of the error. The action code value is
returned by the last call to an error handling script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied. Otherwise, this value is null.

If the error happened while manipulating a particular table, the table name is supplied. Otherwise, this value is
null. The table name is the name of a table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on how your remote table names map to consolidated
database table names.

SQL Example

The following example works with a SQL Anywhere consolidated database. It inserts a row into a table used to
record synchronization errors.

CALL ml_add_connection_script('ver1',
 'report_error',
 'INSERT INTO sync_error(
 action_code,
 error_code,
 error_message,
 user_name,
 table_name)
 VALUES (
 {ml s.action_code},
 {ml s.error_code},
 {ml s.error_message},
 {ml s.username}, {ml s.table})')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 477

Java Example

The following call to a MobiLink system procedure registers a Java method called reportError as the script for
the report_error connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'report_error', 'ExamplePackage.ExampleClass.reportError')

The following is the sample Java method reportError. It logs the error to a table using the JDBC connection
provided by MobiLink. It also sets the action code.

package ExamplePackage; import java.sql.*;
import com.sap.ml.script.*;
public class ExampleClass
{
 DBConnectionContext _cc;

 public ExampleClass(DBConnectionContext cc)
 {
 _cc = cc;
 }
 public void reportError(com.sap.ml.script.InOutInteger actionCode,
 int errorCode,
 String errorMessage,
 String user,
 String table)
 throws SQLException
 {
 actionCode.setValue(errorCode);
 // Insert error information in a table,
 Connection conn = _cc.getConnection();
 PreparedStatement stmt = conn.prepareStatement(
 "INSERT INTO sync_error(action_code, error_code, error_message, " +
 "user_name, table_name) VALUES (?, ?, ?, ?, ?)");
 stmt.setInt(1, actionCode.getValue());
 stmt.setInt(2, errorCode);
 stmt.setString(3, errorMessage);
 stmt.setString(4, user);
 stmt.setString(5, table);
 stmt.executeUpdate();
 stmt.close();
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called ReportError as the script for
the report_error connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'report_error', 'TestScripts.Test.ReportError')

478 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following is the sample .NET method ReportError. It logs the error to a table using a .NET method.

using System; using Sap.MobiLink.Script;
namespace TestScripts
{
 public class Test
 {
 DBConnectionContext _cc;
 public Test(DBConnectionContext cc)
 {
 _cc = cc;
 }

 public void ReportError(ref int actionCode,
 int errorCode,
 string errorMessage,
 string user,
 string table)
 {
 actionCode = errorCode;
 DBConnection conn = _cc.GetConnection();
 DBCommand cmd = conn.CreateCommand();
 cmd.CommandText =
 "INSERT INTO sync_error(action_code, error_code, error_message, " +
 "user_name, table_name) VALUES (?, ?, ?, ?, ?)";
 cmd.Parameters[0] = actionCode;
 cmd.Parameters[1] = errorCode;
 cmd.Parameters[2] = errorMessage;
 cmd.Parameters[3] = user;
 cmd.Parameters[4] = table;
 cmd.ExecuteNonQuery();
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
handle_error Connection Event [page 440]
handle_odbc_error Connection Event [page 445]
report_odbc_error Connection Event [page 480]
SQL-.NET Data Types [page 546]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 479

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.50 report_odbc_error Connection Event

Allows you to log errors and to record the actions selected by the handle_odbc_error script.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.action_code INTEGER. This is an INOUT parameter.
This parameter is mandatory.

1

s.odbc_state VARCHAR(5). The ODBC SQLSTATE. 2

s.error_message TEXT. The ODBC error message. 3

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

4

s.table VARCHAR(128). The table whose script
caused the error.

5

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

480 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

This script allows you to log errors and to record the actions selected by the handle_odbc_error script. This
script is executed after the handle_odbc_error event, whether or not a handle_odbc_error script is defined. It is
always executed in its own transaction, on a different database connection than the synchronization
connection (the administrative/information connection).

The ODBC state and error message allow you to identify the nature of the error. The action code value is
returned by the last call to an error handling script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied. Otherwise, this value is null.

If the error happened while manipulating a particular table, the table name is supplied. Otherwise, this value is
null. The table name is the name of a table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on how your remote table names map to consolidated
database table names.

SQL Example

The following example works with a SQL Anywhere consolidated database. It inserts a row into a table used to
record synchronization errors.

CALL ml_add_connection_script('ver1',
 'report_odbc_error',
 'INSERT INTO sync_error(
 action_code,
 odbc_state,
 error_message,
 user_name,
 table_name)
 VALUES(
 {ml s.action_code},
 {ml s.odbc_state},
 {ml s.error_message},
 {ml s.username}, {ml s.table})')

Java Example

The following call to a MobiLink system procedure registers a Java method called reportODBCError as the
script for the report_odbc_error event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'report_odbc_error', 'ExamplePackage.ExampleClass.reportODBCError')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 481

The following is the sample Java method reportODBCError. It logs the error to a table using the JDBC
connection provided by MobiLink. It also sets the action code.

package ExamplePackage; import java.sql.*;
import com.sap.ml.script.*;
public class ExampleClass
{
 DBConnectionContext _cc;

 public ExampleClass(DBConnectionContext cc)
 {
 _cc = cc;
 }
 public void reportODBCError(InOutInteger actionCode,
 String odbcState,
 String odbcMessage,
 String user,
 String table)
 throws SQLException
 {
 // Insert error information in a table,
 Connection conn = _cc.getConnection();
 PreparedStatement stmt = conn.prepareStatement(
 "INSERT INTO sync_error(action_code, odbc_state, error_message, " +
 "user_name, table_name) VALUES (?, ?, ?, ?, ?)");
 stmt.setInt(1, actionCode.getValue());
 stmt.setString(2, odbcState);
 stmt.setString(3, odbcMessage);
 stmt.setString(4, user);
 stmt.setString(5, table);
 stmt.executeUpdate();
 stmt.close();
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called ReportODBCError as the
script for the report_odbc_error event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'report_odbc_error', 'TestScripts.Test.ReportODBCError')

The following is the sample .NET method ReportODBCError. It logs the error to a table using a .NET method.

using System; using Sap.MobiLink.Script;
namespace TestScripts
{
 public class Test
 {
 DBConnectionContext _cc;
 public Test(DBConnectionContext cc)
 {
 _cc = cc;
 }

 public void ReportODBCError(ref int actionCode,

482 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 string odbcState,
 string errorMessage,
 string user,
 string table)
 {
 DBConnection conn = _cc.GetConnection();
 DBCommand cmd = conn.CreateCommand();
 cmd.CommandText =
 "INSERT INTO sync_error(action_code, odbc_state, error_message, " +
 "user_name, table_name) VALUES (?, ?, ?, ?, ?)";
 cmd.Parameters[0] = actionCode;
 cmd.Parameters[1] = odbcState;
 cmd.Parameters[2] = errorMessage;
 cmd.Parameters[3] = user;
 cmd.Parameters[4] = table;
 cmd.ExecuteNonQuery();
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
handle_error Connection Event [page 440]
handle_odbc_error Connection Event [page 445]
report_error Connection Event [page 476]
SQL-.NET Data Types [page 546]

1.12.2.51 resolve_conflict Table Event

Defines a process for resolving a conflict in a specific table.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 483

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

When a row is updated on a remote database, the MobiLink client saves a copy of the original values. The client
sends both old and new values to the MobiLink server.

When the MobiLink server receives an updated row, it compares the original values with the present values in
the consolidated database. The comparison is done using the upload_fetch script.

If the old uploaded values do not match the current values in the consolidated database, the row conflicts.
Instead of updating the row, the MobiLink server inserts both old and new values into the consolidated
database. The old and new rows are handled using the upload_old_row_insert and upload_new_row_insert
scripts, respectively.

Once the values have been inserted, the MobiLink server executes the resolve_conflict script. It provides the
opportunity to resolve the conflict. You can implement any scheme of your choosing.

This script is executed once per conflict.

Alternatively, instead of defining the resolve_conflict script, you can resolve conflicts in a set-oriented fashion
by putting conflict-resolution logic either in your end_upload_rows script or in your end_upload table script.

You can have one resolve_conflict script for each table in the remote database.

484 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Example

The following statement defines a resolve_conflict script suited to the CustDB sample application for an Oracle
installation. It calls a stored procedure ULResolveOrderConflict.

exec ml_add_table_script('custdb', 'ULOrder', 'resolve_conflict',
 'begin ULResolveOrderConflict();
end; ')
CREATE OR REPLACE PROCEDURE ULResolveOrderConflict()
AS
 new_order_id integer;
 new_status varchar(20);
 new_notes varchar(50);
BEGIN
 -- approval overrides denial
 SELECT order_id, status, notes
 INTO new_order_id, new_status, new_notes
 FROM ULNewOrder
 WHERE syncuser_id = SyncUserID;
 IF new_status = 'Approved' THEN
 UPDATE ULOrder o
 SET o.status = new_status, o.notes =
 new_notes
 WHERE o.order_id = new_order_id;
 END IF;
 DELETE FROM ULOldOrder;
 DELETE FROM ULNewOrder; END;

Java Example

The following call to a MobiLink system procedure registers a Java method called resolveConflict as the script
for the resolve_conflict table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'resolve_conflict', 'ExamplePackage.ExampleClass.resolveConflict')

The following is the sample Java method resolveConflict. It calls a Java method that uses the JDBC connection
provided by MobiLink to resolve the conflict.

package ExamplePackage; import java.sql.*;
import com.sap.ml.script.*;
public class ExampleClass
{
 DBConnectionContext _cc;

 public ExampleClass(DBConnectionContext cc)
 {
 _cc = cc;
 }
 public void resolveConflict(String user,
 String table)
 throws java.sql.SQLException
 {

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 485

 if(table == "Order") {
 // Insert error information in a table,
 Connection conn = _cc.getConnection();
 String conflictTable = "New" + table;
 PreparedStatement stmt = conn.prepareStatement(
 "SELECT order_id, new_status, new_notes " +
 "FROM " + conflictTable +
 "WHERE rid = " + _cc.getRemoteID());
 ResultSet rs = stmt.executeQuery();
 PreparedStatement updt = conn.prepareStatement(
 "UPDATE ULOrder SET status = ?, notes = ? WHERE order_id = ?");
 while(rs.next()) {
 if(rs.getString(2) == "Approved") {
 updt.setString(1, rs.getString(2));
 updt.setString(2, rs.getString(3));
 updt.setInt(3, rs.getInt(1));
 }
 }
 updt.close();
 stmt.close();
 }
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called ResolveConflict as the script
for the resolve_conflict table event when synchronizing the script version ver1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'resolve_conflict', 'TestScripts.Test.ResolveConflict')

The following is the sample .NET method ResolveConflict. It calls a .NET method that resolves the conflict.

using System; using Sap.MobiLink.Script;
namespace TestScripts
{
 public class Test
 {
 DBConnectionContext _cc;
 public Test(DBConnectionContext cc)
 {
 _cc = cc;
 }

 public void ResolveConflict(string user,
 string table)
 {
 if(table == "Order") {
 // Insert error information in a table,
 DBConnection conn = _cc.GetConnection();
 String conflictTable = "New" + table;
 DBCommand cmd = conn.CreateCommand();
 cmd.CommandText =
 "SELECT order_id, new_status, new_notes " +
 "FROM " + conflictTable +
 "WHERE rid = " + _cc.GetRemoteID();
 DBRowReader dr = cmd.ExecuteReader();

486 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 DBCommand updt = conn.CreateCommand();
 updt.CommandText =
 "UPDATE ULOrder SET status = ?, notes = ? WHERE order_id = ?";

 object[] row;
 while((row = dr.NextRow()) != null) {
 if(row.[1].Equals("Approved")) {
 updt.Parameters[0] = row[1];
 updt.Parameters[1] = row[2];
 updt.Parameters[2] = row[0];
 }
 }
 updt.Close();
 cmd.Close();
 conn.Close();
 }
 }
 }
}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
upload_old_row_insert Table Event [page 510]
upload_new_row_insert Table Event [page 508]
upload_update Table Event [page 522]
end_upload_rows Table Event [page 432]
SQL-.NET Data Types [page 546]

1.12.2.52 synchronization_statistics Connection Event

Tracks synchronization statistics.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 487

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.warnings INTEGER. The number of warnings is
sued during the synchronization.

2

s.errors INTEGER. The number of errors that
occurred during the synchronization.

3

s.deadlocks INTEGER. The number of deadlocks in
the consolidated database that were
detected for the synchronization.

4

s.synchronized_tables INTEGER. The number of client tables
that were involved in the synchroniza
tion.

5

s.connection_retries INTEGER. The number of times the Mo
biLink server retried the connection to
the consolidated database.

6

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The synchronization_statistics event allows you to gather, for any user and connection, various statistics about
the current synchronization. The synchronization_statistics connection script is called just before the commit
at the end of the end synchronization transaction.

 Note
Depending on the command line, not all warnings are logged. The warnings count passed to this script is
the number of warnings that would be logged when no warnings are disabled, which may be more than the
number of warnings logged.

488 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Example

The following example inserts synchronization statistics into the sync_con_audit table.

CALL ml_add_connection_script('ver1',
 'synchronization_statistics',
 'INSERT INTO sync_con_audit(
 ml_user,
 warnings,
 errors,
 deadlocks,
 synchronized_tables,
 connection_retries)
 VALUES (
 {ml s.username},
 {ml s.warnings},
 {ml s.errors},
 {ml s.deadlocks},
 {ml s.synchronized_tables}, {ml s.connection_retries})')

Once statistics are inserted into the audit table, you may use these statistics to monitor your synchronizations
and make optimizations where applicable.

Java Example

The following call to a MobiLink system procedure registers a Java method called
synchronizationStatisticsConnection as the script for the synchronization_statistics connection event when
synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'synchronization_statistics',
 'ExamplePackage.ExampleClass.synchronizationStatisticsConnection')

The following is the sample Java method synchronizationStatisticsConnection. It logs some of the statistics to
the MobiLink message log. (Logging statistics to the MobiLink message log might be useful at development
time but would slow down a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void synchronizationStatisticsConnection(
 String user,
 int warnings,
 int errors,
 int deadlocks,
 int synchronizedTables,
 int connectionRetries) {
 java.lang.System.out.println(
 "synch statistics number of deadlocks: "
 + deadlocks); }}

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 489

.NET Example

The following call to a MobiLink system procedure registers a .NET method called SyncStats as the script for
the synchronization_statistics connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'synchronization_statistics',
 'TestScripts.Test.SyncStats')

The following is the sample .NET method SyncStats. It logs some of the statistics to the MobiLink message log.
(Logging statistics to the MobiLink message log might be useful at development time but would slow down a
production server.)

namespace TestScripts {
 public class Test
 {
 public void SyncStats(string user,
 int warnings,
 int errors,
 int deadLocks,
 int syncedTables,
 int connRetries)
 {
 System.Console.WriteLine("synch statistics number of deadlocks: " +
deadLocks);
 }
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink Profiler [page 247]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
download_statistics Connection Event [page 398]
download_statistics Table Event [page 401]
upload_statistics Connection Event [page 513]
upload_statistics Table Event [page 517]
synchronization_statistics Table Event [page 491]
time_statistics Connection Event [page 494]
time_statistics Table Event [page 497]
SQL-.NET Data Types [page 546]

490 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.53 synchronization_statistics Table Event

Provides access to synchronization statistics.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.warnings INTEGER. The number of warnings that
occurred for the table during the syn
chronization.

3

s.errors INTEGER. The number of errors that
were related to the table during the syn
chronization.

4

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 491

Remarks

The synchronization_statistics event allows you to gather, for any user and table, the number of warnings and
errors that occurred during synchronization. The synchronization_statistics table script is called just before the
commit at the end of the end synchronization transaction.

SQL Example

The following example inserts synchronization statistics into the sync_tab_audit table.

CALL ml_add_table_script('ver1',
 'table1',
 'upload_insert',
 'INSERT INTO sync_tab_audit (
 ml_user,
 table,
 warnings,
 errors)
 VALUES (
 {ml s.username},
 {ml s.table},
 {ml s.warnings}, {ml s.errors}) ')

Once synchronization statistics are inserted into the audit table, you may use these statistics to monitor your
synchronizations and make optimizations where applicable.

Java Example

The following call to a MobiLink system procedure registers a Java method called
synchronizationStatisticsTable as the script for the synchronization_statistics table event when synchronizing
the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'synchronization_statistics',
 'ExamplePackage.ExampleClass.synchronizationStatisticsTable')

The following is the sample Java method synchronizationStatisticsTable. It logs some of the statistics to the
MobiLink message log. (Logging statistics to the MobiLink message log might be useful at development time
but would slow down a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void synchronizationStatisticsTable(
 String user,
 String table,
 int warnings,

492 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 int errors) {
 java.lang.System.out.println("synch statistics for table: "
 + table + " errors: " + errors); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called SyncTableStats as the script
for the synchronization_statistics table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'synchronization_statistics',
 'TestScripts.Test.SyncTableStats')

The following is the sample .NET method SyncTableStats. It logs some of the statistics to the MobiLink
message log. (Logging statistics to the MobiLink message log might be useful at development time but would
slow down a production server.)

namespace TestScripts { public class Test {
 string _curUser = null;
public void SyncTableStats(
 string user,
 string table,
 int warnings,
 int errors) {
 System.Console.WriteLine("synch statistics for table: "
 + table + " errors: " + errors); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink Profiler [page 247]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
download_statistics Connection Event [page 398]
download_statistics Table Event [page 401]
upload_statistics Connection Event [page 513]
upload_statistics Table Event [page 517]
synchronization_statistics Connection Event [page 487]
time_statistics Connection Event [page 494]
time_statistics Table Event [page 497]
SQL-.NET Data Types [page 546]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 493

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.54 time_statistics Connection Event

Tracks time statistics by user and event.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.event_name VARCHAR(128). The event whose sta
tistics are being reported.

2

s.number_of_calls INTEGER. The number of times the
script was called.

3

s.minimum_time INTEGER. Milliseconds. The shortest
time it took to execute a script during
this synchronization.

4

s.maximum_time INTEGER. Milliseconds. The longest
time it took to execute a script during
this synchronization.

5

s.total_time INTEGER. Milliseconds. The total time it
took to execute all scripts in the syn
chronization. (This is not the same as
the length of the synchronization.)

6

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

494 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Default Action

None.

Remarks

The time_statistics event allows you to gather time statistics for a synchronization. The statistics are gathered
only for those events for which there is a corresponding script. The script gathers aggregate data for occasions
where a single event occurs multiple times.

SQL Example

The following example inserts statistical information into the time_statistics table.

CALL ml_add_connection_script('ver1',
 'time_statistics',
 'INSERT INTO time_statistics (
 id,
 ml_user,
 event_name,
 number_of_calls,
 minimum_time,
 maximum_time,
 total_time)
 VALUES (
 ts_id.nextval,
 {ml s.username},
 {ml s.event_name},
 {ml s.number_of_calls},
 {ml s.minimum_time},
 {ml s.maximum_time}, {ml s.total_time}) ')

Java Example

The following call to a MobiLink system procedure registers a Java method called timeStatisticsConnection as
the script for the time_statistics connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'time_statistics', 'ExamplePackage.ExampleClass.timeStatisticsConnection')

The following is the sample Java method timeStatisticsConnection. It prints statistics for the
prepare_for_download event. (Printing statistics to the MobiLink message log might be useful at development
time but would slow down a production server.)

package ExamplePackage;

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 495

 public class ExampleClass
{
 public void timeStatisticsConnection(
 String username,
 String eventName,
 int numberOfCalls,
 int minimumTime,
 int maximumTime,
 int totalTime)
 {
 if(eventName.equals("prepare_for_download")) {
 System.out.println("prepare_for_download num_calls: " + numberOfCalls +
 " total_time: " + totalTime);
 }
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called TimeStats as the script for
the time_statistics connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'time_statistics',
 'TestScripts.Test.TimeStats')

The following is the sample .NET method TimeStats. It prints statistics for the prepare_for_download event.
(Printing statistics to the MobiLink message log might be useful at development time but would slow down a
production server.)

namespace TestScripts {
 public class test
 {
 public void TimeStats(string user,
 string eventName,
 int numberOfCalls,
 int minimumTime,
 int maximumTime,
 int totTime)
 {
 if(eventName == "prepare_for_download") {
 System.Console.WriteLine("prepare_for_download num_calls: " +
numberOfCalls +
 "total_time: " + totTime);
 }
 }
 }
}

Related Information

Script Parameters [page 294]

496 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Script Additions and Deletions [page 316]
MobiLink Profiler [page 247]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
time_statistics Table Event [page 497]
download_statistics Connection Event [page 398]
download_statistics Table Event [page 401]
upload_statistics Connection Event [page 513]
upload_statistics Table Event [page 517]
synchronization_statistics Connection Event [page 487]
synchronization_statistics Table Event [page 491]
SQL-.NET Data Types [page 546]

1.12.2.55 time_statistics Table Event

Tracks time statistics.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

s.event_name VARCHAR(128). The event whose sta
tistics are being reported.

3

s.number_of_calls INTEGER. The number of times the
script was called.

4

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 497

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.minimum_time INTEGER. Milliseconds. The shortest
time it took to execute a script during
the synchronization of this table.

5

s.maximum_time INTEGER. Milliseconds. The longest
time it took to execute a script during
the synchronization of this table.

6

s.total_time INTEGER. Milliseconds. The total time it
took to execute all scripts in the syn
chronization of the table. (This is not
the same as the length of the synchro
nization.)

7

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

Remarks

The time_statistics table event allows you to gather time statistics for a table during synchronization. The
statistics are gathered only for those events for which there is a corresponding script. The script gathers
aggregate data for occasions where a single event occurs multiple times.

SQL Example

The following example inserts statistical information into the time_statistics table.

CALL ml_add_table_script ('ver1',
 'table1',
 'time_statistics',
 'INSERT INTO time_statistics(
 ml_user,
 table,
 event_name,
 number_of_calls,

498 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 minimum_time,
 maximum_time,
 total_time)
 VALUES (
 {ml s.username},
 {ml s.table},
 {ml s.event_name},
 {ml s.number_of_calls},
 {ml s.minimum_time},
 {ml s.maximum_time}, {ml s.total_time})');

Java Example

The following call to a MobiLink system procedure registers a Java method called timeStatisticsTable as the
script for the time_statistics table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',
 'time_statistics', 'ExamplePackage.ExampleClass.timeStatisticsTable')

The following is the sample Java method timeStatisticsTable. It prints statistics for the upload_old_row_insert
event.

public void timeStatisticsTable(String username,
 String tableName,
 String eventName,
 int numberOfCalls,
 int minimumTime,
 int maximumTime,
 int totalTime) {
 if(eventName.equals("upload_old_row_insert")) {
 java.lang.System.out.println(
 "upload_old_row_insert num_calls: " + numCalls +
 "total_time: " + totalTime);
 } }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called TimeTableStats as the script
for the time_statistics table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'time_statistics',
 'TestScripts.Test.TimeTableStats')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 499

The following is the sample .NET method TimeTableStats. It prints statistics for the upload_old_row_insert
event.

public void TimeTableStats(string user,
 string table,
 string eventName,
 int numberOfCalls,
 int minimumTime,
 int maximumTime,
 int totTime) {
 if(event_name == "upload_old_row_insert") {
 System.Console.WriteLine(
 "upload_old_row_insert num_calls: " + num_calls +
 "total_time: " + total_time);
 } }

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink Profiler [page 247]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
time_statistics Connection Event [page 494]
download_statistics Connection Event [page 398]
download_statistics Table Event [page 401]
upload_statistics Connection Event [page 513]
upload_statistics Table Event [page 517]
synchronization_statistics Connection Event [page 487]
synchronization_statistics Table Event [page 491]
SQL-.NET Data Types [page 546]

1.12.2.56 upload_delete Table Event

A data script that provides an event that the MobiLink server uses during processing of the upload to handle
rows deleted from the remote database.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no

500 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s. remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

N/A

s. username VARCHAR(128). The MobiLink user
name. This parameter is optional.

Not applicable

s. script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

r. pk-column-1 Required. The first deleted primary key
column value, referenced by column
name or column number.

1

...

r. pk-column-N Required. The last deleted primary key
column value, referenced by column
name or column number.

N

Default Action

None.

Remarks

The action taken at the consolidated database can be a DELETE statement, but need not be.

You can have one upload_delete script for each table in the remote database.

This script must be implemented in SQL. For Java or .NET processing of rows, use direct row handling.

 Note
Conflict detection is usually performed much faster when done all at once in the upload_update script.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 501

SQL Example

This example is taken from the Contact sample and can be found in Samples\MobiLink\Contact
\build_consol.sql. It marks customers that are deleted from the remote database as inactive.

CALL ml_add_table_script('ver1',
 'Customer',
 'upload_delete',
 'UPDATE Customer
 SET active = 0 WHERE cust_id={ml r.cust_id}')

Related Information

Direct Row Handling [page 558]
Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
upload_insert Table Event [page 506]
upload_update Table Event [page 522]

1.12.2.57 upload_fetch Table Event

A data script that fetches rows from a synchronized table in the consolidated database for row-level conflict
detection.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s. remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

502 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Parameter name for SQL scripts Description Order (deprecated for SQL)

s. username VARCHAR(128). The MobiLink user
name. This parameter is optional.

Optional

s. script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

r. primary-key-1 Required. The first primary key column
value, referenced by column name or
column number.

1 (2 if username is referenced)

r. primary-key-2 Required. The second primary key col
umn value, referenced by column name
or column number.

2

...

r. primary-key-N Required. The last primary key column
value, referenced by column name or
column number.

N (N+1 if username is referenced)

Default Action

None.

Remarks

The upload_fetch script is a companion to the upload_update event.

The columns of the result set must match the number and order of columns being uploaded from the remote
database for this table. If the values returned do not match the pre-image in the uploaded row, a conflict is
identified.

Do not use READPAST table hints in upload_fetch scripts. If the script skips a locked row using READPAST, the
synchronization logic thinks that the row was deleted. Depending on what scripts you have defined, this either
causes the uploaded update to be ignored or it triggers conflict resolution. Ignoring the update is likely to be
unacceptable behavior, and may be harmful. Triggering conflict resolution may not be a problem, depending on
the resolution logic you have implemented.

You can have only one upload_fetch or upload_fetch_column_conflict script for each table in the remote
database.

This script must be implemented in SQL. For Java or .NET processing of rows, use direct row handling.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 503

This script may be ignored if none of the following scripts are defined: upload_new_row_insert,
upload_old_row_insert, and resolve_conflict.

SQL Example

The following SQL script is taken from the Contact sample and can be found in %SQLANYSAMP17%
\MobiLink\Contact\build_consol.sql. It is used to identify conflicts that occur when rows updated in
the remote database Product table are uploaded. This script selects rows from a table also named Product, but
depending on your consolidated and remote database schema, the two table names may not match.

CALL ml_add_table_script('ver1',
 'Product',
 'upload_fetch',
 'SELECT id, name, size, quantity, unit_price
 FROM Product WHERE id={ml r.id}')

Related Information

Direct Row Handling [page 558]
Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
Conflict Detection [page 134]
resolve_conflict Table Event [page 483]
upload_delete Table Event [page 500]
upload_insert Table Event [page 506]
upload_update Table Event [page 522]
FROM Clause

1.12.2.58 upload_fetch_column_conflict Table Event

A data script that fetches rows from a synchronized table in the consolidated database for column-level conflict
detection.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If

504 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/3be4b5016c5f10149f10a6db96ba7e52.html

you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s. remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s. username VARCHAR(128). The MobiLink user
name. This parameter is optional.

Optional

s. script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

r. pk-column-1 Required. The first primary key column
value, referenced by column name or
column number.

1 (2 if username is referenced)

...

r. pk-column-N Required. The last primary key column
value, referenced by column name or
column number.

N (N+1 if username is referenced)

Default Action

None.

Remarks

The upload_fetch_column_conflict script is a companion to the upload_update event.

This script can only be defined for remote tables that have no BLOBs.

With this script, the MobiLink server only detects a conflict for a row when the same column was updated on
the remote database and the consolidated database since the last synchronization. Different users can update
the same row without generating a conflict, as long as they don't update the same column.

For example, using the upload_fetch_column_conflict script, you could avoid detecting a conflict when one of
your remote users updated the quant column of the ULOrder table, and another remote user updated the notes
column for the same row. You would only detect a conflict if they both updated the quant column.

 Note
Conflict detection is usually performed much faster when done all at once in the upload_update script.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 505

When using an upload_fetch_column_conflict script and no conflict is detected, the row values passed to your
upload_update script come from either the remote database's upload or the current consolidated values from
your upload_fetch_column_conflict script. The remote database's value is used for columns that were updated
on the remote database, otherwise the current consolidated value is used. In other words, only the columns
that were updated on the remote database are updated in the consolidated database.

You can have only one upload_fetch or upload_fetch_column_conflict script for each table in the remote
database.

This script may be ignored if none of the following scripts are defined: upload_new_row_insert,
upload_old_row_insert, and resolve_conflict.

This script must be implemented in SQL. For Java or .NET processing of rows, use direct row handling.

Related Information

Direct Row Handling [page 558]
Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
Conflict Detection [page 134]
upload_fetch Table Event [page 502]
resolve_conflict Table Event [page 483]
upload_delete Table Event [page 500]
upload_insert Table Event [page 506]
upload_update Table Event [page 522]

1.12.2.59 upload_insert Table Event

A data script that provides an event that the MobiLink server uses during processing of the upload to handle
rows inserted into the remote database.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

506 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Parameter name for SQL scripts Description Order (deprecated for SQL)

s. remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s. username VARCHAR(128). The MobiLink user
name. This parameter is optional.

Not applicable

s. script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

r. column-1 Required. The first inserted column
value, referenced by column name or
column value.

1

...

r. column-N Required. The last inserted column
value, referenced by column name or
column value.

N

Default Action

None.

Remarks

You can have one upload_insert script for each table in the remote database.

This script must be implemented in SQL. For Java or .NET processing of rows, use direct row handling.

SQL Example

This example handles inserts that were made on the Customer table in the remote database. The script inserts
the values into a table named Customer in the consolidated database. The final column of the table identifies
the Customer as active. The final column does not appear in the remote database.

CALL ml_add_table_script('ver1',
 'Customer',
 'upload_insert',
 'INSERT INTO Customer(
 cust_id,

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 507

 name,
 rep_id,
 active)
 VALUES (
 {ml r.cust_id},
 {ml r.name},
 {ml r.rep_id}, 1)');

Related Information

Direct Row Handling [page 558]
Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
upload_delete Table Event [page 500]
upload_update Table Event [page 522]
upload_fetch Table Event [page 502]

1.12.2.60 upload_new_row_insert Table Event

Conflict resolution scripts for statement-based uploads commonly require access to the old and new values of
rows uploaded from the remote database. This data script event allows you to handle the new, updated values
of rows uploaded from the remote database.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.username VARCHAR(128). The MobiLink user
name. This parameter is optional.

Optional (1 if referenced)

508 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

r. column-1 Required. The first column value from
the new (post-image) row, referenced
by column name or column number.

1 (2 if username is referenced)

...

r. column-N Required. The last column value from
the new (post-image) row, referenced
by column name or column number.

N (N+1 if username is referenced)

Default Action

None.

Remarks

When a MobiLink client sends an updated row to the MobiLink server, it includes not only the new values (the
post-image), but also a copy of the old row values (the pre-image). When the pre-image does not match the
current values in the consolidated database, a conflict is detected.

After MobiLink detects a conflict, this event allows you to save post-image values to a table. You can use this
event to assist in developing conflict resolution procedures for updates. The parameters for this event hold new
row values from the remote database before the update is performed on the corresponding consolidated
database table. This event is also used to insert rows in forced-conflict mode (forced-conflict mode has been
deprecated.).

 Note
Conflict detection is usually performed much faster when done all at once in the upload_update script.

The script for this event is usually an insert statement that inserts the new row into a temporary table for use
by a resolve_conflict script.

You can have one upload_new_row_insert script for each table in the remote database.

This script must be implemented in SQL. For Java or .NET processing of rows, use direct row handling.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 509

SQL Example

This example handles updates made on the product table in the remote database. The script inserts the new
value of the row into a global temporary table named product_conflict. The final column of the table identifies
the row as a new row.

CALL ml_add_table_script('ver1',
 'table1',
 'upload_new_row_insert',
 'INSERT INTO DBA.product_conflict(
 id,
 name,
 size,
 quantity,
 unit_price,
 row_type)
 VALUES(
 {ml r.id},
 {ml r.name},
 {ml r.size},
 {ml r.quantity},
 {ml r.unit_price}, ''New'')')

Related Information

Direct Row Handling [page 558]
Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
Conflict Handling Overview [page 133]
Remote IDs and MobiLink User Names in Scripts
resolve_conflict Table Event [page 483]
upload_old_row_insert Table Event [page 510]
upload_update Table Event [page 522]

1.12.2.61 upload_old_row_insert Table Event

Conflict resolution scripts for statement-based uploads commonly require access to the old and new values of
rows uploaded from the remote database. This data script event allows you to handle the old values of rows
uploaded from the remote database.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If

510 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

N/A

s.username VARCHAR(128). The MobiLink user
name. This parameter is optional.

Optional (1 if referenced)

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

r. column-1 Required. The first column value from
the old (pre-image) row, referenced by
column name or column number.

1 (2 if username is referenced)

...

r. column-N Required. The last column value from
the old (pre-image) row, referenced by
column name or column number.

N (N+1 if username is referenced)

Default Action

None.

Remarks

When a MobiLink client sends an updated row to the MobiLink server, it includes not only the new values (the
post-image), but also a copy of the old row values (the pre-image). When the pre-image does not match the
current values in the consolidated database, a conflict is detected.

After MobiLink detects a conflict, this event allows you to save pre-image values to a table. You can use this
event to assist in developing conflict resolution procedures. The parameters for this event hold old row values
from the remote database before the update is performed on the corresponding consolidated database table.
This event is also used to insert rows in forced-conflict mode (forced-conflict mode has been deprecated).

 Note
Conflict detection is usually much faster when done all at once in the upload_update script.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 511

The script for this event is usually an insert statement that inserts the old row into a temporary table for use by
a resolve_conflict script.

You can have one upload_old_row_insert script for each table in the remote database.

This script must be implemented in SQL. For Java or .NET processing of rows, see direct row handling.

SQL Example

This example handles updates made on the product table in the remote database. The script inserts the old
value of the row into a global temporary table named product_conflict. The final column of the table identifies
the row as an old row.

CALL ml_add_table_script('ver1',
 'table1',
 'upload_old_row_insert',
 'INSERT INTO DBA.product_conflict (
 id,
 name,
 size,
 quantity,
 unit_price,
 row_type)
 VALUES (
 {ml r.id},
 {ml r.name},
 {ml r.size},
 {ml r.quantity},
 {ml r.unit_price}, ''Old'')')

Related Information

Direct Row Handling [page 558]
Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
Conflict Handling Overview [page 133]
Remote IDs and MobiLink User Names in Scripts
resolve_conflict Table Event [page 483]
upload_new_row_insert Table Event [page 508]
upload_update Table Event [page 522]

512 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

1.12.2.62 upload_statistics Connection Event

Provides access to synchronization statistics for upload operations.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.warnings INTEGER. The number of warnings that
occurred.

2

s.errors INTEGER. The number of errors that
occurred.

3

s.inserted_rows INTEGER. The number of rows that
were successfully inserted in the con
solidated database.

4

s.deleted_rows INTEGER. The number of rows that
were successfully deleted from the con
solidated database.

5

s.updated_rows INTEGER. The number of rows that
were successfully updated in the con
solidated database.

6

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 513

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.conflicted_updates INTEGER. The number of update rows
that caused conflict. A row is included
only when a resolve conflict script was
successfully called for it.

9

s.ignored_inserts INTEGER. The total number of upload
insert rows that were ignored. They
were ignored because 1) there is no up
load_insert script in normal mode; or 2)
errors occurred when the MobiLink
server was invoking the corresponding
script and the handle_error or han
dle_odbc_error event returned 1000.

10

s.ignored_deletes INTEGER. The number of upload delete
rows that caused errors while the up
load_delete script was invoked, when
the handle_error or handle_odbc_error
are defined and returned 1000, or when
there is no upload_delete script defined
for the given table.

11

s.ignored_updates INTEGER. The number of upload up
date rows that caused conflict but a re
solve conflict script was not success
fully called or no upload_update script
was defined.

12

s.bytes INTEGER. The amount of memory used
within the MobiLink server to store the
upload.

13

s.deadlocks INTEGER. The number of deadlocks in
the consolidated database that were
detected for the synchronization.

14

Default Action

None.

Remarks

The upload_statistics event allows you to gather, for any user, statistics on uploads. The upload_statistics
connection script is called just before the commit at the end of the upload transaction.

514 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Example

The following example inserts synchronization statistics for upload operations into the table
upload_summary_audit.

CALL ml_add_connection_script ('ver1',
 'upload_statistics',
 'INSERT INTO upload_summary_audit (
 ml_user,
 warnings,
 errors,
 inserted_rows,
 deleted_rows,
 updated_rows,
 conflicted_updates,
 ignored_inserts,
 ignored deletes,
 ignored_updates,
 bytes, deadlocks)
 VALUES (
 {ml s.username},
 {ml s.warnings},
 {ml s.errors},
 {ml s.inserted_rows},
 {ml s.deleted_rows},
 {ml s.updated_rows},
 {ml s.conflicted_updates},
 {ml s.ignored_inserts},
 {ml s.ignored_deletes},
 {ml s.ignored_updates},
 {ml s.bytes}, {ml s.deadlocks}) ')

Once statistics are inserted into the audit table, you may use these statistics to monitor your synchronizations
and make optimizations where applicable.

Java Example

The following call to a MobiLink system procedure registers a Java method called uploadStatisticsConnection
as the script for the upload_statistics connection event when synchronizing the script version ver1.

CALL ml_add_java_connection_script('ver1',
 'upload_statistics', 'ExamplePackage.ExampleClass.uploadStatisticsConnection')

The following is the sample Java method uploadStatisticsConnection. It logs some statistics to the MobiLink
message log. (Logging statistics to the MobiLink message log might be useful at development time but would
slow down a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void uploadStatisticsConnection(
 String user,
 int warnings,
 int errors,

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 515

 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictedInserts,
 int conflictedDeletes,
 int conflictedUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks) {
 java.lang.System.out.println("updated rows: " +
 updatedRows); }}

.NET Example

The following call to a MobiLink system procedure registers a .NET method called UploadStats as the script for
the upload_statistics connection event when synchronizing the script version ver1.

CALL ml_add_dnet_connection_script('ver1',
 'upload_statistics',
 'TestScripts.Test.UploadStats')

The following is the sample .NET method UploadStats. It logs some statistics to the MobiLink message log.
(Logging statistics to the MobiLink message log might be useful at development time but would slow down a
production server.)

namespace TestScripts { public class Test {
 string _curUser = null;
public void UploadStats (
 string user,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictInserts,
 int conflictDeletes,
 int conflictUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks) {
 System.Console.WriteLine("updated rows: " +
 updatedRows); }}}

Related Information

Script Parameters [page 294]

516 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Script Additions and Deletions [page 316]
MobiLink Profiler [page 247]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
download_statistics Connection Event [page 398]
download_statistics Table Event [page 401]
upload_statistics Table Event [page 517]
synchronization_statistics Connection Event [page 487]
synchronization_statistics Table Event [page 491]
time_statistics Connection Event [page 494]
time_statistics Table Event [page 497]
SQL-.NET Data Types [page 546]

1.12.2.63 upload_statistics Table Event

Provides access to synchronization statistics for upload operations for a specific table.

Parameters

In the following table, the description provides the SQL data type. If you are writing your script in Java or .NET,
use the appropriate corresponding data type.

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.remote_id VARCHAR(128). The MobiLink remote
ID. You can only reference the remote ID
if you are using named parameters.

Not applicable

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

s.username VARCHAR(128). The MobiLink user
name.

1

s.table VARCHAR(128). The table name. 2

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 517

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.warnings INTEGER. The number of warnings is
sued in the upload of the table.

3

s.errors INTEGER. The number of errors, includ
ing handled errors, that occurred in the
upload of the table.

4

s.inserted_rows INTEGER. The number of rows that
were successfully inserted in the con
solidated database.

5

s.deleted_rows INTEGER. The number of rows that
were successfully deleted from the con
solidated database.

6

s.updated_rows INTEGER. The number of rows that
were successfully updated in the con
solidated database.

7

s.conflicted_updates INTEGER. The number of update rows
that caused conflict. A row is included
only when a resolve conflict script was
successfully called for it.

10

s.ignored_inserts INTEGER. The total number of upload
insert rows that were ignored. They
were ignored because 1) there is no up
load_insert script in normal mode; or 2)
errors occurred when the MobiLink
server was invoking the corresponding
script and the handle_error or han
dle_odbc_error event returned 1000.

11

s.ignored_deletes INTEGER. The number of upload delete
rows that caused errors while the up
load_delete script was invoked, when
the handle_error or handle_odbc_error
are defined and returned 1000, or when
there is no upload_delete script defined
for the given table.

12

s.ignored_updates INTEGER. The number of upload up
date rows that caused conflict but a re
solve conflict script was not success
fully called or no upload_update script
was defined.

13

518 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Parameter name for SQL scripts Description Order (deprecated for SQL)

s.bytes INTEGER. The amount of memory used
within the MobiLink server to store the
upload.

14

s.deadlocks INTEGER. The number of deadlocks in
the consolidated database that were
detected for the synchronization.

15

Default Action

None.

Remarks

The upload_statistics event allows you to gather, for any user, vital statistics on synchronization happenings as
they apply to any table. The upload_statistics table script is called just before the commit at the end of the
upload transaction.

 Note
Depending on the command line, not all warnings are logged. The warnings count passed to this script is
the number of warnings that would be logged when no warnings are disabled, which may be more than the
number of warnings logged.

SQL Example

The following example inserts a row into a table used to track upload statistics.

CALL ml_add_connection_script('ver1',
 'upload_statistics',
 'INSERT INTO my_upload_statistics (
 user_name,
 table_name,
 num_warnings,
 num_errors,
 inserted_rows,
 deleted_rows,
 updated_rows,
 conflicted_updates,
 ignored_inserts,
 ignored_deletes,
 ignored_updates, bytes,
 deadlocks)
 VALUES(

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 519

 {ml s.username},
 {ml s.table},
 {ml s.warnings},
 {ml s.errors},
 {ml s.inserted_rows},
 {ml s.deleted_rows},
 {ml s.updated_rows},
 {ml s.conflicted_updates},
 {ml s.ignored_inserts},
 {ml s.ignored_deletes},
 {ml s.ignored_updates},
 {ml s.bytes}, {ml s.deadlocks})')

The following example works with an Oracle consolidated database.

CALL ml_add_connection_script('ver1',
 'upload_statistics',
 'INSERT INTO upload_tables_audit (
 id,
 user_name,
 table,
 warnings,
 errors,
 inserted_rows,
 deleted_rows,
 updated_rows,
 conflicted_updates,
 ignored_inserts,
 ignored_deletes,
 ignored_updates,
 bytes,
 deadlocks)
 VALUES (
 ut_audit.nextval,
 {ml s.username},
 {ml s.table},
 {ml s.warnings},
 {ml s.errors},
 {ml s.inserted_rows},
 {ml s.deleted_rows},
 {ml s.updated_rows},
 {ml s.conflicted_updates},
 {ml s.ignored_inserts},
 {ml s.ignored_deletes},
 {ml s.ignored_updates},
 {ml s.bytes}, {ml s.deadlocks})')

Once statistics are inserted into the audit table, you may use these statistics to monitor your synchronizations
and make optimizations where applicable.

Java Example

The following call to a MobiLink system procedure registers a Java method called uploadStatisticsTable as the
script for the upload_statistics table event when synchronizing the script version ver1.

CALL ml_add_java_table_script('ver1',
 'table1',

520 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 'upload_statistics', 'ExamplePackage.ExampleClass.uploadStatisticsTable')

The following is the sample Java method uploadStatisticsTable. It logs some statistics to the MobiLink message
log. Logging statistics to the MobiLink message log might be useful at development time but would slow down
a production server.)

package ExamplePackage; public class ExampleClass {
 String _curUser = null;
public void uploadStatisticsTable(
 String user,
 String table,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictedInserts,
 int conflictedDeletes,
 int conflictedUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks) {
 java.lang.System.out.println("updated rows: " +
 updatedRows); }

.NET Example

The following call to a MobiLink system procedure registers a .NET method called UploadTableStats as the
script for the upload_statistics table event when synchronizing the script version ver1 and the table table1.

CALL ml_add_dnet_table_script('ver1',
 'table1',
 'upload_statistics',
 'TestScripts.Test.UploadTableStats')

The following is the sample .NET method uploadStatisticsTable. It logs some statistics to the MobiLink
message log. (Logging statistics to the MobiLink message log might be useful at development time but would
slow down a production server.)

namespace TestScripts { public class Test {
 string _curUser = null;
public void UploadTableStats(
 string user,
 string table,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictInserts,
 int conflictDeletes,

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 521

 int conflictUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks) {
 System.Console.WriteLine("updated rows: " +
 updatedRows); }}}

Related Information

Script Parameters [page 294]
Script Additions and Deletions [page 316]
MobiLink Profiler [page 247]
Remote IDs and MobiLink User Names in Scripts
SQL-Java Data Types [page 530]
download_statistics Connection Event [page 398]
upload_statistics Connection Event [page 513]
synchronization_statistics Connection Event [page 487]
synchronization_statistics Table Event [page 491]
time_statistics Connection Event [page 494]
time_statistics Table Event [page 497]
SQL-.NET Data Types [page 546]

1.12.2.64 upload_update Table Event

A data script that provides an event that the MobiLink server uses during processing of the upload to handle
rows updated at the remote database.

Parameters

In SQL scripts, you can specify event parameters by name or with a question mark. Using question marks has
been deprecated. Use named parameters instead. You cannot mix names and question marks within a script. If
you use question marks, the parameters must be in the order shown below and are optional only if no
subsequent parameters are specified (for example, you must use parameter 1 if you are going to use parameter
2). If you use named parameters, you can specify any subset of the parameters in any order.

522 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abb8e36ce210148c858de7206975f6.html

Parameter Description Order (deprecated for SQL)

s. script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

r. column-1 Required. The first non-primary key col
umn value from the new (post-image)
column value, referenced by column
name or column number.

1

...

r. column-M Required. The last non-primary key col
umn value from the new (post-image)
column value, referenced by column
name or column number.

M

r. pk-column-1 Required. The first primary key column
value from the new (post-image) col
umn value, referenced by column name
or column number.

M + 1

...

r. pk-column-N Required. The last primary key column
value from the new (post-image) col
umn value, referenced by column name
or column number.

M + N

o. column-N Optional. The first non-primary key col
umn value from the old (pre-image) col
umn value, referenced by column name
or column number.

M + N + 1

...

o. column-M Optional. The last non-primary key col
umn value from the old (pre-image) col
umn value, referenced by column name
or column number.

M + N + M

s.script_version VARCHAR(128). Optional IN parameter
to specify that the MobiLink server
passes the script version string used for
the current synchronization to this pa
rameter. Question marks cannot be
used to specify this parameter.

Not applicable

Default Action

None.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 523

Remarks

The WHERE clause must include all the primary key columns being synchronized and it can optionally include
the non-primary key columns. The SET clause must contain all the non-primary key columns being
synchronized.

You can use named parameters in any order. The same named parameter can be used as many times as you
want in the same script. You may only specify a subset of the columns in a script with named parameters.

For example, the upload_update script for the table MyTable can be written as:

UPDATE MyTable SET column_2 = { ml r.column_2 }, column_1 = { ml r.column_1 }, ..., column_M
= { ml r.column_M } WHERE pk_column_1 = { ml r.pk_column_1 } AND ... AND pk_column_N = { ml
r.pk_column_N }

You can have one upload_update script for each table in the remote database.

This script must be implemented in SQL. For Java or .NET processing of rows, use direct row handling.

To use the upload_update script to detect conflicts, include all non-primary key columns in the WHERE clause:

UPDATE table-name SET col1 = {ml r.col1}, col2 = {ml r. col2 } ... WHERE pk1 = {ml r.pk1} AND pk2 = {ml r.pk2} ... AND col1 = {ml o.col1} AND col2 ={ml o.col2} ...

In this statement, col1 and col2 are the non-primary key columns, while pk1 and pk2 are primary key columns.
The values passed to the second set of non-primary key columns are the pre-image of the updated row. The
WHERE clause compares old values uploaded from the remote database to current values in the consolidated
database. If the values do not match, the update is ignored, preserving the values already on the consolidated
database.

This script must be implemented in SQL. For Java or .NET processing of rows, use direct row handling.

SQL Example

This example handles updates made to the Customer table in the remote database. The script updates the
values in a table named Customer in the consolidated database.

CALL ml_add_table_script('ver1',
 'table1',
 'upload_update',
'UPDATE Customer
 SET name = {ml r.name}, rep_id = {ml r.rep_id} WHERE cust_id = {ml o.cust_id}')

This next example performs a similar update, but uses the old (pre-image) values to ensure the update only
happens if there is no conflict. If there is a conflict, the update is ignored in this "first in wins" conflict resolution
policy.

CALL ml_add_table_script('ver1',

524 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 'table1',
 'upload_update',
'UPDATE Customer
 SET name = {ml r.name}, rep_id = {ml r.rep_id}
 WHERE cust_id = {ml o.cust_id}
 AND name = {ml o.name} AND rep_id = {ml o.rep_id}')

Related Information

Direct Row Handling [page 558]
Data Scripts [page 346]
Script Parameters [page 294]
Script Additions and Deletions [page 316]
Conflict Detection with upload_update Scripts [page 137]
Conflict Resolution with upload_update Scripts [page 139]
upload_delete Table Event [page 500]
upload_fetch Table Event [page 502]
upload_insert Table Event [page 506]

1.13 MobiLink Server APIs

MobiLink synchronization scripts can be written in SQL, in Java (using the MobiLink server API for Java) or
in .NET (using the MobiLink server API for .NET).

In this section:

Synchronization Script Writing in Java [page 526]
You control the actions of the MobiLink server by writing synchronization scripts. You can implement
these scripts in SQL or Java.

MobiLink Server Java API Reference [page 540]
MobiLink server Java API topics explain interfaces and classes, and their associated methods and
constructors. To use these classes, reference the mlscript.jar assembly, located in %SQLANY17%
\java\.

Synchronization Scripts in Microsoft .NET [page 541]
MobiLink supports Microsoft Visual Studio programming languages for writing synchronization scripts.

MobiLink Server .NET API Reference [page 557]
The MobiLink .NET API topics explain interfaces and classes, and their associated methods, properties,
and constructors.

Direct Row Handling [page 558]
Direct row handling is an advanced MobiLink feature. To use it, you must have a thorough
understanding of how to create a MobiLink application and how to use the MobiLink APIs.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 525

1.13.1 Synchronization Script Writing in Java

You control the actions of the MobiLink server by writing synchronization scripts. You can implement these
scripts in SQL or Java.

Java synchronization logic can function just as SQL logic functions: the MobiLink server can make calls to Java
methods on the occurrence of MobiLink events just as it accesses SQL scripts on the occurrence of MobiLink
events. A Java method can return a SQL string to MobiLink.

In this section:

Setting up Java Synchronization Logic [page 526]
Use the following procedure to implement synchronization scripts in Java.

Java Synchronization Logic [page 528]
Writing Java synchronization logic requires knowledge of MobiLink events, some knowledge of Java,
and knowledge of the MobiLink server API for Java.

Java Synchronization Example [page 536]
Java synchronization logic works with MobiLink and common Java classes to provide you with flexibility
in deploying applications using MobiLink server.

Related Information

Options for Writing Server-side Synchronization Logic
Synchronization Scripts [page 288]
MobiLink Server Java API Reference

1.13.1.1 Setting up Java Synchronization Logic

Use the following procedure to implement synchronization scripts in Java.

Context

When you install SQL Anywhere, the installer automatically sets the location of the MobiLink server API for
Java classes. When you start the MobiLink server, it automatically includes these classes in your classpath. The
MobiLink server API for Java classes are located in %SQLANY17%\Java\mlscript.jar.

Procedure

1. Create your own class or classes. Write a method for each required synchronization script. These methods
must be public. The class must be public in the package.

526 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcd7226ce210149045b3c43c351444.html
https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

Each class with non-static methods should have a public constructor. The MobiLink server automatically
instantiates each class the first time a method in that class is called.

2. When compiling the class, you must include the JAR file java\mlscript.jar.

For example:

javac MyClass.java -classpath "C:\Program Files\SQL Anywhere 17\java
\mlscript.jar"

3. In the MobiLink system tables on your consolidated database, specify the name of the package, class, and
method to call for each synchronization script. One class is permitted per script version.

For example, you can add this information to the MobiLink system tables using the
ml_add_java_connection_script stored procedure or the ml_add_java_table_script stored procedure.

For example, the following SQL statement, when run in a SQL Anywhere database, specifies that for the
script version ver1, myPackage.myClass.myMethod should be run whenever the authenticate_user
connection-level event occurs. The method that is specified must be the fully qualified name of a public
Java method, and the name is case sensitive.

call ml_add_java_connection_script('ver1', 'authenticate_user', 'myPackage.myClass.myMethod')

4. Instruct the MobiLink server to load classes. A vital part of setting up Java synchronization logic is to tell
the Java VM where to look for Java classes. There are two ways to do this:

• Use the mlsrv17 -sl java -cp option to specify a set of directories or jar files in which to search for
classes. For example, run the following command:

mlsrv17 -c "DSN=consolidated1" -sl java (-cp %classpath%;c:\local\Java
\myclasses.jar)

The MobiLink server automatically appends the location of the MobiLink server API for Java classes
(java\mlscript.jar) to the set of directories or jar files. The -sl java option also forces the Java VM to
load on server startup.

• Explicitly set the classpath. To set the classpath for user-defined classes, use a statement such as the
following:

SET classpath=%classpath%;c:\local\Java\myclasses.jar

If your system classpath includes your Java synchronization logic classes, you do not need to make
changes to your MobiLink server command line.
You can use the -sl java option to force the Java VM to load at server startup. Otherwise, the Java VM is
started when the first Java method is executed.

5. To load a specific JRE on UNIX or Linux, set the LD_LIBRARY_PATH (LIBPATH on IBM AIX (deprecated),
SHLIB_PATH on HP-UX) to include the directory containing the JRE. The directory must be listed before
any of the SQL Anywhere installation directories.

Results

The Java synchronization logic is set up.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 527

Related Information

Java Methods [page 531]
Constructors [page 531]
MobiLink Server System Procedures [page 582]
Java Synchronization Logic [page 528]
Options for Writing Server-side Synchronization Logic
Synchronization Scripts [page 288]
ml_add_java_connection_script System Procedure [page 593]
ml_add_java_table_script System Procedure [page 595]
-sl java mlsrv17 Option [page 84]
Java Synchronization Example [page 536]
MobiLink Server Java API Reference

1.13.1.2 Java Synchronization Logic

Writing Java synchronization logic requires knowledge of MobiLink events, some knowledge of Java, and
knowledge of the MobiLink server API for Java.

Java synchronization logic can be used to maintain state information, and implement logic around the upload
and download events. For example, a begin_synchronization script written in Java could store the MobiLink
user name in a variable. Scripts called later in the synchronization process can access this variable. Also, you
can use Java to access rows in the consolidated database, before or after they are committed.

Using Java reduces dependence on the consolidated database. Behavior is affected less by upgrading the
consolidated database to a new version or switching to a different database management system.

Direct Row Handling

You can use MobiLink direct row handling to communicate remote data to any central data source, application,
or web service. Direct row handling uses special classes in the MobiLink server API for Java for direct access to
synchronized data.

In this section:

Class Instances [page 529]
The MobiLink server instantiates your classes at the connection level. When an event is reached for
which you have written a non-static Java method, the MobiLink server automatically creates an
instance of the class, if it has not already done so on the present connection.

Transactions [page 530]
The normal rules regarding transactions apply to Java methods. The start and duration of database
transactions is critical to the synchronization process.

SQL-Java Data Types [page 530]

528 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcd7226ce210149045b3c43c351444.html
https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

The following table shows SQL data types and the corresponding Java data types.

Constructors [page 531]
The constructor of your class may have one of two possible signatures.

Java Methods [page 531]
In general, you implement one method for each synchronization event. These methods must be public.
If they are private, the MobiLink server cannot use them and fails to recognize that they exist.

Java Class Debugging [page 532]
MobiLink provides various information and facilities that you may find helpful when debugging your
Java code.

MobiLink Server Error Handling in Java [page 534]
When scanning the log is not enough, you can monitor your applications programmatically. For
example, you can send messages of a certain type in an email.

User-Defined Start Classes in Java [page 535]
You can define start classes that are loaded automatically when the server is started.

Related Information

Direct Row Handling [page 558]
MobiLink Server Java API Reference

1.13.1.2.1 Class Instances

The MobiLink server instantiates your classes at the connection level. When an event is reached for which you
have written a non-static Java method, the MobiLink server automatically creates an instance of the class, if it
has not already done so on the present connection.

All methods directly associated with a connection-level or table-level event for one script version must belong
to the same class.

For each database connection, once a class has been instantiated, the class persists until that connection is
closed. So, the same instance might be used for multiple consecutive synchronization sessions. Unless it is
explicitly cleared, information present in public or private variables persists across synchronizations that occur
on the same connection.

You can also use static classes or variables. In this case, the values are available across all connections.

The MobiLink server automatically deletes your class instances only when the connection to the consolidated
database is closed.

Related Information

Constructors [page 547]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 529

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

MobiLink Server Java API Reference

1.13.1.2.2 Transactions

The normal rules regarding transactions apply to Java methods. The start and duration of database
transactions is critical to the synchronization process.

Transactions must be started and ended only by the MobiLink server. Explicitly committing or rolling back
transactions on the synchronization connection within a Java method violates the integrity of the
synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink server and, in particular, to SQL
statements returned by methods. If your classes create other database connections, use existing management
rules to manage classes created by other database connections.

Related Information

MobiLink Server Java API Reference

1.13.1.2.3 SQL-Java Data Types

The following table shows SQL data types and the corresponding Java data types.

SQL data type Corresponding Java data type

VARCHAR java.lang.String

CHAR java.lang.String

INTEGER int or Integer

BINARY byte[]

BIGINT long

TIMESTAMP java.sql.Timestamp

INOUT INTEGER com.sap.ml.script.InOutInteger

INOUT VARCHAR com.sap.ml.script.InOutString

INOUT CHAR com.sap.ml.script.InOutString

INOUT BYTEARRAY com.sap.ml.script.InOutByteArray

530 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html
https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

SQL data type Corresponding Java data type

INOUT TIMESTAMP java.sql.Timestamp

The MobiLink server automatically adds the com.sap.ml.script package to your classpath if it is not already
present. However, when you compile your class you need to add the path of %SQLANY17%\java
\mlscript.jar.

Related Information

MobiLink Server Java API Reference

1.13.1.2.4 Constructors

The constructor of your class may have one of two possible signatures.

public MyScriptClass(com.sap.ml.script.DBConnectionContext sc)

or

public MyScriptClass()

The synchronization context passed to you is for the connection through which the MobiLink server is
synchronizing the current user.

The DBConnectionContext.getConnection method returns the same database connection that MobiLink is
using to synchronize the present user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink server manages the transactions.

The MobiLink server prefers to use constructors with the first signature. It only uses the non-argument
constructor if a constructor with the first signature is not present.

Related Information

MobiLink Server Java API Reference

1.13.1.2.5 Java Methods

In general, you implement one method for each synchronization event. These methods must be public. If they
are private, the MobiLink server cannot use them and fails to recognize that they exist.

The names of the methods are not important, as long as the names match the names specified in the ml_script
table in the consolidated database. In the examples included in the documentation, however, the method

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 531

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html
https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

names are the same as those of the MobiLink events because this naming convention makes the Java code
easier to read.

The signature of your method should match the signature of the script for that event, except that you can
truncate the parameter list if you do not need the values of parameters at the end of the list. You should accept
only the parameters you need, because overhead is associated with passing the parameters.

You cannot, however, overload the methods. Only one method prototype per class may appear in the ml_script
system table.

Registering Methods

After creating a method, you must register it. Registering the method creates a reference to the method in the
MobiLink system tables on the consolidated database, so that the method is called when the event occurs. You
register methods in the same way that you add synchronization scripts, except instead of adding the entire
SQL script to the MobiLink system table, you add only the method name.

All methods from all events must return void.

Related Information

Script Additions and Deletions [page 316]
MobiLink Server Java API Reference

1.13.1.2.6 Java Class Debugging

MobiLink provides various information and facilities that you may find helpful when debugging your Java code.

Information in the MobiLink Server's Log File

The MobiLink server writes messages to a message log file. The server log file contains the following
information:

• The Java Runtime Environment. You can use the -jrepath option to request a particular JRE when you start
the MobiLink server. The default path is the path of the JRE installed with SQL Anywhere 17.

• The path of the standard Java classes loaded. If you did not specify these explicitly, the MobiLink server
automatically adds them to your classpath before invoking the Java VM.

• The fully specified names of the specific methods invoked. You can use this information to verify that the
MobiLink server is invoking the correct methods.

• Any output written in a Java method to java.lang.System.out or java.lang.System.err is redirected to the
MobiLink server log file.

532 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

• The mlsrv17 command line option -verbose (-v) can be used.

Using a Java Debugger

You can debug your Java classes using a standard Java debugger. Specify the necessary parameters using the -
sl java option on the mlsrv17 command line.

Specifying a debugger causes the Java VM to pause and wait for a connection from a Java debugger.

Printing Information From Java

Alternatively, you may choose to add statements to your Java methods that print information to the MobiLink
message log, using java.lang.System.err or java.lang.System.out. Doing so can help you track the progress and
behavior of your classes.

 Note
Printing information in this manner is a useful monitoring tool, but is not recommended in a production
scenario.

The same technique can be exploited to log arbitrary synchronization information or collect statistical
information about how your scripts are used.

Writing Your Own Test Driver

You may want to write your own driver to exercise your Java classes. This approach can be helpful because it
isolates the actions of your Java methods from the rest of the MobiLink system.

Related Information

-v mlsrv17 Option [page 92]
-sl java mlsrv17 Option [page 84]
MobiLink Server Java API Reference

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 533

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

1.13.1.2.7 MobiLink Server Error Handling in Java

When scanning the log is not enough, you can monitor your applications programmatically. For example, you
can send messages of a certain type in an email.

You can write methods that are passed a class representing every error or warning message that is printed to
the log. This may help you monitor and audit a MobiLink server.

The following code installs a LogListener for all warning messages, and writes the information to a file.

class TestLogListener implements LogListener { FileOutputStream _out_file;
 public TestLogListener(FileOutputStream out_file) {
 _out_file = out_file;
 }
 public void messageLogged(ServerContext sc, LogMessage msg) {
 String type;
 String user;
 try {
 if (msg.getType() == LogMessage.ERROR) {
 type = "ERROR";
 } else if (msg.getType() == LogMessage.WARNING) {
 type = "WARNING";
 }
 else {
 type = "UNKNOWN!!!";
 }
 user = msg.getUser();
 if (user == null) {
 user = "NULL";
 }
 _out_file.write(("Caught msg type="
 + type
 + " user=" + user
 + " text=" + msg.getText()
 + "\n").getBytes()
);
 _out_file.flush();
 }
 catch(Exception e) { // Print some error output to the MobiLink log. e.printStackTrace();
 }
 } }

The following code registers TestLogListener to receive warning messages. Call this code from anywhere that
has access to the ServerContext such as a class constructor or synchronization script.

// ServerContext serv_context; serv_context.addWarningListener(
 new MyLogListener(ll_out_file));

Related Information

MobiLink Server Java API Reference

534 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

1.13.1.2.8 User-Defined Start Classes in Java

You can define start classes that are loaded automatically when the server is started.

The purpose of this feature is to allow you to write Java code that executes at the time the MobiLink server
starts the Java VM, before the first synchronization. This means you can create connections or cache data
before a user synchronization request.

You do this with the DMLStartClasses option of the mlsrv17 -sl java option. For example, the following is part of
a mlsrv17 command line. It causes mycl1 and mycl2 to be loaded as start classes.

-sl java(-DMLStartClasses=com.test.mycl1,com.test.mycl2)

Classes are loaded in the order in which they are listed. If the same class is listed more than once, more than
one instance is created.

All start classes must be public and must have a public constructor that either accepts no arguments or
accepts one argument of type com.sap.ml.script.ServerContext.

The names of loaded start classes are output to the MobiLink log with the message "Loaded JAVA start class:
classname".

Example

The following is a start class template. It starts a daemon thread that processes events and creates a database
connection. (Not all start classes need to create a thread but if a thread is spawned it should be a daemon
thread.)

import com.sap.ml.script.*; import java.sql.*;
public class StartTemplate extends
 Thread implements ShutdownListener {
 ServerContext _sc;
 Connection _conn;
 boolean _exit_loop;
 public StartTemplate(ServerContext sc) throws SQLException {
 // Perform setup first so that an exception
 // causes MobiLink startup to fail.
 _sc = sc;
 // Create a connection for use later.
 _conn = _sc.makeConnection();
 _exit_loop = false;
 setDaemon(true);
 start();
 }
 public void run() {
 _sc.addShutdownListener(this);
 // run() cannot throw exceptions.
 try {
 handlerLoop();
 _conn.close();
 _conn = null;
 }
 catch(Exception e) {

 // Print some error output to the MobiLink log.
 e.printStackTrace();

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 535

 // This thread shuts down and so does not
 // need to be notified of shutdown.
 _sc.removeShutdownListener(this);

 // Ask server to shutdown so that this fatal
 // error is fixed.
 _sc.shutdown();
 }
 // Shortly after return this thread no longer exists.
 return;
 }

 // stop our event handler loop
 public void shutdownPerformed(ServerContext sc) {
 _exit_loop = true;
 try {
 // Wait max 10 seconds for thread to die.
 join(10*1000);
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 e.printStackTrace();
 }
 }
 private void handlerLoop() throws InterruptedException {
 while (!_exit_loop) {
 // Handle events in this loop. Sleep not
 // needed, block on event queue.
 sleep(1 * 1000);
 }
 } }

Related Information

-sl java mlsrv17 Option [page 84]
MobiLink Server Java API Reference

1.13.1.3 Java Synchronization Example

Java synchronization logic works with MobiLink and common Java classes to provide you with flexibility in
deploying applications using MobiLink server.

The following example introduces you to this extended range of functionality using a working example of Java
synchronization logic. Before you try to use this class or write your own class, use the following checklist to
ensure you have all the pieces in place before compiling the class.

• Plan your functionality using, for example, pseudocode.
• Create a map of database tables and columns.
• Configure the consolidated database for Java synchronization by ensuring you have specified in the

MobiLink system tables the language type and location of the Java synchronization methods.
• Create a list of associated Java classes that are called during the running of your Java class.

536 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

• Store your Java classes in a location that is in the classpath for MobiLink server.

Plan

The Java synchronization logic for this example points to the associated Java files and classes that contain
functionality needed for the example to work. It shows you how to create a class CustEmpScripts. It shows you
how to set up a synchronization context for the connection. Finally, the example provides Java methods to

• authenticate a MobiLink user.
• perform download and upload operations using cursors for each database table.

Schema

The tables to be synchronized are emp and cust. The emp table has three columns called emp_id, emp_name
and manager. The cust table has three columns called cust_id, cust_name and emp_id. All columns in each
table are synchronized. The mapping from consolidated to remote database is such that the table names and
column names are identical in both databases. One additional table, an audit table, is added to the
consolidated database.

Java Class Files

The files used in the example are included in the Samples\MobiLink\JavaAuthentication directory.

Setup

The following code sets up the Java synchronization logic. The import statements tell the Java VM the location
of needed files. The public class statement declares the class.

// Use a package when you create your own script. import com.sap.ml.script.InOutInteger;
import com.sap.ml.script.DBConnectionContext;
import com.sap.ml.script.ServerContext;
import java.sql.*;
public class CustEmpScripts {
 // Context for this synchronization connection.
 DBConnectionContext _conn_context;
 // Same connection MobiLink uses for sync.
 // Do not commit or close this.
 Connection _sync_connection;
 Connection _audit_connection;
 //Get a user id given the user name. On audit connection.
 PreparedStatement _get_user_id_pstmt;
 // Add record of user logins added. On audit connection.
 PreparedStatement _insert_login_pstmt;
 // Prepared statement to add a record to the audit table.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 537

 // On audit connection.
 PreparedStatement _insert_audit_pstmt;

 // ... }

The CustEmpScripts constructor sets up all the prepared statements for the authenticateUser method. It sets
up member data.

public CustEmpScripts(DBConnectionContext cc) throws SQLException { try {
 _conn_context = cc;
 _sync_connection = _conn_context.getConnection();
 ServerContext serv_context =
 _conn_context.getServerContext();
 _audit_connection = serv_context.makeConnection();
 // Get the prepared statements ready.
 _get_user_id_pstmt =
 _audit_connection.prepareStatement(
 "select user_id from ml_user where name = ?"
);
 _insert_login_pstmt =
 _audit_connection.prepareStatement(
 "INSERT INTO login_added(ml_user, add_time) "
 + "VALUES (?, { fn CONVERT({ fn NOW() }, SQL_VARCHAR) })"
);
 _insert_audit_pstmt =
 _audit_connection.prepareStatement(
 "INSERT INTO login_audit(ml_user_id, audit_time, audit_action) "
 + "VALUES (?, { fn CONVERT({ fn NOW() }, SQL_VARCHAR) }, ?)"
);
 }
 catch(SQLException e) {
 freeJDBCResources();
 throw e;
 }
 catch(Error e) {
 freeJDBCResources();
 throw e;
 } }

The finalize method cleans up JDBC resources if end_connection is not called. It calls the freeJDBCResources
method, which frees allocated memory and closes the audit connection.

protected void finalize() throws SQLException, Throwable { super.finalize();
 freeJDBCResources();
}
private void freeJDBCResources() throws SQLException {
 if (_get_user_id_pstmt != null) {
 _get_user_id_pstmt.close();
 }
 if (_insert_login_pstmt != null) {
 _insert_login_pstmt.close();
 }
 if (_insert_audit_pstmt != null) {
 _insert_audit_pstmt.close();
 }
 if (_audit_connection != null) {
 _audit_connection.close();
 }
 _conn_context = null;
 _sync_connection = null;
 _audit_connection = null;
 _get_user_id_pstmt = null;

538 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 _insert_login_pstmt = null;
 _insert_audit_pstmt = null; }

The endConnection method cleans up resources once the resources are not needed.

public void endConnection() throws SQLException { freeJDBCResources(); }

The authenticateUser method below approves all user logins and logs user information to database tables. If
the user is not in the ml_user table they are logged to login_added. If the user id is found in ml_user then they
are logged to login_audit. In a real system you would not ignore the user_password, but this sample approves
all users for simplicity. The endConnection method throws SQLException if any of the database operations fail
with an exception.

public void authenticateUser(InOutInteger authentication_status,
 String user_name) throws SQLException
{
 boolean new_user;
 int user_id;
 // Get ml_user id.
 _get_user_id_pstmt.setString(1, user_name);
 ResultSet user_id_rs =
 _get_user_id_pstmt.executeQuery();
 new_user = !user_id_rs.next();
 if (!new_user) {
 user_id = user_id_rs.getInt(1);
 }
 else {
 user_id = 0;
 }

 user_id_rs.close();
 user_id_rs = null;
 // In this tutorial always allow the login.
 authentication_status.setValue(1000);

 if (new_user) {
 _insert_login_pstmt.setString(1, user_name);
 _insert_login_pstmt.executeUpdate();
 java.lang.System.out.println("user: " + user_name + " added. ");
 }
 else {
 _insert_audit_pstmt.setInt(1, user_id);
 _insert_audit_pstmt.setString(2, "LOGIN ALLOWED");
 _insert_audit_pstmt.executeUpdate();
 }
 _audit_connection.commit();
 return; }

The following methods use SQL statements to act as cursors on the database tables. Since these are cursor
scripts, they must return a SQL string.

public static String empUploadInsertStmt() { return("INSERT INTO emp(emp_id, emp_name) VALUES(?, ?)");
}
public static String empUploadDeleteStmt() {
 return("DELETE FROM emp WHERE emp_id = ?");
}
public static String empUploadUpdateStmt() {
 return("UPDATE emp SET emp_name = ? WHERE emp_id = ?");

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 539

}
public static String empDownloadCursor() {
 return("SELECT emp_id, emp_name FROM emp");
}
public static String custUploadInsertStmt() {
 return("INSERT INTO cust(cust_id, emp_id, cust_name) VALUES (?, ?, ?)");
}
public static String custUploadDeleteStmt() {
 return("DELETE FROM cust WHERE cust_id = ?");
}
public static String custUploadUpdateStmt() {
 return("UPDATE cust SET emp_id = ?, cust_name = ? WHERE cust_id = ?");
}
public static String custDownloadCursor() {
 return("SELECT cust_id, emp_id, cust_name FROM cust"); }

Use the following command to compile the code:

javac -cp %sqlany17%\java\mlscript.jar CustEmpScripts.java

Run the MobiLink server with the location of CustEmpScripts.class in the classpath. The following is a partial
command line:

mlsrv17 ... -sl java (-cp <class_location>)

Related Information

Setting up Java Synchronization Logic [page 526]
MobiLink Server Java API Reference

1.13.2 MobiLink Server Java API Reference

MobiLink server Java API topics explain interfaces and classes, and their associated methods and
constructors. To use these classes, reference the mlscript.jar assembly, located in %SQLANY17%\java\.

Package

com.sap.ml.script

The MobiLink server Java API reference is available in the MobiLink - Java API Reference at https://
help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/LATEST/en-US.

540 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html
https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/LATEST/en-US
https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/LATEST/en-US

Related Information

MobiLink Server Java API Reference

1.13.3 Synchronization Scripts in Microsoft .NET

MobiLink supports Microsoft Visual Studio programming languages for writing synchronization scripts.

To write MobiLink scripts targeting the Microsoft .NET Framework, you can use any language that lets you
create valid Microsoft .NET assemblies. In particular, the following languages are tested and documented:

• Microsoft Visual C#
• Microsoft Visual Basic
• Microsoft Visual C++

Synchronization logic written in a Microsoft .NET language can operate in the same manner as logic written in
SQL: on the occurrence of an event, the MobiLink server can make a call to a user-defined method, instead of
running a SQL script. The method can return a SQL string to MobiLink.

In this section:

Implementing Synchronization Scripts in .NET [page 542]
When you implement synchronization scripts in .NET, you must tell MobiLink where to find the
packages, classes, and methods that are contained in your assemblies.

.NET Synchronization Logic [page 544]
To write .NET synchronization logic, you require knowledge of MobiLink events, some knowledge
of .NET, and familiarity with the MobiLink server API for .NET.

.NET Synchronization Techniques [page 553]
There are techniques you can use to tackle common .NET synchronization tasks.

.NET Assembly Loading [page 553]
A .NET assembly is a package of types, metadata, and executable code. In .NET applications, all code
must be in an assembly. Assembly files have the extension .dll or .exe.

.NET Synchronization Example [page 556]
This example modifies an existing application to describe how to use .NET synchronization logic to
handle the authenticate_user event. It creates a C# script for authenticate_user called AuthUser.cs.
This script looks up the user's password in a table called user_pwd_table and authenticates the user
based on that password.

Related Information

Options for Writing Server-side Synchronization Logic
Synchronization Scripts [page 288]
MobiLink Server .NET API Reference [page 557]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 541

https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html
https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bcd7226ce210149045b3c43c351444.html

1.13.3.1 Implementing Synchronization Scripts in .NET

When you implement synchronization scripts in .NET, you must tell MobiLink where to find the packages,
classes, and methods that are contained in your assemblies.

Procedure

1. Create your own class or classes. Write a method for each required synchronization event. These methods
must be public.

Each class with non-static methods should have a public constructor. The MobiLink server automatically
instantiates each class the first time a method in that class is called for a connection.

2. Create one or more assemblies. While compiling, reference Sap.MobiLink.Script.dll, which contains
a repository of MobiLink server API classes to use in your own .NET methods.
Sap.MobiLink.Script.dll is located in %SQLANY17%\Assembly\V3.5.

You can compile your class on the command line, or using Microsoft Visual Studio or another .NET
development environment.

3. Compile your project.

For example, compile from Microsoft Visual Studio as follows:

a. On the VS.NET Project menu, click Add Existing Item.
b. Locate Sap.MobiLink.Script.dll.

In the Open list, click Link File.

 Note
For Microsoft Visual Studio, always use the Link File method. Do not use the Add Reference option
to reference Sap.MobiLink.Script.dll. The Add Reference option duplicates
Sap.MobiLink.Script.dll in the same physical directory as your class assembly, creating
problems for the MobiLink server.

c. Use the Build menu to build your assembly.

You can also compile from the command line, as follows:

Replace dll-path with the path to Sap.MobiLink.Script.dll. for example, in C#:

csc /out:dll-pathout.dll /target:library /reference:dll-
pathSap.MobiLink.Script.dll sync_v1.cs

4. In the MobiLink system tables in your consolidated database, specify the name of the package, class, and
method to call for each synchronization script. No more than one class is permitted per script version.

For example, you can add this information to the MobiLink system tables using the
ml_add_dnet_connection_script stored procedure or the ml_add_dnet_table_script stored procedure. The
following SQL statement, when run in a SQL Anywhere database, specifies that
myNamespace.myClass.myMethod should be run whenever the authenticate_user connection-level event
occurs.

CALL ml_add_dnet_connection_script(

542 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 'version1',
 'authenticate_user',
 'myNamespace.myClass.myMethod')

 Note
The fully qualified method name is case sensitive.

As a result of this procedure call, the script_language column of the ml_script system table contains the
word dnet. The script column contains the qualified name of a public .NET method.

You can also add this information using SQL Central.
5. Instruct the MobiLink server to load assemblies and start the CLR. You tell MobiLink where to locate these

assemblies using options in the mlsrv17 command line. There are two options to choose from:

Use -sl dnet (-MLAutoLoadPath)

This sets the given path to the application base directory and loads all the private assemblies within it.
This is usually the preferred option. For example, to load all assemblies located in dll-path, enter:

mlsrv17 -c "DSN=consolidated1" -sl dnet(-MLAutoLoadPath=dll-path)

When you use the -MLAutoLoadPath option you cannot specify a domain when entering the fully
qualified method name for the event script.
Use -sl dnet (-MLDomConfigFile)

This option requires a configuration file that contains domain and assembly settings. You should use
this option when you have shared assemblies, when you don't want to load all the assemblies in a
directory, or when for some other reason you need to use a configuration file.

 Note
You can use the -MLAutoLoadPath option or the -MLDomConfigFile option, but not both.

Results

The .NET synchronization logic is set up.

Related Information

.NET Methods [page 547]
Constructors [page 547]
Script Additions and Deletions [page 316]
.NET Assembly Loading [page 553]
MobiLink Server .NET API Reference [page 557]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_dnet_table_script System Procedure [page 592]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 543

-sl dnet mlsrv17 Option [page 82]

1.13.3.2 .NET Synchronization Logic

To write .NET synchronization logic, you require knowledge of MobiLink events, some knowledge of .NET, and
familiarity with the MobiLink server API for .NET.

.NET synchronization logic can be used to maintain state information, and implement logic around the upload
and download events. For example, a begin_synchronization script written in .NET could store the MobiLink
user name in a variable. Scripts called later in the synchronization process can access this variable. Also, you
can use .NET to access rows in the consolidated database, before or after they are committed.

Using .NET also reduces dependence on the consolidated database. Behavior is affected less by upgrading the
consolidated database to a new version or switching to a different database management system.

Direct Row Handling

You can use MobiLink direct row handling to communicate remote data to any central data source, application,
or web service. Direct row handling uses special classes in the MobiLink server APIs for Java or .NET for direct
access to synchronized data.

In this section:

Class Instances [page 545]
The MobiLink server instantiates your classes at the database connection level. When an event is
reached for which you have written a non-static .NET method, the MobiLink server automatically
instantiates the class, if it has not already done so on the present database connection.

Transactions [page 546]
The normal rules regarding transactions apply to .NET methods.

SQL-.NET Data Types [page 546]
The following table shows SQL data types and the corresponding .NET data types for MobiLink script
parameters.

Constructors [page 547]
The constructor of your class takes no parameters or takes one
Sap.MobiLink.Script.DBConnectionContext parameter.

.NET Methods [page 547]
In general, you implement one method for each synchronization event. These methods must be public.
If they are private, the MobiLink server cannot use them and fails to recognize that they exist.

User-Defined Start Classes in .NET [page 548]
You can define start classes that are loaded automatically when the server is started.

How to Print Information From .NET [page 550]
You may choose to add statements to your .NET methods that print information to the MobiLink log
using System.Console. Doing so can help you track the progress and behavior of your classes.

MobiLink Server Error Handling With .NET [page 550]

544 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

When scanning the log is not enough, you can monitor your applications programmatically. For
example, you can send messages of a certain type in an email.

Setting Break Points to Debug .NET Synchronization Logic [page 551]
The following procedure can be used to set break points so you can debug your .NET scripts using
Microsoft Visual Studio.

Debugging .NET Synchronization Logic [page 552]
The following procedure can be used to debug your .NET scripts using Microsoft Visual Studio.

Related Information

Direct Row Handling [page 558]
MobiLink Server .NET API Reference [page 557]

1.13.3.2.1 Class Instances

The MobiLink server instantiates your classes at the database connection level. When an event is reached for
which you have written a non-static .NET method, the MobiLink server automatically instantiates the class, if it
has not already done so on the present database connection.

 Note
All methods directly associated with a connection-level or table-level event for one script version must
belong to the same class.

For each database connection, once a class has been instantiated, the class persists until that connection is
closed. So, the same instance might be used for multiple consecutive synchronization sessions. Unless it is
explicitly cleared, information present in public or private variables persists across synchronizations that occur
on the same connection.

You can also use static classes or variables. In this case, the values are available across all connections in the
same domain.

The MobiLink server automatically deletes your class instances only when the connection to the consolidated
database is closed.

Related Information

Constructors [page 547]
MobiLink Server .NET API Reference [page 557]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 545

1.13.3.2.2 Transactions

The normal rules regarding transactions apply to .NET methods.

The start and duration of database transactions is critical to the synchronization process. Transactions must
be started and ended only by the MobiLink server. Explicitly committing or rolling back transactions on the
synchronization connection within a .NET method violates the integrity of the synchronization process and can
cause errors.

These rules apply only to the database connections created by the MobiLink server and, in particular, to SQL
statements returned by methods.

Related Information

MobiLink Server .NET API Reference [page 557]

1.13.3.2.3 SQL-.NET Data Types

The following table shows SQL data types and the corresponding .NET data types for MobiLink script
parameters.

SQL data type Corresponding .NET data type

VARCHAR string

CHAR string

INTEGER int

BIGINT long

BINARY byte []

TIMESTAMP DateTime

INOUT INTEGER ref int

INOUT VARCHAR ref string

INOUT CHAR ref string

INOUT BYTEARRAY ref byte []

INOUT TIMESTAMP ref DateTime

546 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

MobiLink Server .NET API Reference [page 557]

1.13.3.2.4 Constructors

The constructor of your class takes no parameters or takes one Sap.MobiLink.Script.DBConnectionContext
parameter.

For example:

public ExampleClass(Sap.MobiLink.Script.DBConnectionContext cc)

or

public ExampleClass()

The synchronization context passed to you is for the connection through which the MobiLink server is
synchronizing the current user.

The DBConnectionContext.GetConnection method returns the same database connection that MobiLink is
using to synchronize the present user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink server manages the transactions.

The MobiLink server uses the constructor that takes an Sap.MobiLink.Script.DBConnectionContext parameter
if it exists. If it does not, it uses the void constructor.

Related Information

MobiLink Server .NET API Reference [page 557]

1.13.3.2.5 .NET Methods

In general, you implement one method for each synchronization event. These methods must be public. If they
are private, the MobiLink server cannot use them and fails to recognize that they exist.

The names of the methods are not important, as long as the names match the names specified in the ml_script
table in the consolidated database. In the examples included in the documentation, however, the method
names are the same as those of the MobiLink events. This naming convention makes the .NET code easier to
read.

The signature of your method should match the signature of the script for that event, except that you can
truncate the parameter list if you do not need the values of parameters at the end of the list. You should accept
only the parameters you need, because overhead is associated with passing the parameters.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 547

You cannot, however, overload the methods. Only one method prototype per class may appear in the ml_script
system table.

All methods from all events must return void.

Related Information

MobiLink Server .NET API Reference [page 557]

1.13.3.2.6 User-Defined Start Classes in .NET

You can define start classes that are loaded automatically when the server is started.

The purpose of this feature is to allow you to write .NET code that executes at the time the MobiLink server
starts the CLR, before the first synchronization. This means you can create connections or cache data before
the first user synchronization request in the server instance.

You do this with the MLStartClasses option of the mlsrv17 -sl dnet option. For example, the following is part of
an mlsrv17 command line. It causes mycl1 and mycl2 to be loaded as start classes.

-sl dnet(-MLStartClasses=MyNameSpace.MyClass.mycl1,MyNameSpace.MyClass.mycl2)

Classes are loaded in the order in which they are listed. If the same class is listed more than once, more than
one instance is created.

All start classes must be public and must have a public constructor that either accepts no arguments or
accepts one argument of type MobiLink.Script.ServerContext.

The names of loaded start classes are output to the MobiLink log with the message "Loaded .NET start class:
classname".

Use the GetStartClassInstances method to see the start classes that are constructed at server start time.

Example

The following is a start class template. It starts a daemon thread that processes events and creates a database
connection. (Not all start classes need to create a thread but if a thread is spawned it should be a daemon
thread.)

using System; using System.IO;
using System.Threading;
using Sap.MobiLink.Script;
namespace TestScripts {
 public class MyStartClass {
 ServerContext _sc;
 bool _exit_loop;
 Thread _thread;
 OdbcConnection _conn;

548 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 public MyStartClass(ServerContext sc) {
 // Perform setup first so that an exception
 // causes MobiLink startup to fail.
 _sc = sc;
 // Create connection for use later.
 _conn = _sc.makeConnection();
 _exit_loop = false;
 _thread = new Thread(new ThreadStart(run)) ;
 _thread.IsBackground = true;
 _thread.Start();
 }
 public void run() {
 ShutdownCallback callback = new ShutdownCallback(shutdownPerformed);
 _sc.ShutdownListener += callback;
 // run() can't throw exceptions.
 try {
 handlerLoop();
 _conn.close();
 _conn = null;
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 Console.Error.Write(e.ToString());

 // There is no need to be notified of shutdown.
 _sc.ShutdownListener -= callback;
 // Ask server to shut down so this fatal error can be fixed.
 _sc.Shutdown();
 }
 // Shortly after return, this thread no longer exists.
 return;
 }
 public void shutdownPerformed(ServerContext sc) {
 // Stop the event handler loop.
 try {
 _exit_loop = true;

 // Wait a maximum of 10 seconds for thread to die.
 _thread.Join(10*1000);
 }
 catch(Exception e) {
 // Print some error output to the MobiLink log.
 Console.Error.Write(e.ToString());
 }
 }
 private void handlerLoop() {
 while (!_exit_loop) {
 // Handle events in this loop.
 Thread.Sleep(1*1000);
 }
 }
 } }

Related Information

-sl dnet mlsrv17 Option [page 82]
MobiLink Server .NET API Reference [page 557]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 549

1.13.3.2.7 How to Print Information From .NET

You may choose to add statements to your .NET methods that print information to the MobiLink log using
System.Console. Doing so can help you track the progress and behavior of your classes.

 Note
Printing information in this manner to the MobiLink log is a useful monitoring tool, but is not recommended
in a production scenario.

The same technique can be exploited to log arbitrary synchronization information or collect statistical
information about how your scripts are used.

Related Information

MobiLink Server .NET API Reference [page 557]

1.13.3.2.8 MobiLink Server Error Handling With .NET

When scanning the log is not enough, you can monitor your applications programmatically. For example, you
can send messages of a certain type in an email.

You can write methods that are passed a class representing every error or warning message that is printed to
the log. This may help you monitor and audit a MobiLink server.

The following code installs a listener for all error messages and prints the information to a StreamWriter.

class TestLogListener { public TestLogListener(StreamWriter output_file) {
 _output_file = output_file;
 }
 public void errCallback(ServerContext sc, LogMessage lm) {
 string type;
 string user;

 if (lm.Type == LogMessage.MessageType.ERROR) {
 type = "ERROR";
 } else if (lm.Type==LogMessage.MessageType.WARNING) {
 type = "WARNING";
 }
 else {
 type = "INVALID TYPE!!";
 }
 if (lm.User == null) {
 user = "null";
 }
 else {
 user = lm.User;
 }
 _output_file.WriteLine("Caught msg type=" + type
 + " user=" + user
 + " text=" + lm.Text);
 _output_file.Flush();

550 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 }
 StreamWriter _output_file; }

The following code registers the TestLogListener. Call this code from somewhere that has access to the
ServerContext such as a class constructor or synchronization script.

// ServerContext serv_context; TestLogListener errtll = new TestLogListener(log_listener_file); serv_context.ErrorListener += new LogCallback(errtll.errCallback);

Related Information

MobiLink Server .NET API Reference [page 557]

1.13.3.2.9 Setting Break Points to Debug .NET
Synchronization Logic

The following procedure can be used to set break points so you can debug your .NET scripts using Microsoft
Visual Studio.

Procedure

1. Start Microsoft Visual Studio.

2. Click Tools Attach to Process .
3. In the Available Processes control, select mlsrv17.exe and then press Attach.
4. Set your break points.
5. Start a synchronization.

Results

The script can be debugged.

Related Information

-sl dnet mlsrv17 Option [page 82]
MobiLink Server .NET API Reference [page 557]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 551

1.13.3.2.10 Debugging .NET Synchronization Logic

The following procedure can be used to debug your .NET scripts using Microsoft Visual Studio.

Procedure

1. Compile your code with debugging information turned on using one of the following methods:

• On the csc command line, set the /debug+ option.
• Use Microsoft Visual Studio settings to set debug output.

• Click Build Configuration Manager .
In the Active Solution Configuration list, click Debug.

• Build your assembly.
2. Close running instances of Microsoft Visual Studio that contain your source files.
3. In this step, you start a new Microsoft Visual Studio instance to debug the MobiLink server and your .NET

synchronization scripts. Start Microsoft Visual Studio using a command line option to debug the MobiLink
server.

• At a command prompt, navigate to the Common7\IDE subdirectory of your Microsoft Visual Studio
installation.

• Start devenv (the Microsoft Visual Studio IDE) using the /debugexe option.
For example, run the following command to debug the MobiLink server. Remember to specify mlsrv17
options, including the connection string and the option to load .NET assemblies.
For 32-bit Windows environments:

devenv /debugexe %sqlany17%\bin32\mlsrv17.exe -c ...

For 64-bit Windows environments:

devenv /debugexe %sqlany17%\bin64\mlsrv17.exe -c ...

Microsoft Visual Studio starts and mlsrv17.exe appears in the Solution Explorer window.

4. Set up Microsoft Visual Studio for debugging .NET code:

• In the Microsoft Visual Studio Solution Explorer window, right-click mlsrv17.exe and choose
Properties.

• Change Debugger Type from Auto to Mixed or Managed Only to ensure that Microsoft Visual Studio
only debugs your .NET synchronization scripts. In Microsoft Visual Studio 2010, change Debugger
Type to Managed(v2.0, v1.1, v1.0) or Managed v4.0, depending on the assembly version used by the
MobiLink server.

 Note
To use the v4.0 assemblies, you must explicitly include the -clrVersion option when you load the
MobiLink server.

5. Open the associated .NET source files and set break points.

Open the source files individually in the mlsrv17 solution. Do not open the original solution or project file.

552 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

6. Start MobiLink from the Debug menu or by pressing F5.

If prompted, save mlsrv17.sln.

If the No Symbolic Information window appears, click OK to debug anyway. You are debugging the
managed .NET synchronization scripts that MobiLink calls, not the MobiLink server itself.

7. Perform a synchronization that causes the code with a breakpoint to be executed by MobiLink.

Results

The script can be debugged.

Related Information

-sl dnet mlsrv17 Option [page 82]
MobiLink Server .NET API Reference [page 557]

1.13.3.3 .NET Synchronization Techniques

There are techniques you can use to tackle common .NET synchronization tasks.

To upload or download rows via .NET, use direct row handling.

Related Information

Direct Row Handling [page 558]
MobiLink Server .NET API Reference [page 557]

1.13.3.4 .NET Assembly Loading

A .NET assembly is a package of types, metadata, and executable code. In .NET applications, all code must be
in an assembly. Assembly files have the extension .dll or .exe.

There are the following types of assemblies:

Private assemblies

A private assembly is a file in the file system.
Shared assemblies

A shared assembly is an assembly that is installed in the global assembly cache.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 553

Before MobiLink can load a class and call a method of that class, it must locate the assembly that contains the
class. MobiLink only needs to locate the assembly that it calls directly. The assembly can then call any other
assemblies it needs.

For example, MobiLink calls MyAssembly, and MyAssembly calls UtilityAssembly and
NetworkingUtilsAssembly. In this situation, MobiLink only needs to be configured to find MyAssembly.

MobiLink provides the following ways to load assemblies:

Use -sl dnet (-MLAutoLoadPath)

This option only works with private assemblies. It sets the path to the application base directory and loads
all the assemblies within it.

When you use the -MLAutoLoadPath option you cannot specify a domain when entering the fully qualified
method name for the event script.

When you specify a path and directory with -MLAutoLoadPath, MobiLink does the following:

• sets this path as the application base path
• loads all classes in all files ending with .dll or .exe in the directory that you specified
• creates one application domain and loads into that domain all user classes that do not have a domain

specified

Assemblies in the global assembly cache cannot be called directly with this option. To call these shared
assemblies, use -MLDomConfigFile.
Use -sl dnet (-MLDomConfigFile)

This option works with both private and shared assemblies. It requires a configuration file that contains
domain and assembly settings. You should use this option when you have shared assemblies, when you
don't want to load all the assemblies in the application base path, or when for some other reason you need
to use a configuration file.

With this option, MobiLink reads the settings in the specified domain configuration file. A domain
configuration file contains configuration settings for one or more .NET domains. If there is more than one
domain represented in the file, the first one that is specified is used as the default domain. (The default
domain is used when scripts do not have a domain specified.)

When loading assemblies, MobiLink tries to load the assembly first as private, and then attempts to load
the assembly from the global assembly cache. Private assemblies must be located in the application base
directory. Shared assemblies are loaded from the global assembly cache.

With the -MLDomConfigFile option, only assemblies that are specified in the domain configuration file can be
called directly from event scripts.

Sample Domain Configuration File

A sample domain configuration file called mlDomConfig.xml is installed with MobiLink. You can write your
own file from scratch, or edit the sample to suit your needs. The sample file is located in the SQL Anywhere
path, in

MobiLink\setup\dnet\mlDomConfig.xml

554 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The following is the content of the sample domain configuration file mlDomConfig.xml:

<?xml version="1.0" encoding="utf-8"?> <config xmlns="Sap.MobiLink.mlDomConfig"
xsi:schemaLocation='Sap.MobiLink.mlDomConfig mlDomConfig.xsd' xmlns:xsi='http://
www.w3.org/2001/XMLSchema-instance' >
 <domain>
 <name>SampleDomain1</name>
 <appBase>C:\scriptsDir</appBase>
 <configFile></configFile>
 <assembly name="Assembly1" />
 <assembly name="Assembly2" />
 </domain>
 <domain>
 <name>SampleDomain2</name>
 <appBase>\Dom2assembly</appBase>
 <configFile>\Dom2assembly\AssemblyRedirects.config</configFile>
 <assembly name="Assembly3" />
 <assembly name="Assembly4" />
 </domain> </config>

The following is an explanation of the contents of mlDomConfig.xml:

name

is the domain name, used when specifying the domain in an event script. An event script with the format
"DomainName:Namespace.Class.Method" would require that the DomainName domain be in the
domain configuration file.

You must specify at least one domain name.
appBase

is the directory that the domain should use as its application base directory. All private assemblies are
loaded by the .NET CLR based on this directory. You must specify appBase.
configFile

is the .NET application configuration file that should be used for the domain. This can be left blank. It is
usually used to modify the default assembly binding and loading behavior. Refer to your .NET
documentation for more information about application configuration files.
assembly

is the name of an assembly that MobiLink should load and search when resolving type references in event
scripts. You must specify at least one assembly. If an assembly is used in more than one domain, it must be
specified as an assembly in each domain. If the assembly is private, it must be in the application base
directory for the domain.

Related Information

Recommended ODBC Drivers For MobiLink
-sl dnet mlsrv17 Option [page 82]
MobiLink Server .NET API Reference [page 557]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 555

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-63337

1.13.3.5 .NET Synchronization Example

This example modifies an existing application to describe how to use .NET synchronization logic to handle the
authenticate_user event. It creates a C# script for authenticate_user called AuthUser.cs. This script looks up
the user's password in a table called user_pwd_table and authenticates the user based on that password.

1. Add the table user_pwd_table to the database. Execute the following SQL statements in Interactive SQL:

CREATE TABLE user_pwd_table (user_name varchar(128) PRIMARY KEY NOT NULL,
 pwd varchar(128))

2. Add a user and password to the table:

INSERT INTO user_pwd_table VALUES('user1', 'myPwd')

3. Create a directory for your .NET assembly. For example, c:\mlexample.
4. Create a file called AuthUser.cs with the following contents:

using System; using Sap.MobiLink.Script;
namespace MLExample {

public class AuthClass {
 private DBConnection _conn;
 /// AuthClass constructor.
 public AuthClass(DBConnectionContext cc) {
 _conn = cc.GetConnection();
 }
 /// The DoAuthenticate method handles the 'authenticate_user'
 /// event.
 /// Note: This method does not handle password changes for
 /// advanced authorization status codes.
 public void DoAuthenticate(
 ref int authStatus,
 string user,
 string pwd,
 string newPwd)
 {
 DBCommand pwd_command = _conn.CreateCommand();
 pwd_command.CommandText = "select pwd from user_pwd_table"
 + " where user_name = ? ";
 pwd_command.Prepare();
 // Add a parameter for the user name.
 DBParameter user_param = new DBParameter();
 user_param.DbType = SQLType.SQL_CHAR;
 // Set the size for SQL_VARCHAR.
 user_param.Size = (uint) user.Length;
 user_param.Value = user;
 pwd_command.Parameters.Add(user_param);
 // Fetch the password for this user.
 DBRowReader rr = pwd_command.ExecuteReader();
 object[] pwd_row = rr.NextRow();
 if (pwd_row == null) {
 // User is unknown.
 authStatus = 4000;
 }
 else {
 if (((string) pwd_row[0]) == pwd) {
 // Password matched.
 authStatus = 1000;
 }
 else {

556 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

 // Password did not match.
 authStatus = 4000;
 }
 }
 pwd_command.Close();
 rr.Close();
 return;
 } }

The MLExample.AuthClass.DoAuthenticate method handles the authenticate_user event. It accepts the
user name and password and returns an authorization status code indicating the success or failure of the
validation.

5. Compile the file AuthUser.cs. You can do this on the command line or in Microsoft Visual Studio.
For example, the following command line compiles AuthUser.cs and generate an Assembly named
example.dll in c:\mlexample.

csc /out:c:\mlexample\example.dll /target:library /reference:"%SQLANY17%
\Assembly\V3.5\Sap.MobiLink.Script.dll" AuthUser.cs

6. Register .NET code for the authenticate_user event. The method you need to execute (DoAuthenticate) is
in the namespace MLExample and class AuthClass. Execute the following SQL:

CALL ml_add_dnet_connection_script('ex_version', 'authenticate_user',
'MLExample.AuthClass.DoAuthenticate'); COMMIT

7. Run the MobiLink server with the following option. This option causes MobiLink to load all assemblies in c:
\myexample:

-sl dnet (-MLAutoLoadPath=c:\mlexample)

Now, when a user synchronizes with the version ex_version, they are authenticated with the password from the
table user_pwd_table.

Related Information

authenticate_user Connection Event [page 354]
MobiLink Server .NET API Reference [page 557]

1.13.4 MobiLink Server .NET API Reference

The MobiLink .NET API topics explain interfaces and classes, and their associated methods, properties, and
constructors.

Namespace

Sap.MobiLink.Script

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 557

Remarks

To use these classes, reference the Sap.MobiLink.Script.dll assembly, located in %SQLANY17%
\Assembly\V3.5.

The MobiLink server .NET API reference is available in the MobiLink - .NET API Reference at https://
help.sap.com/viewer/935ac449a8764285843c9cb0012d5f05/LATEST/en-US.

Related Information

MobiLink Server Java API Reference

1.13.5 Direct Row Handling
Direct row handling is an advanced MobiLink feature. To use it, you must have a thorough understanding of how
to create a MobiLink application and how to use the MobiLink APIs.

MobiLink supports two ways to handle rows: SQL and direct. You can use them separately or together.

SQL row handling

allows you to synchronize remote data to a supported consolidated database. SQL-based events provide a
robust interface for conflict resolution and other synchronization tasks. You can use SQL directly or you
can return SQL using the MobiLink server APIs for Java and .NET.
Direct row handling

allows you to synchronize remote data with any central data source. Direct row handling allows you to
access raw synchronized data using special MobiLink events and the MobiLink server APIs for Java
and .NET.

The data sources you can synchronize can be virtually anything, including an application, web server, web
service, application server, text file, spreadsheet, non-relational database, or an RDBMS that cannot be
used as a consolidated database. You still need a consolidated database to store your MobiLink system
tables, and many implementations of direct row handling synchronizes to both the consolidated database
and another data source.

To use direct row handling, you need familiarity with how to create a MobiLink consolidated database, add
synchronization scripts, and create MobiLink remote users.

The following diagram shows the basic MobiLink architecture:

558 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/935ac449a8764285843c9cb0012d5f05/LATEST/en-US
https://help.sap.com/viewer/935ac449a8764285843c9cb0012d5f05/LATEST/en-US
https://help.sap.com/viewer/c2c7ac13c75942d183ab7e8f6b459eda/17.0.01/en-US/81c191be6ce210149fd491b6c6509d02.html

In this section:

The Components of Direct Row Handling [page 559]
To implement direct row handling, you can use two synchronization events along with several interfaces
and methods in the MobiLink server APIs for Java and .NET.

Direct Row Handling Setup [page 560]
To use direct row handling, you need familiarity with how to create a MobiLink consolidated database,
add synchronization scripts, and create MobiLink remote users.

Development Tips for Direct Row Handling [page 561]
Keep the following tips in mind when working with direct row handling.

Direct Uploads [page 563]
Following is an overview of how to handle direct uploads.

Direct Upload Conflicts [page 564]
When a MobiLink client sends an updated row to the MobiLink server, it includes not only the updated
values (the post-image or new row), but also a copy of the old row values (the pre-image or old row)
obtained in the last synchronization with the MobiLink server.

Direct Downloads [page 568]
Following is an overview of how to handle direct downloads.

1.13.5.1 The Components of Direct Row Handling

To implement direct row handling, you can use two synchronization events along with several interfaces and
methods in the MobiLink server APIs for Java and .NET.

Direct Synchronization Events

Direct row handling allows you to directly access the upload stream and download stream. You do this by
writing Java or .NET methods for the handle_UploadData and handle_DownloadData synchronization events.

handle_UploadData

accepts a single UploadData parameter that encapsulates operations uploaded by a MobiLink client for a
single upload transaction.
handle_DownloadData

allows you to set download operations using the DownloadData interface.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 559

Components of the MobiLink Server API for Direct Row Handling

For the Java API:

• DBConnectionContext.getDownloadData
• DownloadData interface
• DownloadTableData interface
• UpdateResultSet interface
• UploadData interface
• UploadedTableData interface

For the .NET API:

• DBConnectionContext.GetDownloadData method
• DownloadData interface
• DownloadTableData interface
• UpdateDataReader interface
• UploadedTableData interface
• UploadData interface

Related Information

Direct Uploads [page 563]
Direct Downloads [page 568]
handle_UploadData Connection Event [page 448]
handle_DownloadData Connection Event [page 437]

1.13.5.2 Direct Row Handling Setup

To use direct row handling, you need familiarity with how to create a MobiLink consolidated database, add
synchronization scripts, and create MobiLink remote users.

Following is an overview of how to synchronize with a data source other than a consolidated database.

1. Set up a consolidated database, if you do not already have one.
Whether you are synchronizing to a consolidated database, you need to have a consolidated database to
hold MobiLink system tables.

2. To handle uploads, write a public method using the UploadData interface and register it for the
handle_UploadData connection event.

3. To handle downloads, write a public method using the DownloadData interface and register it for the
handle_DownloadData connection event (or another event).

560 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

MobiLink Consolidated Databases [page 152]
Direct Uploads [page 563]
Direct Downloads [page 568]
Tutorial: Using Direct Row Handling
Setting up Java Synchronization Logic [page 526]
Implementing Synchronization Scripts in .NET [page 542]
SAP SQL Anywhere

1.13.5.3 Development Tips for Direct Row Handling

Keep the following tips in mind when working with direct row handling.

Unique Primary Keys

For MobiLink synchronization, including direct row handling, your data source must have unique primary keys
that are not updated. In a non-relational data source such as a spreadsheet or text file, one column must
contain unique, unchanging values that identify the row.

Column Names

The column names of tables are always sent from the client and can be used for direct row handling.
Alternatively, you can use column indexes to access row information, based on the column order sent up from
the remote database.

Use the Last Download Time for Downloads

If possible, set up your direct row handling application like a timestamp-based SQL application; maintain a
last_modified column and download data based on it. This method avoids unforeseen problems that could
occur if you use a different download methodology.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 561

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81bb33876ce21014b7388ab0452a9ec7.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fcommunity%2Fsql-anywhere

Transaction Management for Uploads

You cannot commit transactions with the MobiLink consolidated database. However, you can commit
transactions with your direct row handling data source. When setting up transaction management, keep the
following tips in mind:

Commit the upload before MobiLink commits

When applying an upload, MobiLink commits the changes at the end of the end_upload event. You should
make sure that all upload changes that you want to keep are committed before the end of your end_upload
script. Otherwise, if there is an error or failure you may get into a state in which your application thinks that
the upload is applied but MobiLink has not applied the data, which could result in lost data.
Handle redundant uploads

When an error or failure occurs after your application commits an uploaded row and before the MobiLink
server commits it, the MobiLink server and your data source may get in an inconsistent state. You can solve
this problem by allowing redundant uploads and having logic in place to make sure the redundant upload is
applied properly. In particular, when your application sends the upload a second time, it should not be
applied again.

Handle Errors

To handle errors, ensure you employ appropriate transaction management, as described above. In addition,
your Java or .NET code that handles rows must send any exception that occurs to the MobiLink server. If an
error occurs before the MobiLink server or your application has committed changes, MobiLink rollbacks the
transaction and maintains a consistent state with your application.

Class Instance

For direct row handling, MobiLink creates one class instance per database connection. The class instance is
not destroyed at the end of a synchronization: it is destroyed when the database connection is closed. Class
level variables retain values from previous synchronizations.

Related Information

Unique Primary Keys [page 126]
Implementing Timestamp-based Downloads [page 115]

562 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.13.5.4 Direct Uploads

Following is an overview of how to handle direct uploads.

1. Register a Java or .NET method for the handle_UploadData connection event.
2. Write a method for the handle_UploadData synchronization event. This event accepts one UploadData

parameter.

The handle_UploadData event is usually called once per synchronization. However, for SQL Anywhere clients
that use transaction-level uploads, there can be more than one upload per synchronization, in which case
handle_UploadData is called once per transaction.

To create a transactional upload, use the -tu dbmlsync option.

To register connection-level events, use:

• ml_add_java_connection_script system procedure
• ml_add_dnet_connection_script system procedure

Classes for Direct Uploads

The MobiLink server APIs for Java and .NET provide the following interfaces for handling direct uploads:

UploadData

Encapsulates a single upload transaction. An upload transaction contains a set of tables containing row
operations.
UploadedTableData

Encapsulates a table's insert, update, and delete operations uploaded by a MobiLink client. For Java,
UploadedTableData methods return an instance of an UpdateResultSet. For .NET, UploadedTableData
methods return an instance of an UpdateDataReader interface. You traverse the result set IDataReader to
process the uploaded row operations.
UpdateResultSet

For Java, this class represents an update result set returned by the UploadedTableData getUpdates
method. It extends java.sql.ResultSet to include special methods for retrieving the new and old versions of
an updated row.

For .NET, the UpdateDataReader interface represents a set of rows returned by the UploadedTableData
GetUpdates method. It extends IDataReader to include special methods for retrieving the new and old
versions of an updated row.

Example

For an example of how to handle direct uploads, see the handle_UploadData connection event.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 563

Related Information

Synchronization Script Writing in Java [page 526]
Synchronization Scripts in Microsoft .NET [page 541]
handle_UploadData Connection Event [page 448]
-tu dbmlsync Option
ml_add_java_connection_script System Procedure [page 593]
ml_add_dnet_connection_script System Procedure [page 591]

1.13.5.5 Direct Upload Conflicts

When a MobiLink client sends an updated row to the MobiLink server, it includes not only the updated values
(the post-image or new row), but also a copy of the old row values (the pre-image or old row) obtained in the
last synchronization with the MobiLink server.

When the pre-image row does not match the current values in your central data source, a conflict is detected.

SQL-Based Conflict Resolution

For SQL-based uploads, the MobiLink consolidated database is your central data source and MobiLink provides
special events for conflict detection and resolution.

Conflict Resolution With Direct Row Handling

For direct uploads, you can access new and old rows programmatically for conflict detection and resolution.

UpdateResultSet (returned by the UploadedTableData.getUpdates method) extends standard Java or .NET
result sets to include special methods for handling conflicts. setNewRowValues sets UpdateResultSet to return
new updated values from a remote client (the default mode). setOldRowValues sets UpdateResultSet to return
old row values.

Detecting Conflicts With Direct Row Handling

By using the UpdateResultSet method .setOldRowValues, you get the values of a row on the remote database
before it was changed. You compare the row values that are returned to the existing row values in your data
source. If the rows you compare are not equal, then a conflict exists.

564 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81af74856ce2101483b2badcda21c223.html

Resolving Conflicts With Direct Row Handling

Once you have detected a conflict during an upload, you can use custom business logic to resolve the conflict.
The resolution is handled by your Java or .NET code.

Example

Suppose you track inventory in an XML document and want to use it as your central data source. User1 uses
one of your remote databases called Remote1. User2 uses another remote database called Remote2.

Your XML document, User1, and User2 all start with an inventory of ten items. User1 sells three items and
updates the Remote1 inventory value to seven items. User2 sells four items and updates the Remote2
inventory to six items. When Remote1 synchronizes, the central database is updated to seven items. When
Remote2 synchronizes, a conflict is detected because the value of the inventory is no longer ten items. To
resolve this conflict programmatically, you need three row values:

• The current value in the central data source.
• The new row value that Remote2 uploaded.
• The old row value that Remote2 obtained during the last synchronization.

In this case, the business logic would use the following formula to calculate the new inventory value and resolve
the conflict:

current data source - (old remote - new remote) -> 7 - (10-6) = 3

The following procedures for Java and .NET demonstrate how you can resolve this conflict for direct uploads,
using the following table as an example:

CREATE TABLE remoteOrders (
 pk integer primary key not null,
 inventory integer not null);

Java

1. Register a Java method for the handle_UploadData connection event.
For example, the following stored procedure call registers a Java method called HandleUpload for the
handle_UploadData connection event when synchronizing the script version ver1. You run this stored
procedure against your MobiLink consolidated database.

call ml_add_java_connection_script('ver1', 'handle_UploadData', 'OrderProcessor.HandleUpload')

2. Obtain an UpdateResultSet for a table in the upload.
The OrderProcessor.HandleUpload method obtains an UpdateResultSet for the remoteOrders table:

// method for handle_UploadData event public void HandleUpload(UploadData u_data)
 {

 // Get UploadedTableData for the remoteOrders table.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 565

 UploadedTableData u_table =
u_data.getUploadedTableByName("remoteOrders");

 // Get an UpdateResultSet for the remoteOrders table.
 UpdateResultSet update_rs = u_table.getUpdates();
 // (Continued...)

3. For each update, get the current values in your central data source.
In this example, the UpdateResultSet getInt method returns an integer value for the primary key
column (the first column). You can implement and then use the getMyCentralData method to get data
from your central data source.

while(update_rs.next()) {
 // Get central data source values.
 // Get the primary key value.
 int pk_value = update_rs.getInt(1);
 // Get central data source values.
 int central_value = getMyCentralData(pk_value); // (Continued...)

4. For each update, get the old and new values uploaded by the MobiLink client.
The example uses the UpdateResultSet setOldRowValues and UpdateResultSet setNewRowValues for
old and new values, respectively.

 // Set mode for old row values. update_rs.setOldRowValues();
 // Get the _old_ stored value on the remote.
 int old_value = update_rs.getInt(2);
 // Set mode for new row values.
 update_rs.setNewRowValues();
 // Get the _new_ updated value on the remote.
 int new_value = update_rs.getInt(2); // (Continued...)

5. For each update, check for conflicts.
A conflict occurs when the old row value does not match the current value in the central data source.
To resolve the conflict, a resolved value is calculated using business logic. If no conflict occurs, the
central data source is updated with the new remote value. You can implement and then use the
setMyCentralData method to perform the update.

 // Check if there is a conflict. if(old_value == central_value)
 {
 // No conflict.
 setMyCentralData(pk_value, new_value);

 }
 else
 {
 // Handle the conflict.
 int inventory = old_value - new_value;
 int resolved_value = central_value - inventory;

 setMyCentralData(pk_value, resolved_value);
 } }

.NET

1. Register a method for the handle_UploadData connection event.

566 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

For example, the following stored procedure call registers a .NET method called HandleUpload for the
handle_UploadData connection event when synchronizing the script version ver1. You run this stored
procedure against your MobiLink consolidated database.

call ml_add_dnet_connection_script('ver1', 'handle_UploadData', 'MyScripts.OrderProcessor.HandleUpload')

2. Obtain an UpdateDataReader for a table in the upload.
The MyScripts.OrderProcessor.HandleUpload method obtains an UpdateResultSet for the
remoteOrders table:

// method for handle_UploadData event public void HandleUpload(UploadData u_data)
 {

 // Get UploadedTableData for the remoteOrders table.
 UploadedTableData u_table =
u_data.GetUploadedTableByName("remoteOrders");

 // Get an UpdateDataReader for the remoteOrders table.
 UpdateDataReader update_dr = u_table.GetUpdates();
 // (Continued...)

3. For each update, get the current values in your central data source.
In this example, the UpdateDataReader GetInt32 method returns an integer value for the primary key
column (the first column). You can implement and then use the getMyCentralData method to get data
from your central data source.

while(update_dr.Read()) {
 // Get central data source values.
 // Get the primary key value.
 int pk_value = update_dr.GetInt32(0);
 // Get central data source values.
 int central_value = getMyCentralData(pk_value); // (Continued...)

4. For each update, get the old and new values uploaded by the MobiLink client.
The example uses the UpdateResultSet setOldRowValues and UpdateResultSet setNewRowValues for
old and new values, respectively.

 // Set mode for old row values. update_dr.SetOldRowValues();
 // Get an _old_ value.
 int old_value = update_dr.GetInt32(1);
 // Set mode for new row values.
 update_dr.SetNewRowValues();
 // Get the _new_ updated value.
 int new_value = update_dr.GetInt32(1); // (Continued...)

5. For each update, check for conflicts.
A conflict occurs when the old row value does not match the current value in the central data source.
To resolve the conflict, a resolved value is calculated using business logic. If no conflict occurs, the
central data source is updated with the new remote value. You can implement and then use the
setMyCentralData method to perform the update.

 // Check if there is a conflict. if(old_value == central_value)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 567

 {
 // No conflict.
 setMyCentralData(pk_value, new_value);

 }
 else
 {
 // Handle the conflict.
 int inventory = old_value - new_value;
 int resolved_value = central_value - inventory;

 setMyCentralData(pk_value, resolved_value);
 } }

Related Information

Conflict Handling Overview [page 133]
Script Additions and Deletions [page 316]
handle_UploadData Connection Event [page 448]
ml_add_java_connection_script System Procedure [page 593]
ml_add_dnet_connection_script System Procedure [page 591]

1.13.5.6 Direct Downloads

Following is an overview of how to handle direct downloads.

1. Register a Java or .NET method for the handle_DownloadData connection event.
2. Write a method for the handle_DownloadData synchronization event. In this event you use an instance of

DBConnectionContext to get a DownloadData instance for the current synchronization.

You can create the entire direct download in the handle_DownloadData synchronization event. Alternatively,
you can use other synchronization events to set direct download operations. However, you must create a
handle_DownloadData script, even if its method does nothing. If you process the direct download in an event
other than handle_DownloadData, the event cannot be before begin_synchronization and cannot be after
end_download.

Classes for Direct Downloads

The MobiLink server APIs for Java and .NET provide the following classes for creating direct downloads:

DownloadData

Encapsulates download tables containing operations to send down to a remote client during
synchronization.
DownloadTableData

Encapsulates upsert (update and insert) and delete operations to download to a MobiLink client.

568 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

For Java, DownloadTableData methods return an instance of a JDBC PreparedStatement. In Java, you add
a row to the download by setting the prepared statement's column values and then executing the prepared
statement.

For .NET, DownloadTableData methods return an instance of a .NET IDbCommand. In .NET, you add a row
to the download by setting the command's column values and then executing the command.

Example

For an example of how to handle direct downloads, see the handle_DownloadData connection event.

Related Information

handle_DownloadData Connection Event [page 437]
MobiLink Complete Event Model [page 340]

1.14 MobiLink Reference

Many useful tools and resources are available to help you use MobiLink.

In this section:

MobiLink Replay C++ Callbacks [page 570]
A complete list of callbacks that can be generated by the mlgenreplayapi utility is included in the
mlreplaycallbacks.cpp file. These callbacks can be developed to customize the data uploaded to
the MobiLink server during a replay session using the mlreplay utility.

MobiLink Server System Procedures [page 582]
MobiLink provides the following stored procedures to help you create your applications.

MobiLink Utilities [page 647]
A set of utility programs are included with MobiLink server. Each of the utilities can be accessed from
one or more of SQL Central, Interactive SQL, or at a command prompt.

MobiLink Data Mappings Between Remote and Consolidated Databases [page 662]
Depending on the consolidated database you are using, the MobiLink server may map a specified data
type to a different data type.

Character Set Considerations [page 708]
Each character of text is represented in one or more bytes. The mapping from characters to binary
codes is called the character set encoding.

ODBC Drivers for MobiLink [page 710]
The MobiLink server can work with a variety of consolidated databases and ODBC drivers. Some
drivers, though compatible for use with MobiLink, may have functional restrictions associated with
their use.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 569

1.14.1 MobiLink Replay C++ Callbacks
A complete list of callbacks that can be generated by the mlgenreplayapi utility is included in the
mlreplaycallbacks.cpp file. These callbacks can be developed to customize the data uploaded to the
MobiLink server during a replay session using the mlreplay utility.

 Note
If callbacks are not used, you must wait for all simulated clients to be ready to replay before they can start
replaying. Simulated clients cannot perform the replay if any simulated client cannot be created or
initialized successfully.

In this section:

CreateAndInitMLReplayUploadTransaction Callback [page 571]
Used to create and initialize an upload transaction; called once initially, and then once per upload
transaction, per synchronization, per simulated client, and per repetition for all repetitions greater than
1.

DelayCreationOfSimulatedClient Callback [page 572]
Can be used to coordinate when each simulated client is created based on the given simulated client
number and the number of simulated clients.

DelayDestructionOfSimulatedClient Callback [page 573]
Can be used to coordinate when each simulated client is destroyed; called once per simulated client,
per mlreplay instance.

DelayStartOfReplay Callback [page 573]
Can be used to coordinate when replaying begins; called once per repetition, per simulated client per
mlreplay instance.

DestroyMLReplayUploadTransaction Callback [page 574]
Used to de-construct an upload transaction; called once initially after the first call to
CreateAndInitMLReplayUploadTransaction, then once per upload transaction, per synchronization, per
simulated client, and per repetition.

FiniIdentifySimulatedClient Callback [page 575]
Used to clean up memory used by the call to IdentifySimulatedClient for the given simulated client;
called once per simulated client.

GetDownloadApplyTime Callback [page 576]
Used to simulate slow devices; called once per download, per simulated client, and per repetition.

GetMLReplayAPIVersion Callback [page 577]
Used to return the replay API version.

GetUploadTransaction Callback [page 577]
Used to customize the rows uploaded to the MobiLink server during the replay session; called once per
upload transaction, per synchronization, per simulated client, and per repetition.

GlobalFini Callback [page 579]
Used to clean up any global variables used by the other callbacks; called once per mlreplay instance.

GlobalInit Callback [page 579]
Used to initialize any global variables used by the other callbacks; called once per mlreplay instance.

IdentifySimulatedClient Callback [page 580]

570 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Used to specify the simulated client information; called once per simulated client.

ReportEndOfReplay Callback [page 581]
Used to perform any actions required when a simulated client is finished replaying; called once per
simulated client, and per repetition.

Related Information

MobiLink Replay Utility (mlreplay) [page 651]

1.14.1.1 CreateAndInitMLReplayUploadTransaction Callback

Used to create and initialize an upload transaction; called once initially, and then once per upload transaction,
per synchronization, per simulated client, and per repetition for all repetitions greater than 1.

 Syntax

_MLREPLAY_EXPORT bool _MLREPLAY_CDECL CreateAndInitMLReplayUploadTransaction(IMLReplayUploadTransaction ** uploadTrans, const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

uploadTrans

An implementation of IMLReplayUploadTransaction that mlreplay uses to populate the replay session with
custom data.

mlrAPICallbacks

Callbacks to provide information from mlreplay.

Returns

True on success; returns false on error, which cancels the replay session.

Remarks

Do not modify this callback.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 571

1.14.1.2 DelayCreationOfSimulatedClient Callback

Can be used to coordinate when each simulated client is created based on the given simulated client number
and the number of simulated clients.

 Syntax

_MLREPLAY_EXPORT bool _MLREPLAY_CDECL DelayCreationOfSimulatedClient(asa_uint32 simulatedClientNum, const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

simulatedClientNum

The simulated client number (ordinal 1) used to distinguish this simulated client from other simulated
clients in the same mlreplay instance.
mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior

Returns

True if the specified simulated client is supposed to be created; returns false when the specified simulated
client is not created.

Remarks

Simulated client X is created under the following conditions:

• DelayCreationOfSimulatedClient returned for simulated clients 1, ..., X - 1.
• DelayCreationOfSimulatedClient(X, mlrAPICallbacks) returns true.

The simulated client is not created when this callback returns false and additional simulated clients are still
created. This callback is called once per simulated client per mlreplay instance.

572 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.1.3 DelayDestructionOfSimulatedClient Callback

Can be used to coordinate when each simulated client is destroyed; called once per simulated client, per
mlreplay instance.

 Syntax

_MLREPLAY_EXPORT bool _MLREPLAY_CDECL DelayDestructionOfSimulatedClient(asa_uint32 simulatedClientNum, const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

simulatedClientNum

The simulated client number (ordinal 1) used to distinguish this simulated client from other simulated
clients in the same mlreplay instance.
mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

Remarks

This callback can be called concurrently.

Simulated client, X, won't be destroyed until DelayDestructionOfSimulatedClient(X, mlrAPICallbacks)
returns.

1.14.1.4 DelayStartOfReplay Callback

Can be used to coordinate when replaying begins; called once per repetition, per simulated client per mlreplay
instance.

 Syntax

bool DelayStartOfReplay(asa_uint32 repetitionNum uint32 simulatedClientNum, const IMLReplayAPICallbacks * mlrAPICallbacks)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 573

Parameters

repetitionNum

The current repetition number.
simulatedClientNum

The simulated client number (ordinal 1) used to distinguish this simulated client from other simulated
clients in the same mlreplay instance.
mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

Returns

True to start replaying; false to skip the generation.

Remarks

This callback can be called concurrently.

If false is returned for repetition X, then the repetition is skipped.

1.14.1.5 DestroyMLReplayUploadTransaction Callback

Used to de-construct an upload transaction; called once initially after the first call to
CreateAndInitMLReplayUploadTransaction, then once per upload transaction, per synchronization, per
simulated client, and per repetition.

 Syntax

_MLREPLAY_EXPORT void _MLREPLAY_CDECL DestroyMLReplayUploadTransaction(IMLReplayUploadTransaction * uploadTrans)

Parameters

uploadTrans

An implementation of IMLReplayUploadTransaction that the mlreplay utility used to populate the replay
session with custom data.

574 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

Do not modify this callback.

1.14.1.6 FiniIdentifySimulatedClient Callback

Used to clean up memory used by the call to IdentifySimulatedClient for the given simulated client; called once
per simulated client.

 Syntax

_MLREPLAY_EXPORT void _MLREPLAY_CDECL FiniIdentifySimulatedClient(asa_uint32 simulatedClientNum, char * remoteID, char * username, char * password, char * scriptVersion, char ** authenticationParameters, asa_uint16 numAuthenticationParameters, char * ldt, const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

simulatedClientNum

The simulated client number (ordinal 1) used to distinguish this simulated client from other simulated
clients in the same mlreplay instance.
remoteID

The remote ID given by the call to IdentifySimulatedClient for the given simulated client.
username

The username given by the call to IdentifySimulatedClient for the given simulated client.
password

The password given by the call to IdentifySimulatedClient for the given simulated client.
scriptVersion

The script version given by the call to IdentifySimulatedClient for the given simulated client.
authenticationParameters

The authentication parameters given by the call to IdentifySimulatedClient for the given simulated client.
numAuthenticationParameters

The number of authentication parameters given by the call to IdentifySimulatedClient for the given
simulated client.
ldt

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 575

The last download time given by the call to IdentifySimulatedClient for the given simulated client.
mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

Remarks

When generated, this callback contains commented out code that you can implement when using a generic
username, password, and remote ID for a replay session. The code frees any used memory.

1.14.1.7 GetDownloadApplyTime Callback

Used to simulate slow devices; called once per download, per simulated client, and per repetition.

 Syntax

_MLREPLAY_EXPORT asa_uint32 _MLREPLAY_CDECL GetDownloadApplyTime(asa_uint32 repetitionNum, asa_uint32 simulatedClientNum, asa_uint32 recordedSyncNum, asa_uint32 recordedDownloadApplyTime, const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

repetitionNum

The current repetition number.
simulatedClientNum

The simulated client number (ordinal 1) used to distinguish this simulated client from other simulated
clients in the same mlreplay instance.
recordedSyncNum

The synchronization number (ordinal 1) within the recorded protocol.
recordedDownloadApplyTime

The recorded download apply time (in milliseconds).
mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

576 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Returns

The number of milliseconds it should take to apply the download.

Remarks

This callback can be called concurrently.

The mlreplay utility does a good job of estimating the download apply time for synchronizations that do not
occur in a persistent connection. For synchronizations that occur in a persistent connection, mlreplay cannot
accurately estimate the download apply time unless download acknowledgements are used.

1.14.1.8 GetMLReplayAPIVersion Callback

Used to return the replay API version.

 Syntax

_MLREPLAY_EXPORT asa_uint32 _MLREPLAY_CDECL GetMLReplayAPIVersion(void)

Remarks

This callback is called once per mlreplay instance and should not be modified.

1.14.1.9 GetUploadTransaction Callback

Used to customize the rows uploaded to the MobiLink server during the replay session; called once per upload
transaction, per synchronization, per simulated client, and per repetition.

 Note
The mlreplay utility tries to adjust the timing information based on the size of the new upload given by
GetUploadTransaction and the upload in the recorded protocol file. However, if timing is important, best
results are obtained if the total size of the rows added using GetUploadTransaction roughly match the size
of the rows uploaded in the original recorded synchronization. The easiest way to ensure the size is roughly
the same is to record a synchronization that uploads the same number of rows with similar data.

 Syntax

_MLREPLAY_EXPORT bool _MLREPLAY_CDECL GetUploadTransaction(

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 577

 asa_uint32 repetitionNum, asa_uint32 simulatedClientNum, asa_uint32 recordedSyncNum, asa_uint32 uploadTransNum, asa_uint32 numUploadedTrans, IMLReplayUploadTransaction * uploadTrans, const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

repetitionNum

The current repetition number.
simulatedClientNum

The simulated client number (ordinal 1) used to distinguish this simulated client from other simulated
clients in the same mlreplay instance.
recordedSyncNum

The synchronization number (ordinal 1) within the recorded protocol.
uploadTransNum

The transaction number (ordinal 1) within the given synchronization.
numUploadedTrans

The total number of upload transactions in the given synchronization.
uploadTrans

An output parameter that must be set with the upload operations for the current transaction.
mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

Returns

Returns true on success; false on error. If GetUploadTransaction fails prior to the first repetition, then the replay
session is canceled. If GetUploadTransaction fails prior to any repetition other than the first one, then only the
failing simulated client is terminated.

Remarks

It may be called several times based on the number of synchronization and upload transactions that appear
when the recorded protocol file is replayed.

This callback may be called concurrently but concurrent calls do not have a pointer to the same uploadTrans
object.

578 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.1.10 GlobalFini Callback

Used to clean up any global variables used by the other callbacks; called once per mlreplay instance.

 Syntax

_MLREPLAY_EXPORT void _MLREPLAY_CDECL GlobalFini(const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

1.14.1.11 GlobalInit Callback

Used to initialize any global variables used by the other callbacks; called once per mlreplay instance.

 Syntax

_MLREPLAY_EXPORT bool _MLREPLAY_CDECL GlobalInit(const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

Returns

True on success; false on error, which cancels the replay session.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 579

1.14.1.12 IdentifySimulatedClient Callback

Used to specify the simulated client information; called once per simulated client.

 Syntax

_MLREPLAY_EXPORT bool _MLREPLAY_CDECL IdentifySimulatedClient(asa_uint32 simulatedClientNum, char ** remoteID, char ** username, char ** password, char ** scriptVersion, char *** authenticationParameters, asa_uint16 * numAuthenticationParameters, char ** ldt, const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

simulatedClientNum

The simulated client number (ordinal 1) used to distinguish this simulated client from other simulated
clients in the same mlreplay instance.
remoteID

An output parameter that must be set to the remote ID of this simulated client, which must be a unique
value across all mlreplay instances.
username

An output parameter that must be set to the MobiLink username for this simulated client.
password

An output parameter that must be set to the password for the MobiLink user.
scriptVersion

An output parameter that must be set to the script version for the MobiLink user to use.
authenticationParameters

An output parameter that must be set to an array of authentication parameters for this simulated client.
numAuthenticationParameters

An output parameter set to the number of authentication parameters returned in
authenticationParameters.
ldt

An output parameter set to the last download time for the user. The format of ldt must be yyyy-MM-dd
hh:mm:ss.SSS.
mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

580 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Returns

True on success, false on error, which cancels the replay session.

Remarks

If the username, password, authenticationParameters, scriptVersion, or ldt are null, then mlreplay uses the
corresponding values in the recorded protocol. If remoteID is null, mlreplay replaces the remote ID with a GUID
for the simulated client.

When generated, this callback contains commented out code that you can implement when using a generic
username, password, and remote ID for a replay session. The code creates a username, password, and remote
ID of user_ simulated client number, pwd_ simulated client number, and rid_ simulated client
number, respectively.

1.14.1.13 ReportEndOfReplay Callback

Used to perform any actions required when a simulated client is finished replaying; called once per simulated
client, and per repetition.

 Syntax

_MLREPLAY_EXPORT bool _MLREPLAY_CDECL ReportEndOfReplay(asa_uint32 repetitionNum, asa_uint32 simulatedClientNum, bool success, const IMLReplayAPICallbacks * mlrAPICallbacks)

Parameters

repetitionNum

The current repetition number.
simulatedClientNum

The simulated client number (ordinal 1) used to distinguish this simulated client from other simulated
clients in the same mlreplay instance.
success

True when the simulated client completed successfully; otherwise, false.
mlrAPICallbacks

Callbacks to provide information from mlreplay that can be used to customize replay behavior.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 581

Returns

True on success; false on error.

Remarks

You can use this callback to ensure that data was uploaded correctly in repetition X.

This callback determines the result of the given replay. If success is false, then this callback has no affect on the
success of the replay. If success is true but this callback returns false, then mlreplay treats the simulated client
as if it failed for the specified repetition. This callback can be called concurrently.

1.14.2 MobiLink Server System Procedures

MobiLink provides the following stored procedures to help you create your applications.

 Note
This section does not apply to SAP HANA because SQL Central does not have a MobiLink plug-in for SAP
HANA.

 Note
Support for IBM DB2 consolidated databases is deprecated.

System Procedures to Add or Delete Scripts

You must add synchronization scripts to system tables in the consolidated database before you can use them.
The following system procedures add or delete synchronization scripts in the consolidated database:

• ml_add_connection_script system procedure
• ml_add_table_script system procedure
• ml_add_dnet_connection_script system procedure
• ml_add_dnet_table_script system procedure
• ml_add_java_connection_script system procedure
• ml_add_java_table_script system procedure

When you use the MobiLink server API for Java or .NET, you use these stored procedures to register a method
as the script for an event, so that the method is run when the event occurs. You can also use them to unregister
your methods.

When you add a script using a system procedure, the script is a string. Any strings within the script need to be
escaped. For SQL Anywhere, each quotation mark (') needs to be doubled so as not to terminate the string.

582 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

You cannot use system procedures to add scripts longer than 255 bytes to Adaptive Server Enterprise 11.5 or
earlier. Instead, use SQL Central or direct insertion to define longer scripts.

IBM DB2 LUW before version 6 only supports column names and other identifiers of 18 characters or less, and
so the names are truncated. For example, ml_add_connection_script is shortened to ml_add_connection_.

 Note
Support for IBM DB2 consolidated databases is deprecated.

System Procedures for Managing Remote Tasks

 Note
This section does not apply to SAP HANA because SQL Central does not have a MobiLink plug-in for SAP
HANA.

The following stored procedures can be used to manage remote tasks:

• ml_ra_add_agent_id system procedure
• ml_ra_assign_task system procedure
• ml_ra_cancel_notification system procedure
• ml_ra_cancel_task_instance system procedure
• ml_ra_clone_agent_properties system procedure
• ml_ra_delete_agent_id system procedure
• ml_ra_delete_events_before system procedure
• ml_ra_delete_remote_id system procedure
• ml_ra_delete_task system procedure
• ml_ra_get_agent_events system procedure
• ml_ra_get_agent_ids system procedure
• ml_ra_get_agent_properties system procedure
• ml_ra_get_latest_event_id system procedure
• ml_ra_get_orphan_taskdbs system procedure
• ml_ra_reassign_taskdb system procedure
• ml_ra_get_remote_ids system procedure
• ml_ra_get_task_results system procedure
• ml_ra_get_task_status system procedure
• ml_ra_manage_remote_db system procedure
• ml_ra_notify_agent_sync system procedure
• ml_ra_set_agent_property system procedure
• ml_ra_unmanage_remote_db system procedure

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 583

LDAP System Procedures

The following stored procedures can be used to setup and manage LDAP authentication:

• ml_add_certificates_file system procedure
• ml_add_ldap_server system procedure
• ml_add_user_auth_policy system procedure

Synchronization Model System Procedures

 Note
This section does not apply to SAP HANA because SQL Central does not have a MobiLink plug-in for SAP
HANA.

The following stored procedures can be used to manage schema upgrades:

• ml_model_drop system procedure
• ml_model_check_all_schema system procedure
• ml_model_check_version_schema system procedure

Other System Procedures

• ml_add_property system procedure
• ml_delete_sync_state_before system procedure
• ml_reset_sync_state system procedure

In this section:

ml_add_certificates_file System Procedure [page 587]
Set up trusted certificates when using TLS with LDAP authentication.

ml_add_column System Procedure (Deprecated) [page 588]
Register information about columns on remote databases for use by named column parameters.

ml_add_connection_script System Procedure [page 589]
Add or delete SQL connection scripts in the consolidated database.

ml_add_dnet_connection_script System Procedure [page 591]
Register or unregister a .NET method as the script for a connection event.

ml_add_dnet_table_script System Procedure [page 592]
Register or unregister a .NET method as the script for a table event.

ml_add_java_connection_script System Procedure [page 593]
Register or unregister a Java method as the script for a connection event.

ml_add_java_table_script System Procedure [page 595]

584 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Register or unregister a Java method as the script for a table event.

ml_add_lang_connection_script System Procedure [page 597]
This procedure is for internal use only.

ml_add_lang_connection_script_chk System Procedure [page 597]
This procedure is for internal use only.

ml_add_lang_table_script System Procedure [page 597]
This procedure is for internal use only.

ml_add_lang_table_script_chk System Procedure [page 598]
This procedure is for internal use only.

ml_add_ldap_server System Procedure [page 598]
Create, drop or update LDAP servers.

ml_add_missing_dnld_scripts System Procedure [page 600]
Define missing download_cursor and download_delete_cursor scripts as ignored scripts.

ml_add_passthrough System Procedure [page 600]
Identify remote databases that should execute a script. This procedure adds an entry to the
ml_passthrough system table. If an entry with the given remote_id and run_order already exists in the
table, this procedure updates the entry.

ml_add_passthrough_repair System Procedure [page 601]
Define rules for handling script errors.

ml_add_passthrough_script System Procedure [page 603]
Create a passthrough script. This procedure adds an entry to the ml_passthrough_script system table.

ml_add_property System Procedure [page 605]
Add or delete MobiLink properties. This system procedure changes rows in the ml_property system
table.

ml_add_table_script System Procedure [page 609]
Add or delete SQL table scripts in the consolidated database.

ml_add_user System Procedure [page 611]
This procedure is for internal use only.

ml_add_user_auth_policy System Procedure [page 611]
Add MobiLink user authentication policies.

ml_delete_passthrough System Procedure (Deprecated) [page 613]
Removes the row(s) in the ml_passthrough table that cause the specified script to be downloaded to
the specified remote database with the specified run order.

ml_delete_passthrough_repair System Procedure (Deprecated) [page 614]
Delete a repair rule from the ml_passthrough_repair system table.

ml_delete_passthrough_script System Procedure (Deprecated) [page 615]
Delete a passthrough script from the ml_passthrough_script system table.

ml_delete_sync_state System Procedure [page 615]
Delete unused or unwanted synchronization states.

ml_delete_sync_state_before System Procedure [page 617]
Clean up the MobiLink system tables when you have dropped remote databases.

ml_delete_user System Procedure [page 618]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 585

This procedure is for internal use only.

ml_model_drop System Procedure [page 618]
Drop synchronization models installed using the MobiLink 17 plug-in for SQL Central.

ml_model_check_all_schema System Procedure [page 619]
Check the status of each schema object required by deployed synchronization models. This stored
procedure returns information for all deployed synchronization models.

ml_model_check_version_schema System Procedure [page 621]
Check the status of each schema object required by deployed synchronization models. This stored
procedure returns information for the specified script version.

ml_ra_add_agent_id System Procedure [page 623]
Define a new remote agent in the consolidated database.

ml_ra_assign_task System Procedure [page 623]
Assign a task to a specific remote agent.

ml_ra_cancel_notification System Procedure [page 624]
Cancel a server initiated remote task (SIRT) request that is no longer needed.

ml_ra_cancel_task_instance System Procedure [page 625]
Cancel a remote task instance that is no longer needed.

ml_ra_clone_agent_properties System Procedure [page 626]
Set all remote agent properties at once.

ml_ra_delete_agent_id System Procedure [page 627]
Delete a defined agent from the consolidated database.

ml_ra_delete_events_before System Procedure [page 627]
Delete events that are no longer needed from the consolidated database.

ml_ra_delete_remote_id System Procedure [page 628]
Delete a remote database that is no longer needed from the consolidated database.

ml_ra_delete_task System Procedure [page 629]
Delete a remote task from the consolidated database.

ml_ra_get_agent_events System Procedure [page 629]
Query events.

ml_ra_get_agent_ids System Procedure [page 633]
Get all the agents in the consolidated database.

ml_ra_get_agent_properties System Procedure [page 634]
See all the properties set for an agent.

ml_ra_get_latest_event_id System Procedure [page 635]
Help determine how many new events there are.

ml_ra_get_orphan_taskdbs System Procedure [page 635]
Display a list of orphan agent databases, meaning an agent database that does not have a valid agent
ID.

ml_ra_get_remote_ids System Procedure [page 636]
Get all the remote databases in the consolidated database, excluding the agent databases.

ml_ra_get_task_results System Procedure [page 637]
Get events related to a specific run of a task.

586 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

ml_ra_get_task_status System Procedure [page 639]
Check the status of tasks.

ml_ra_manage_remote_db System Procedure [page 641]
Add an agent-managed remote database.

ml_ra_notify_agent_sync System Procedure [page 642]
Cause an agent to synchronize its state.

ml_ra_notify_task System Procedure [page 642]
Run a task using server initiated remote tasks (SIRT).

ml_ra_reassign_taskdb System Procedure [page 643]
Reassign an agent database in the situation where you have an orphan agent database.

ml_ra_set_agent_property System Procedure [page 644]
Set remote agent properties.

ml_ra_unmanage_remote_db System Procedure [page 645]
Keep a remote database defined, but sever the link between the remote database and a remote agent,
so that the database is no longer managed by its agent.

ml_reset_sync_state System Procedure [page 645]
Reset synchronization state information in MobiLink system tables.

ml_server_delete System Procedure [page 647]
This procedure is for internal use only.

ml_server_update System Procedure [page 647]
This procedure is for internal use only.

1.14.2.1 ml_add_certificates_file System Procedure

Set up trusted certificates when using TLS with LDAP authentication.

 Syntax

ml_add_certificates_file ('file_name',)

Parameters

Syntax Description

file_name VARCHAR(1024). The name of the trusted certificates file.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 587

Remarks

This procedure populates the ml_trusted_certificates_file table with information about the specified trusted
certificate file.

Existing entries in the ml_trusted_certificates_file table are deleted before the new trusted certificate file name
is inserted because only a single trusted certificate file is required for a server farm.

Related Information

ml_add_ldap_server System Procedure [page 598]
ml_add_user_auth_policy System Procedure [page 611]

1.14.2.2 ml_add_column System Procedure (Deprecated)

Register information about columns on remote databases for use by named column parameters.

 Syntax

ml_add_column ('version', 'table', 'column', 'type')

Parameters

Syntax Description

version VARCHAR(128). The version name.

table VARCHAR(128). The table name.

column VARCHAR(128). The column name.

type VARCHAR(128). Reserved for future use. Set to null.

588 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

This procedure populates the ml_column MobiLink system table with information about the columns on the
remote database. The information is used by named row parameters.

 Caution
ml_add_column calls must be executed in the same order that the columns exist in the remote database
table. Failing to do so may result in incorrect data.

You need to run this system procedure if your synchronization clients do not send up column names. By
default, version 12 and later clients do send up column names, so ml_add_column is not required in most
deployments. The ml_add_column names always override names from the client.

To delete all entries for the table name in the given script version, set the column name to null.

Example

The following stored procedure call populates the ml_column MobiLink system table for col1 in MyTable for the
script version Version1. This call allows you to use the named row parameters r.col1 and o.col1 in table scripts
for MyTable1 in the Version1 script version when the synchronization client is not sending up column names (as
clients prior to version 12 do by default).

CALL ml_add_column('Version1', 'MyTable1', 'col1', NULL)

The following stored procedure call deletes all entries in the ml_column MobiLink system table for MyTable1 in
script version Version1:

CALL ml_add_column('Version1', 'MyTable1', NULL, NULL)

Related Information

Script Parameters [page 294]

1.14.2.3 ml_add_connection_script System Procedure

Add or delete SQL connection scripts in the consolidated database.

 Syntax

ml_add_connection_script ('version', 'event', 'script'

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 589

)

Parameters

Syntax Description

version VARCHAR(128). The version name.

event VARCHAR(128). The event name.

script TEXT. The script contents. For Adaptive Server Enterprise,
this parameter is VARCHAR(16384). For IBM DB2 LUW, this
parameter is VARCHAR(4000). For SAP HANA and Oracle,
this parameter is CLOB.

Remarks

To delete a connection script, set the script contents parameter to null.

When you add a script, the script is inserted into the ml_script table and the appropriate references are defined
to associate the script with the event and script version that you specify. If the version name is new, it is
automatically inserted into the ml_version table.

Example

The following statement adds a connection script associated with the begin_synchronization event to the
script version custdb in a SQL Anywhere consolidated database. The script itself is the single statement that
sets the @EmployeeID variable.

call ml_add_connection_script('custdb', 'begin_synchronization', 'set @EmployeeID = {ml s.username}')

Related Information

Script Additions and Deletions [page 316]
ml_add_table_script System Procedure [page 609]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_dnet_table_script System Procedure [page 592]
ml_add_java_connection_script System Procedure [page 593]

590 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

ml_add_java_table_script System Procedure [page 595]

1.14.2.4 ml_add_dnet_connection_script System Procedure

Register or unregister a .NET method as the script for a connection event.

 Syntax

ml_add_dnet_connection_script ('version', 'event', 'script')

Parameters

Syntax Description

version VARCHAR(128). The version name.

event VARCHAR(128). The event name.

script TEXT. The script contents. For Adaptive Server Enterprise,
this parameter is VARCHAR(16384). For IBM DB2 LUW, this
parameter is VARCHAR(4000). For SAP HANA and Oracle,
this parameter is CLOB.

Remarks

To unregister a method, set the script contents parameter to null.

The script contents value is a public method in a class in a .NET assembly (for example, MyClass.MyMethod).

When you call ml_add_dnet_connection_script, the method is associated with the event and script version that
you specify. If the version name is new, it is automatically inserted into the ml_version table.

Example

The following example registers the beginDownloadConnection method of the ExampleClass class for the
begin_download event.

call ml_add_dnet_connection_script('ver1',

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 591

'begin_download', 'ExamplePackage.ExampleClass.beginDownloadConnection');

Related Information

Script Additions and Deletions [page 316]
.NET Methods [page 547]
Synchronization Scripts in Microsoft .NET [page 541]
ml_add_dnet_table_script System Procedure [page 592]
ml_add_connection_script System Procedure [page 589]
ml_add_table_script System Procedure [page 609]
ml_add_java_table_script System Procedure [page 595]

1.14.2.5 ml_add_dnet_table_script System Procedure

Register or unregister a .NET method as the script for a table event.

 Syntax

ml_add_dnet_table_script ('version', 'table', 'event', 'script')

Parameters

Syntax Description

version VARCHAR(128). The version name.

table VARCHAR(128). The table name.

event VARCHAR(128). The event name.

script TEXT. The script contents. For Adaptive Server Enterprise,
this parameter is VARCHAR(16384). For IBM DB2 LUW, this
parameter is VARCHAR(4000). For SAP HANA and Oracle,
this parameter is CLOB.

592 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

To unregister a method, set the script contents parameter to null.

The script value is a public method in a class in a .NET assembly (for example, MyClass.MyMethod).

When you call ml_add_dnet_table_script, the method is associated with the table, event, and script version that
you specify. If the version name is new, it is automatically inserted into the ml_version table.

This procedure can only be used with non-data table scripts. All table row data must be handled using direct
row handling, via the handle_UploadData and handle_DownloadData connection events. To register these data
scripts, use the ml_add_dnet_connection_script procedure.

Example

The following example assigns the empDownloadCursor method of the EgClass class to the download_cursor
event for the table emp.

call ml_add_dnet_table_script('ver1', 'emp', 'download_cursor','EgPackage.EgClass.empDownloadCursor')

Related Information

Script Additions and Deletions [page 316]
.NET Methods [page 547]
Synchronization Scripts in Microsoft .NET [page 541]
Direct Row Handling [page 558]
Data Scripts [page 346]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_connection_script System Procedure [page 589]
ml_add_table_script System Procedure [page 609]
ml_add_java_connection_script System Procedure [page 593]
handle_UploadData Connection Event [page 448]
handle_DownloadData Connection Event [page 437]

1.14.2.6 ml_add_java_connection_script System Procedure

Register or unregister a Java method as the script for a connection event.

 Syntax

ml_add_java_connection_script ('version',

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 593

 'event', 'script')

Parameters

Syntax Description

version VARCHAR(128). The version name.

event VARCHAR(128). The event name.

script TEXT. The script contents. For Adaptive Server Enterprise,
this parameter is VARCHAR(16384). For IBM DB2 LUW, this
parameter is VARCHAR(4000). For SAP HANA and Oracle,
this parameter is CLOB.

 Note
Support for IBM DB2 consolidated databases is depre
cated.

Remarks

To unregister a method, set the script contents parameter to null.

The script value is a public method in a class in the MobiLink server classpath (for example,
MyClass.MyMethod).

When you ml_add_java_connection_script, the method is associated with the event and script version that you
specify. If the version name is new, it is automatically inserted into the ml_version table.

Example

The following example registers the endConnection method of the CustEmpScripts class for the
end_connection event.

call ml_add_java_connection_script('ver1', 'end_connection', 'CustEmpScripts.endConnection')

594 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

Script Additions and Deletions [page 316]
Java Methods [page 531]
Synchronization Script Writing in Java [page 526]
ml_add_connection_script System Procedure [page 589]
ml_add_table_script System Procedure [page 609]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_dnet_table_script System Procedure [page 592]
ml_add_java_table_script System Procedure [page 595]

1.14.2.7 ml_add_java_table_script System Procedure

Register or unregister a Java method as the script for a table event.

 Syntax

ml_add_java_table_script ('version', 'table', 'event', 'script')

Parameters

Syntax Description

version VARCHAR(128). The version name.

table VARCHAR(128). The table name.

event VARCHAR(128). The event name.

script TEXT. The script content. For Adaptive Server Enterprise,
this parameter is VARCHAR(16384). For IBM DB2 LUW, this
parameter is VARCHAR(4000). For SAP HANA and Oracle,
this parameter is CLOB.

 Note
Support for IBM DB2 consolidated databases is depre
cated.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 595

Remarks

To unregister a method, set the script content parameter to null.

The script value is a public method in a class in the MobiLink server classpath (for example,
MyClass.MyMethod).

When you call ml_add_java_table_script, the method is associated with the table, event, and script version that
you specify. If the version name is new, it is automatically inserted into the ml_version table.

This procedure can only be used with non-data table scripts. All table row data must be handled using direct
row handling, via the handle_UploadData and handle_DownloadData connection events. To register these data
scripts, use the ml_add_dnet_connection_script procedure.

Example

The following example registers the empDownloadCursor method of the CustEmpScripts class for the
download_cursor event for the table emp.

call ml_add_java_table_script('ver1', 'emp', 'download_cursor','CustEmpScripts.empDownloadCursor')

Related Information

Script Additions and Deletions [page 316]
Java Methods [page 531]
Synchronization Script Writing in Java [page 526]
Direct Row Handling [page 558]
Data Scripts [page 346]
ml_add_connection_script System Procedure [page 589]
ml_add_table_script System Procedure [page 609]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_dnet_table_script System Procedure [page 592]
ml_add_java_connection_script System Procedure [page 593]
handle_UploadData Connection Event [page 448]
handle_DownloadData Connection Event [page 437]

596 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.8 ml_add_lang_connection_script System Procedure

This procedure is for internal use only.

Related Information

ml_add_connection_script System Procedure [page 589]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_java_connection_script System Procedure [page 593]

1.14.2.9 ml_add_lang_connection_script_chk System
Procedure

This procedure is for internal use only.

Related Information

ml_add_connection_script System Procedure [page 589]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_java_connection_script System Procedure [page 593]

1.14.2.10 ml_add_lang_table_script System Procedure

This procedure is for internal use only.

Related Information

ml_add_table_script System Procedure [page 609]
ml_add_java_table_script System Procedure [page 595]
ml_add_dnet_table_script System Procedure [page 592]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 597

1.14.2.11 ml_add_lang_table_script_chk System Procedure

This procedure is for internal use only.

Related Information

ml_add_table_script System Procedure [page 609]
ml_add_java_table_script System Procedure [page 595]
ml_add_dnet_table_script System Procedure [page 592]

1.14.2.12 ml_add_ldap_server System Procedure

Create, drop or update LDAP servers.

 Syntax

ml_add_ldap_server ('ldsrv_name', 'search_url', 'access_dn', 'access_dn_pwd' 'auth_url' 'conn_retries' 'conn_timeout' 'use_tls')

Parameters

Syntax Description

ldsrv_name VARCHAR(128). A unique LDAP server name.

search_url VARCHAR(1024). A URL string that identifies the host by
name or IP address, port number, and search string to per
form the DN (distinguished name) lookup for a given user id.

access_dn VARCHAR(1024). The distinguished name for an LDAP user
that is used by the MobiLink server to connect to the LDAP
server. The LDAP user must have permission on the LDAP
server to search for DNs.

598 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Syntax Description

access_dn_pwd VARCHAR(1024). The password associated with the DN
specified with the access_dn parameter.

auth_url VARCHAR(1024). A URL string that identifies the host by
name or IP address and the port number of the LDAP server
used to authenticate a user.

conn_retries TINYINT. The number of times the MobiLink server tries to
connect to the LDAP server for DN searches and authentica
tion. The valid range is 1-60. The default is 3.

conn_timeout TINYINT. The connection timeout from the MobiLink server
to the LDAP server for DN searches and authentication. The
value is specified in seconds. The default value is 10 sec
onds.

start_tls TINYINT. Specifies that TLS be used for connections to the
LDAP server for DN searches and authentication.

Remarks

This procedure populates the ml_ldap_server table with information about the specified LDAP server.

Example

The following example adds an LDAP server named my_primary into the ml_ldap_server table.

CALL ml_add_ldap_server('my_primary', //server name
'ldap://voyager:389/dc=MyCompany,dc=com??sub?cn=*', //search URL
'cn=aseadmin, cn=Users, dc=mycompany, dc=com', //access DN
'Secret99Password', //access DN password
'ldap://voyager:389/', //authentication URL
10, //connection retries
5, //connection timeout
0 //no TLS)

Related Information

ml_add_certificates_file System Procedure [page 587]
ml_add_user_auth_policy System Procedure [page 611]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 599

1.14.2.13 ml_add_missing_dnld_scripts System Procedure

Define missing download_cursor and download_delete_cursor scripts as ignored scripts.

 Syntax

ml_add_missing_dnld_scripts ('script_version_name')

Parameters

Syntax Description

script_version_name VARCHAR(128). The name of the script version.

Related Information

download_cursor Table Event [page 393]
download_delete_cursor Table Event [page 396]

1.14.2.14 ml_add_passthrough System Procedure

Identify remote databases that should execute a script. This procedure adds an entry to the ml_passthrough
system table. If an entry with the given remote_id and run_order already exists in the table, this procedure
updates the entry.

 Syntax

ml_add_passthrough ('remote_id', 'script_name', run_order)

600 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Parameters

Syntax Description

remote_id VARCHAR(128). The remote ID of the database that should
execute the script. This value can be a valid remote ID in the
ml_database table to apply to a specific client, or null to ap
ply to all the script clients listed in the ml_database table.

 Caution
Be very careful when applying a script to all, or even
many, remotes. A poorly written script can leave most or
even all of your remotes damaged or disabled.

script_name VARCHAR(128). The name of the script being subscribed to.
This value must be a valid script name defined in the
ml_passthrough_script table.

run_order INTEGER. The run_order parameter determines the order in
which scripts are applied on the remote database. Scripts
are always applied in order by run_order. Each remote data
base stores the run_order of the last script that it attempted
to apply and does not download or execute any script with a
run_order less than this.

This value must be a non-negative integer or null.

Remarks

If you define run_order as null, the procedure assigns an integer based on the value of remote_id. If remote_id
is null, the procedure assigns a value equal to the run_order value in ml_passthrough, plus 10. If remote_id is
not null, the procedure assigns the maximum value of the run_order column for the remote_id in the
ml_passthrough table plus 10.

1.14.2.15 ml_add_passthrough_repair System Procedure

Define rules for handling script errors.

Each rule defines the action that a client should perform when a specific script generates a given error code.
This procedure adds an entry to the ml_passthrough_repair system table. If an entry with the given
failed_script_name and error_code already exists in the table, the procedure updates the entry.

 Syntax

ml_add_passthrough_repair ('failed_script_name',

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 601

 error_code, 'new_script_name', 'action')

Parameters

Syntax Description

failed_script_name VARCHAR(128). The name of the failed script to which this
rule applies. This value must be a valid script name in the
ml_passthrough_script table.

error_code INTEGER. The SQL Anywhere error code that this rule han
dles.

new_script_name VARCHAR(128). The name of a script to replace the failed
script when action is R. If action is S, P, or H, this value must
be null. If action is R, this value must be a valid script name
in the ml_passthrough_script table, and can be the same as
failed_script_name.

action CHAR(1). The action that a client should perform when er
ror_code is generated for failed_script_name. This value
must be one of the following:

R

(replace) Indicates that the failed script should be re
placed with the one specified by new script name and an
attempt should be made to run the new script. To rerun
the failed script, choose new script name to be the same
as failed script name.
P

(purge) Indicates that the remote database should dis
card all the scripts that it has received and continue ex
ecuting script normally after that.
S

(skip) Indicates that the remote database should ignore
the failed script and continue executing scripts as if the
failed script had succeeded.
H

(halt) Indicates that the remote database should not ex
ecute any more scripts until it receives further instruc
tions.

602 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

You should make every effort to avoid failed SQL passthrough scripts by testing scripts thoroughly.

1.14.2.16 ml_add_passthrough_script System Procedure

Create a passthrough script. This procedure adds an entry to the ml_passthrough_script system table.

 Syntax

ml_add_passthrough_script ('script_name', 'flags', 'affected_pubs', 'script', 'description')

Parameters

Syntax Description

script_name VARCHAR(128). The script name. This value must be unique.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 603

Syntax Description

flags VARCHAR(256). The value that tells clients how to run the
script. This value can be null or contain a combination of the fol
lowing keywords in a semicolon-delimited list:

manual

Indicates that the script may only be run in manual execu
tion mode. By default, all scripts can be run in either auto
matic or manual execution modes.
exclusive

Indicates that the script may only be automatically exe
cuted at the end of a synchronization where exclusive locks
were obtained on all tables being synchronized. This option
is ignored if the affected_pubs value lists no publications.
This option is only meaningful to SQL Anywhere remotes.
schema_diff

Indicates that the script should be run in schema-diffing
mode. In this mode, the database schema is altered to
match the schema described in the script. For example, a
create statement for an existing table is treated as an alter
statement. This flag only applies to scripts run on UltraLite
remotes.

For example:

'manual;exclusive;schema_diff'

affected_pubs TEXT. A list of publications that must be synchronized before
the script is run. An empty string or null indicates that no syn
chronization is required. This value is only meaningful for SQL
Anywhere clients. For Adaptive Server Enterprise, this parame
ter is VARCHAR(16384). For IBM DB2 LUW, this parameter is
VARCHAR(4000). For Oracle, this parameter is CLOB.

604 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Syntax Description

script TEXT. The contents of the passthrough script. This value cannot
be null. For Adaptive Server Enterprise, this parameter is VAR
CHAR(16384). For IBM DB2 LUW, this parameter is VAR
CHAR(4000). For Oracle, this parameter is CLOB.

The scriptcontent must be non-null. For UltraLite remotes, the
script content should be a collection of SQL statements sepa
rated by the word go. The word go must appear on a separate
line. For SQL Anywhere remotes, the script content can be any
collection of SQL statements that are valid when enclosed by a
begin...end block.

Example of script content on a SQL Anywhere remote:

DECLARE val INTEGER; SELECT c1 INTO val FROM t1 WHERE pk = 5;
IF val > 100 THEN
 INSERT INTO t2 VALUES ('c1 is big'); ENDIF

Example of script content on an UltraLite remote:

CREATE TABLE myScript (c1 INT NOT NULL
PRIMARY KEY) GO
INSERT INTO myScript VALUES (1) GO

description VARCHAR(2000). A comment or description of the script. This
value may be null.

Remarks

This procedure generates an error if the specified script_name already exists in ml_passthrough_script.

1.14.2.17 ml_add_property System Procedure

Add or delete MobiLink properties. This system procedure changes rows in the ml_property system table.

 Syntax

ml_add_property ('comp_name', 'prop_set_name', 'prop_name', 'prop_value')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 605

Parameters

Syntax Description

comp_name VARCHAR(128). The component name. To save properties
by script version, set to ScriptVersion. For MobiLink server
properties, set to MLS. For server-initiated synchronization
properties, set to SIS.

prop_set_name VARCHAR(128). The property set name.

If the component name is ScriptVersion, then this parameter
is the name of the script version.

If the component name is MLS, then this parameter can be
ml_user_log_verbosity to specify verbosity for a MobiLink
user, ml_remote_id_log_verbosity to specify verbosity for a
remote ID, or locking_and_blocking_detection to report lock
ing and blocking information to the MobiLink Profiler or Mo
biLink server log file.

If the component name is SIS, then this parameter is the
name of the Notifier, gateway, or carrier that you are setting
a property for.

prop_name VARCHAR(128). The property name.

If the component name is ScriptVersion, then this parameter
is a property that you define. You can reference these prop
erties using DBConnectionContext: getVersion and getPro
perties, or ServerContext: getPropertiesByVersion, getPro
perties, and getPropertySetNames.

If the component name is MLS, then this property is either a
MobiLink user name or remote ID that you define, or block
ing_threshold_in_seconds for reporting locking and blocking
information to the MobiLink Profiler or MobiLink server log
file.

606 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Syntax Description

prop_value TEXT. The property value.

If the prop_set_name is ml_user_log_verbosity or ml_re
mote_id_log_verbosity, this must be a valid mlsrv -v option.

For reporting locking and blocking information to the Mobi
Link Profiler or MobiLink server log file, this value is
time_in_seconds.

For Adaptive Server Enterprise, this parameter is VAR
CHAR(16384). For IBM DB2 LUW, this parameter is VAR
CHAR(4000). For Oracle, this parameter is CLOB. To delete
a property, set to null.

 Note
Support for IBM DB2 consolidated databases is depre
cated.

Locking and blocking reporting

The MobiLink server detects any user-defined scripts running longer than a certain time (the default value is 60
seconds) and then reports the locking/blocking information to the MobiLink Profiler, if it is connected to the
MobiLink server, and also logs the information into the MobiLink server log file.

The locking/blocking information includes the following:

• the synchronization ID
• the MobiLink server connection ID that is currently blocked
• the connection ID that is currently blocking the MobiLink server connection
• the total blocked time in seconds
• the object or operation name that the server connection is blocked on

The default time can be changed by executing the following SQL statement on the consolidated database:

call ml_add_property('MLS', 'locking_and_blocking_detection',
'blocking_threshold_in_seconds', 'time_in_seconds');

where time_in_seconds is an integer that gives the blocking threshold in seconds. When time_in_seconds is
zero, this feature is disabled.

This is a static property. The MobiLink server must be restarted before the new values take effect.

Log verbosity for targeted MobiLink users and remote IDs

The MobiLink server can be set to use different log verbosity for a targeted MobiLink user or remote ID. The
MobiLink server checks the ml_property table every five minutes and looks for verbose settings for a MobiLink

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 607

user or remote ID. If verbose settings exist, then the MobiLink server uses the new setting to log output
messages for the given MobiLink user or remote ID. This enables you to see the details for a specific user or
remote ID without the need for high verbosity settings that would negatively impact the server farm, and
without requiring a restart of each server in the farm.

To set maximum verbosity for a targeted MobiLink user, for example ml_user1, log into the consolidated
database and execute the following SQL statement:

call ml_add_property('MLS', 'ml_user_log_verbosity', 'ml_user1', '-v+')

To set maximum verbosity for a targeted remote ID, for example rid_1, log into the consolidated database and
execute the following SQL statement:

call ml_add_property('MLS', 'ml_remote_id_log_verbosity', 'rid_1', '-v+')

The verbose_setting must be a valid MobiLink server -v option. For example, to log row data and undefined
table scripts, the verbose_setting can be -vru or vru. The MobiLink server uses this verbose setting for
ml_user1 or rid_1 after 5 minutes.

To disable log verbosity for a MobiLink user, log into the consolidated database and execute the following SQL
statement:

call ml_add_property('MLS', 'ml_user_log_verbosity', 'ml_user1', NULL)

To disable log verbosity for a MobiLink remote ID, log into the consolidated database and execute the following
SQL statement:

call ml_add_property('MLS', 'ml_remote_id_log_verbosity', 'rid_1', NULL)

The MobiLink server stops using the previous verbose setting for ml_user1 or rid_1 after five minutes.

If both the ml_user_log_verbosity and ml_remote_id_log_verbosity are set for a given MobiLink user and remote
ID, and if the MobiLink user name and remote ID in a synchronization are identical to the given targeted
MobiLink user and remote ID, the MobiLink server uses the ml_remote_id_log_verbosity setting to log output
messages.

Server-initiated synchronization

For server-initiated synchronization, the ml_add_property system procedure allows you to set properties for
Notifiers, gateways, and carriers.

For example, to add the property server=mailserver1 for an SMTP gateway called x, execute the following
SQL statement:

ml_add_property('SIS','SMTP(x)','server','mailserver1');

The verbosity property applies to all Notifiers and gateways so you cannot specify a particular property set
name. To change the verbosity setting, leave the property set name blank. For example:

ml_add_property('SIS','','verbosity',2);

608 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Script Version

For regular MobiLink synchronization, use this system procedure to associate properties with a script version.
In this case, set the component_name to ScriptVersion. You can specify any properties, and use Java and .NET
classes to access them.

For example, to associate an LDAP server with a script version called MyVersion, execute the following SQL
statement:

ml_add_property('ScriptVersion','MyVersion','ldap-server','MyServer');

Related Information

MobiLink Server Settings for Server-initiated Synchronization
-v mlsrv17 Option [page 92]

1.14.2.18 ml_add_table_script System Procedure

Add or delete SQL table scripts in the consolidated database.

 Syntax

ml_add_table_script ('version', 'table', 'event', 'script')

Parameters

Syntax Description

version VARCHAR(128). The version name.

table VARCHAR(128). The table name.

event VARCHAR(128). The event name.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 609

https://help.sap.com/viewer/dd660b364197434f9cad574289c12149/17.0.01/en-US/81b35f076ce210149addf6fee1ef5bf6.html

Syntax Description

script TEXT. The script contents. For Adaptive Server Enterprise,
this parameter is VARCHAR(16384). For IBM DB2 LUW, this
parameter is VARCHAR(4000). For SAP HANA and Oracle,
this parameter is CLOB.

 Note
Support for IBM DB2 consolidated databases is depre
cated.

Remarks

To delete a table script, set the script contents parameter to null.

When you add a script, the script is inserted into the ml_script table and the appropriate references are defined
to associate the script with the table, event and script version that you specify. If the version name is new, it is
automatically inserted into the ml_version table.

The MobiLink server needs to be restarted for the specified script changes to take effect, unless the MobiLink
server was started with the -zf mlsrv17 option. The -zf option causes the MobiLink server to check for script
changes at the beginning of each synchronization.

 Caution
Running the MobiLink server with the -zf option has a negative impact on MobiLink server performance and
should be avoided whenever possible.

Example

The following command adds a table script associated with the upload_insert event on the Customer table.

call ml_add_table_script('default', 'Customer', 'upload_insert', 'INSERT INTO Customer(cust_id, name, rep_id, active) VALUES ({ml r.cust_id}, {ml r.name}, {ml r.rep_id}, 1)')

Related Information

Script Additions and Deletions [page 316]
ml_add_connection_script System Procedure [page 589]
ml_add_dnet_connection_script System Procedure [page 591]
ml_add_dnet_table_script System Procedure [page 592]

610 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

ml_add_java_connection_script System Procedure [page 593]
ml_add_java_table_script System Procedure [page 595]
-zf mlsrv17 Option [page 107]

1.14.2.19 ml_add_user System Procedure

This procedure is for internal use only.

1.14.2.20 ml_add_user_auth_policy System Procedure

Add MobiLink user authentication policies.

 Syntax

ml_add_user_auth_policy ('policy_name', 'primary_ldsrv_name', 'secondary_ldsrv_name', 'ldap_auto_failback_period' 'ldap_failover_to_std')

Parameters

Syntax Description

policy_name VARCHAR(128). A unique user authentication policy name.

primary_ldsrv_name VARCHAR(128). Specifies the primary LDAP server name to
be used to authenticate this user. The specified LDAP server
name must already exist in the ml_ldap_server table.

secondary_ldsrv_name VARCHAR(128). Specifies the secondary LDAP server name
for failover purposes. The secondary LDAP server name
must already exist in the ml_ldap_server table.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 611

Syntax Description

ldap_auto_failback_period INTEGER. Use this parameter to inform the MobiLink server
when it should fail over to the primary LDAP server for user
authentication. The time is specified in seconds and the de
fault value is 900 seconds (15 minutes).

When the primary LDAP server is not available for user au
thentication, the MobiLink server remembers when the
problem was detected and switches to the secondary server
for user authentication. The MobiLink server then switches
back to use the primary server for user authentication for
any users who are currently using this user authentication
policy when the elapsed time since the failure was detected
has reached @ldap_auto_failback_period.

ldap_failover_to_std INTEGER. Specifies whether the MobiLink server should use
standard methods (password and user authentication
scripts) to authenticate the user. The value can be as fol
lows:

0 The MobiLink server authenticates the user only
against LDAP servers. If the user cannot be authenti
cated against an LDAP server, then the synchronization
request fails.

1 The MobiLink server authenticates the user by using
the script-based method of user authentication if an
LDAP server is not available.

2 The MobiLink server authenticates the user against an
LDAP server first and then authenticates the user with
the script-based method of user authentication,
whether or not the user is authenticated with the LDAP
server. The MobiLink server passes one of the following
values to indicate the user authentication status to the
scripts: 1000 if the user is authenticated against the
LDAP server; 4000 if the user is not authenticated
against the LDAP server; or 6000 if the LDAP servers
are not available.

The MobiLink user password is only hashed and stored in
the ml_user table in the consolidated database if the
ldap_failover_to_std parameter is configured with a value of
1 or 2. The password is not saved if this parameter is set to 0.

Remarks

If the specified policy_name does not exist in the table, then this procedure adds a user authentication policy to
the ml_user_auth_policy table. If the policy_name is already in the table, then executing this procedure with
non-NULL parameters updates all the corresponding fields with the specified non-NULL parameters. For
instance, the following SQL statement updates the user authentication policy policy_1 to use

612 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

ldap_server2 as a secondary LDAP server and enables failover to use password and user authentication
script based authentication, when both the primary and secondary LDAP servers are unavailable.

CALL ml_add_user_auth_policy('policy_1', NULL, 'ldap_server2', NULL, 1);

To delete an authentication policy, all parameters except for policy_name should be NULL.

When adding a MobiLink user authentication policy, the parameter primary_ldsrv_name cannot be NULL but
the secondary_ldsrv_name parameter can be NULL.

Related Information

ml_add_ldap_server System Procedure [page 598]
ml_add_certificates_file System Procedure [page 587]

1.14.2.21 ml_delete_passthrough System Procedure
(Deprecated)

Removes the row(s) in the ml_passthrough table that cause the specified script to be downloaded to the
specified remote database with the specified run order.

If the script is downloaded to the remote database before it is deleted, then it is not deleted from the remote
database and executes as usual.

 Syntax

ml_delete_passthrough ('remote_id', 'script_name', 'run_order')

Parameters

Syntax Description

remote_id VARCHAR(128). The remote ID. If remote_id is null then all
rows in the ml_passthrough table for the specified script
name and run order are removed.

script_name VARCHAR(128). The script name.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 613

Syntax Description

run_order INTEGER. The run order of the script applied on the remote
database. If run_order is null then all rows for the specified
remote_id and script_name are removed from the ml_pass
through table regardless of their run order.

Remarks

The MobiLink server does not automatically remove entries from the ml_passthrough table. You must use this
procedure to remove outdated passthrough scripts.

1.14.2.22 ml_delete_passthrough_repair System Procedure
(Deprecated)

Delete a repair rule from the ml_passthrough_repair system table.

 Syntax

ml_delete_passthrough_repair ('failed_script_name', error_code)

Parameters

Syntax Description

failed_script_name VARCHAR(128). The name of the script to which a rule ap
plied.

error_code INTEGER. The error code for which the rule applied.

Remarks

The MobiLink server does not automatically remove entries from the ml_passthrough_repair table. You must
use this procedure to remove outdated passthrough repair scripts.

614 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.23 ml_delete_passthrough_script System Procedure
(Deprecated)

Delete a passthrough script from the ml_passthrough_script system table.

 Syntax

ml_delete_passthrough_script ('script_name')

Parameters

Syntax Description

script_name VARCHAR(128). The name of the script to remove.

Remarks

Scripts cannot be removed if they are referenced in the ml_passthrough or ml_passthrough_repair system
tables.

The MobiLink server does not automatically remove entries from the ml_passthrough_script table. You must
use this procedure to remove outdated passthrough scripts.

1.14.2.24 ml_delete_sync_state System Procedure

Delete unused or unwanted synchronization states.

 Syntax

ml_delete_sync_state ('user', 'remote_id')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 615

Parameters

Syntax Description

user VARCHAR(128). The MobiLink user name.

remote_id VARCHAR(128). The remote ID.

Remarks

These parameters can be null. If all the parameters are null, the procedure does nothing.

This stored procedure deletes all the rows from the ml_subscription table for the given MobiLink user name
and remote ID. It also removes this remote ID from the ml_database table, if the remote ID is no longer
referenced by any rows in the ml_subscription table.

If the remote ID is null and the MobiLink user name is not null, it removes all the rows that are referenced by the
given MobiLink user name from the ml_subscription table and all the remote IDs from the ml_database table, if
these remote IDs are no longer referenced by any rows in the ml_subscription table.

If the MobiLink user name is null and the remote ID is not null, the MobiLink user is not removed by this stored
procedure, even if all the remote IDs have been deleted from the ml_database table and this user is no longer
referenced by any rows in the ml_subscription table. If this MobiLink user needs to be deleted, you may delete
it by issuing a command such as

delete from ml_user where name = 'user_name'

where user_name is the MobiLink user you want to delete.

Use this stored procedure with extreme caution because the MobiLink server automatically adds this remote ID
in the ml_database and ml_subscription tables without checking its synchronization status the next time the
MobiLink client requests synchronization for this remote ID. It may cause data inconsistency to delete
synchronization states for a remote ID that did not have a successful synchronization in the last
synchronization attempt.

This procedure removes all the rows from the ml_subscription table and the ml_database table for the given
remote ID.

Example

The following example cleans up MobiLink system table information about remote databases with the remote
ID remote_db_for_John for the MobiLink user John:

CALL ml_delete_sync_state('John', 'remote_db_for_John')

616 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.25 ml_delete_sync_state_before System Procedure

Clean up the MobiLink system tables when you have dropped remote databases.

 Syntax

ml_delete_sync_state_before ('ts')

Parameters

Syntax Description

ts TIMESTAMP. The datetime must appear in exactly the order
specified in the consolidated database. If the datetime for
mat in the consolidated database is set to 'yyyy/mm/dd
hh:mm:ss.ssss', then the timestamp must appear in the or
der year, month, day, hour, minute, second, fraction of sec
ond.

Remarks

This stored procedure removes rows from MobiLink system tables that pertain to remote databases that are no
longer being used. In particular, it does the following:

• Deletes all the rows from the ml_subscription system table that have both the last_upload_time and
last_download_time earlier than the given timestamp.

• Removes remote IDs from the ml_database system table if the remote IDs are no longer referenced by any
rows in the ml_subscription table.

You should not use this system procedure for a time period that is so recent that it may delete rows for remote
databases that have not actually been deleted. If you do, the deletion of the rows in ml_subscription and
ml_database could cause problems for remote databases that are in an "unknown state" caused by an
unsuccessful upload; in that unknown state, the remote database relies on the MobiLink system tables to
resend data.

The timestamp provided to this procedure must have a correct date-time format because the procedure does
not validate the date-time format of the parameter.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 617

Example

The following example cleans up MobiLink system table information about remote databases that have not
synchronized since January 10, 2004. It works for a SQL Anywhere consolidated database where the date-time
format in the consolidated database is yyyy/mm/dd hh:mm:ss.ssss.

CALL ml_delete_sync_state_before('2004/01/10 00:00:00')

1.14.2.26 ml_delete_user System Procedure

This procedure is for internal use only.

1.14.2.27 ml_model_drop System Procedure

Drop synchronization models installed using the MobiLink 17 plug-in for SQL Central.

 Syntax

ml_model_drop ('script_version')

Parameters

Syntax Description

script_version VARCHAR(128). The name of the script version associated
with the synchronization model you want to drop.

Remarks

This stored procedure removes the synchronization scripts included in the named script version, as well as any
schema that was created when the synchronization model was deployed, including shadow tables, tracking
columns, triggers and indexes.

Schema that is shared with another script_version is not deleted.

No schema is deleted if a script_version was installed manually outside of the MobiLink 17 plug-in.

618 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

ml_model_check_all_schema System Procedure [page 619]
ml_model_check_version_schema System Procedure [page 621]

1.14.2.28 ml_model_check_all_schema System Procedure

Check the status of each schema object required by deployed synchronization models. This stored procedure
returns information for all deployed synchronization models.

 Syntax

ml_model_check_all_schema

Remarks

This procedure returns a result set containing the status of each schema object required by all deployed
synchronization models.

No results are returned for script versions installed outside of SQL Central or for synchronization models
deployed prior to version 16.

The result set contains the following columns:

schema_owner

Identifies the schema owner.
table_name

Identifies the table name.
schema_type

Identifies the schema type. It can be one of the following types:

• TABLE
• INDEX
• COLUMN
• TRIGGER
• PROCEDURE

object_name

Identifies the object name.
locked

If this column is set to 1 then the schema is never modified or dropped by the plug-in. Schema used by
synchronization models that pre-existed before a deployment is marked as locked.
used_by

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 619

The script version that requires the schema object.
status

Status can be one of the following:

INSTALLED

The schema is installed correctly.
MISSING

The schema is not installed.
MISMATCH

The installed schema is different from what is required.
UNVERIFIED

The schema exists, but there is not enough information to determine that it is defined correctly.
UNUSED

No synchronization model is using this schema object.
overwrite_action

Can be one of the following:

REPLACE

If the model is redeployed, the existing schema is dropped and recreated
CREATE

If the model is redeployed, the schema is created.
SKIP

Either the schema is already correctly installed, or there is conflicting schema that is blocking proper
installation.

preserve_action

Reserved for future use.

Related Information

ml_model_drop System Procedure [page 618]
ml_model_check_version_schema System Procedure [page 621]

620 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.29 ml_model_check_version_schema System
Procedure

Check the status of each schema object required by deployed synchronization models. This stored procedure
returns information for the specified script version.

 Syntax

ml_model_check_version_schema ('script_version')

Parameters

Syntax Description

script_version VARCHAR(128). The name of the script version associated
with the synchronization model you want to check.

Remarks

This procedure returns a result set containing the status of each schema object required by the specified script
version.

No results are returned for script versions installed outside of SQL Central or for synchronization models
deployed prior to version 16.

The result set contains the following columns:

schema_owner

Identifies the schema owner.
table_name

Identifies the table name.
schema_type

Identifies the schema type. It can be one of the following types:

• TABLE
• INDEX
• COLUMN
• TRIGGER
• PROCEDURE

object_name

Identifies the object name.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 621

locked

If this column is set to 1 then the schema is never modified or dropped by the plug-in. Schema used by
synchronization models that pre-existed before a deployment is marked as locked.
status

Status can be one of the following:

INSTALLED

The schema is installed correctly.
MISSING

The schema is not installed.
MISMATCH

The installed schema is different from what is required.
UNVERIFIED

The schema exists, but there is not enough information to determine that it is defined correctly.
UNUSED

No synchronization model is using this schema object.
overwrite_action

Can be one of the following:

REPLACE

If the model is redeployed, the existing schema is dropped and recreated
CREATE

If the model is redeployed, the schema is created.
SKIP

Either the schema is already correctly installed, or there is conflicting schema that is blocking proper
installation.

preserve_action

Reserved for future use.

Related Information

ml_model_drop System Procedure [page 618]
ml_model_check_all_schema System Procedure [page 619]

622 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.30 ml_ra_add_agent_id System Procedure

Define a new remote agent in the consolidated database.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the new agent to be defined in the consolidated database.

Remarks

If an Agent connects to the MobiLink server without ml_ra_add_agent_id being called first, then that Agent is
automatically added to the consolidated database. However, all properties for that agent are default values.

Related Information

ml_ra_manage_remote_db System Procedure [page 641]
ml_ra_clone_agent_properties System Procedure [page 626]
ml_ra_set_agent_property System Procedure [page 644]

1.14.2.31 ml_ra_assign_task System Procedure

Assign a task to a specific remote agent.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent to assign the task to.

task_name VARCHAR(128). This is an IN parameter that specifies the
name of the specific task being assigned.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 623

Remarks

Tasks must first be defined in SQL Central using the MobiLink 17 plug-in before calling this system procedure.

Some tasks target a specific remote database. If this is the case, the agent must be managing a remote
database of that type.

If a task has been previously assigned to an agent and then subsequently completed, the task can be assigned
again. This makes the task active again, and it will run according to its schedule.

Tasks must first be defined using SQL Central before calling the task_name parameter.

Related Information

ml_ra_cancel_task_instance System Procedure [page 625]
ml_ra_notify_task System Procedure [page 642]
ml_ra_cancel_notification System Procedure [page 624]

1.14.2.32 ml_ra_cancel_notification System Procedure

Cancel a server initiated remote task (SIRT) request that is no longer needed.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent responsible for the task you are canceling.

task_name VARCHAR(128). This is an IN parameter that specifies the
name of the specific task being canceled.

Related Information

ml_ra_notify_task System Procedure [page 642]
ml_ra_assign_task System Procedure [page 623]
ml_ra_delete_task System Procedure [page 629]
ml_ra_cancel_task_instance System Procedure [page 625]

624 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.33 ml_ra_cancel_task_instance System Procedure

Cancel a remote task instance that is no longer needed.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent responsible for the task you are canceling.

task_name VARCHAR(128). This is an IN parameter that specifies the
name of the specific task being canceled.

Remarks

The canceled task is reported as being in the Cancel Pending state until the agent completes any active runs of
the task and confirms the canceled state through a synchronization of the agent database.

Related Information

ml_ra_cancel_notification System Procedure [page 624]
ml_ra_notify_task System Procedure [page 642]
ml_ra_assign_task System Procedure [page 623]
ml_ra_delete_task System Procedure [page 629]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 625

1.14.2.34 ml_ra_clone_agent_properties System Procedure

Set all remote agent properties at once.

Parameters

Syntax Description

dst_agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the destination agent being created.

src_agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent being cloned to create the new agent.

Remarks

All the properties of an existing agent are copied to the new agent. Individual agent properties can be set more
easily using SQL Central.

Assigned tasks and managed remotes are not copied to the new agent.

Related Information

ml_ra_set_agent_property System Procedure [page 644]
ml_ra_add_agent_id System Procedure [page 623]
ml_ra_manage_remote_db System Procedure [page 641]

626 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.35 ml_ra_delete_agent_id System Procedure

Delete a defined agent from the consolidated database.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent being deleted.

Remarks

If you delete an agent that was managing remote databases, those remote databases will become unmanaged.

Related Information

ml_ra_delete_events_before System Procedure [page 627]
ml_ra_delete_remote_id System Procedure [page 628]
ml_ra_unmanage_remote_db System Procedure [page 645]

1.14.2.36 ml_ra_delete_events_before System Procedure

Delete events that are no longer needed from the consolidated database.

Parameters

Syntax Description

delete_rows_older_than TIMESTAMP. This is an IN parameter that specifies Events
older than the specified value are deleted from the consoli
dated database.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 627

Remarks

If your remote tasks return status frequently, then large numbers of events can build up in the consolidated
database.

Related Information

ml_ra_get_latest_event_id System Procedure [page 635]

1.14.2.37 ml_ra_delete_remote_id System Procedure

Delete a remote database that is no longer needed from the consolidated database.

Parameters

Syntax Description

remote_id VARCHAR(128). This is an IN parameter that specifies the
remote ID that corresponds to the remote database to be
deleted.

Remarks

This procedure fails if tasks are still active for the specified remote_id. To force deletion, first delete the
agent_id that is managing the remote.

Related Information

ml_ra_delete_agent_id System Procedure [page 627]
ml_ra_delete_task System Procedure [page 629]

628 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.38 ml_ra_delete_task System Procedure

Delete a remote task from the consolidated database.

Parameters

Syntax Description

task_name VARCHAR(128). This is an IN parameter that specifies the
name of the remote task to be deleted.

Remarks

This system procedure fails if there are still active task instances.

Related Information

ml_ra_delete_agent_id System Procedure [page 627]
ml_ra_delete_events_before System Procedure [page 627]
ml_ra_delete_remote_id System Procedure [page 628]

1.14.2.39 ml_ra_get_agent_events System Procedure

Query events.

Parameters

Syntax Description

start_at_event_id BIGINT. This is an IN parameter that specifies the ID of the
event from which to start the query.

max_events_to_fetch BIGINT. This is an IN parameter that specifies the maximum
number of events to fetch.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 629

Returns

Result Description

event_id BIGINT. A unique ID assigned to each event. The value is in
cremented by 1 for each new event.

event_class VARCHAR(1). The event class. The class can be either I for
information or E for error.

630 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Result Description

event_type VARCHAR(8). The event types are listed below.

ANEW

A new agent was defined in the consolidated database.
This can occur by calling ml_ra_add_agent or if the
agent is not preconfigured when the agent connects to
the consolidated database for the first time.
AFIRST

Occurs on the first synchronization of an agent.
ADUP

A duplicate agent_id was found, meaning two or more
agents are trying to use the same ID. The result_text for
this is the remote_id of the blocked agent's agent data
base.
ARESET

An agent rebuilt its agent database. Some task progress
and results may have been lost.
TB

A task has begun execution.
TE

The task execution ended without a fatal error.
TW

A task execution is waiting for a retry interval before
continuing.
TAC

Task execution ended because a command aborted.
TAT

Task execution ended because it exceeded the maxi
mum allowed running time.
TAR

Task execution ended because it exceeded the maxi
mum retry count.
TFS

The task completed and will not run again because it
was a run-once task that succeeded.
TFF

The task completed and will not run again because it
was a run-once task that failed.
TFE

The task completed and will not run again because the
schedule for the task has expired.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 631

Result Description

TFC

The task completed and will not run again because the
task was canceled by the server.
CR - Command Result

The result_code and result_text are populated with val
ues specific to the type of command.
CE - Command Error

The result_code and result_text are populated with val
ues specific to the type of command.

agent_id VARCHAR(128). The ID of the agent that produced this
event.

remote_id VARCHAR(128). The ID of the remote database that the
event applies to. This is only set for task-related events that
target a specific remote database.

task_name VARCHAR(128). The name of the task. This is only set for
task-related events.

command_number INTEGER. The command number within a task that this
event applies to. This is only set for command-specific
events.

run_number BIGINT. The unique number assigned to each run of a task.
This is only set for task-specific events.

duration INTEGER. The amount of time taken by the event. This is
only set for command-specific events.

event_time TIMESTAMP. The time the event took place. For most events
the time is based on the clock of the computer the agent is
executing on.

event_received TIMESTAMP. The time the event was received by the server.
This is always set from the clock of the consolidated data
base.

result_code BIGINT. An event-specific BIGINT. For example, for a SQL
query command result, the code would be the SQLCODE.

result_text LONG VARCHAR. An event-specific LONG VARCHAR. For ex
ample, for a SQL query command result, this column would
contain a CSV format of the result set.

p_crsr SYS_REF_CURSOR. This is an OUT parameter for Oracle
only.

632 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

Alternatively you can use the ml_ra_get_task_results procedure, which only fetches events related to a specific
run of a task. You can pass in a null @run_number to get the latest run of a task.

One way to use this procedure is to use ml_ra_get_agent_events to wait for a task-end event (TE) then call
ml_ra_get_task_results to get each of the command results that might need processing.

Related Information

ml_ra_get_task_results System Procedure [page 637]
ml_ra_get_task_results System Procedure [page 637]

1.14.2.40 ml_ra_get_agent_ids System Procedure

Get all the agents in the consolidated database.

Returns

Result Description

agent_id VARCHAR(128). The agent ID.

remote_id VARCHAR(128). The remote ID of the agent database.

last_download_time TIMESTAMP. The last download time.

last_upload_time TIMESTAMP. The last upload time.

active_task_count INTEGER. The number of active tasks.

description VARCHAR(2048). Reserved for future use.

p_crsr SYS_REF_CURSOR. This is an OUT parameter for Oracle
only.

Related Information

ml_ra_get_remote_ids System Procedure [page 636]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 633

1.14.2.41 ml_ra_get_agent_properties System Procedure

See all the properties set for an agent.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent you are setting properties for.

Returns

Results Description

property_name VARCHAR(128). The property name.

property_value VARCHAR(2048). The value of the property.

last_modified TIMESTAMP. The time the property was last modified.

p_crsr SYS_REF_CURSOR. This is an OUT parameter for Oracle
only.

Related Information

ml_ra_get_agent_ids System Procedure [page 633]
ml_ra_clone_agent_properties System Procedure [page 626]

634 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.42 ml_ra_get_latest_event_id System Procedure

Help determine how many new events there are.

Parameters

Syntax Description

event_id BIGINT. This is an OUT parameter that specifies the ID of the
latest event.

Remarks

To determine how many new events there are, call the ml_ra_get_latest_event_id system procedure and
subtract the last event_id you processed.

Related Information

ml_ra_get_agent_events System Procedure [page 629]

1.14.2.43 ml_ra_get_orphan_taskdbs System Procedure

Display a list of orphan agent databases, meaning an agent database that does not have a valid agent ID.

Returns

Results Description

remote_id VARCHAR(128). The remote ID.

orig_agent_id VARCHAR(128). The ID of the original agent the agent data
base was associated with.

last_sync TIMESTAMP. The time of the last synchronization.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 635

Results Description

p_crsr SYS_REF_CURSOR. This is an OUT parameter for Oracle
only.

Remarks

Orphaned databases can be the result of a number of problems in a synchronization system, such as creating
duplicate agent ids on different computers or having two agent databases trying to use the same agent id.

The remote_id field has the computer name in it to aid in diagnosing problems.

Related Information

ml_ra_reassign_taskdb System Procedure [page 643]

1.14.2.44 ml_ra_get_remote_ids System Procedure

Get all the remote databases in the consolidated database, excluding the agent databases.

Parameters

None.

Returns

Results Description

remote_id VARCHAR(128). The remote ID of the remote database.

schema_name VARCHAR(128). The type of the remote database.

agent_id VARCHAR(128). The agent ID of the remote database.

agent_conn_str VARCHAR(2048). The agent connection string.

last_download_time TIMESTAMP. The last download time.

636 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Results Description

last_upload_time TIMESTAMP. The last upload time.

description VARCHAR(128). The description of the database.

p_crsr SYS_REF_CURSOR. This is an OUT parameter for Oracle
only.

Related Information

ml_ra_get_agent_properties System Procedure [page 634]

1.14.2.45 ml_ra_get_task_results System Procedure

Get events related to a specific run of a task.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent you want to get results for.

task_name VARCHAR(128). This is an IN parameter that specifies the
name of the task you want to get results for.

run_number INTEGER. This is an IN parameter that specifies the run
number you want results for.

Returns

Result Description

event_id BIGINT. A unique ID assigned to each event. The value is in
cremented by 1 for each new event.

event_class VARCHAR(1). The event class. The class can be either I for
information or E for error.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 637

Result Description

event_type VARCHAR(8). The event type.

agent_id VARCHAR(128). The ID of the agent that produced this
event.

remote_id VARCHAR(128). The ID of the remote database that the
event applies to. This is only set for task-related events that
target a specific remote database.

task_name VARCHAR(128). The name of the task. This is only set for
task-related events.

command_number INTEGER. The command number within a task that this
event applies to. This is only set for command-specific
events.

run_number BIGINT. The unique number assigned to each run of a task.
This is only set for task-specific events.

duration INTEGER. The amount of time taken by the event. This is
only set for command-specific events.

event_time TIMESTAMP. The time the event took place. For most events
the time is based on the clock of the computer the agent is
executing on.

event_received TIMESTAMP. The time the event was received by the server.
This is always set from the clock of the consolidated data
base.

result_code BIGINT. An event-specific BIGINT. For example, for a SQL
query command result, the code would be the SQLCODE.

result_text LONG VARCHAR. An event-specific LONG VARCHAR. For ex
ample, for a SQL query command result, this column would
contain a CSV format of the result set.

p_crsr SYS_REF_CURSOR. This is an OUT parameter for Oracle
only.

Remarks

This system procedure only fetches events related to a specific run of a task. It is an alternative to the
ml_ra_get_agent_events system procedure.

You can pass in a null @run_number to get the latest run of a task.

638 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Example

One way to use this procedure would be to use ml_ra_get_agent_events to wait for a task-end event then call
ml_ra_get_task_results to get each of the command results that might need processing.

Related Information

ml_ra_get_agent_events System Procedure [page 629]

1.14.2.46 ml_ra_get_task_status System Procedure

Check the status of tasks.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent you want to get status for.

task_name VARCHAR(128). This is an IN parameter that specifies the
name of the task you want to get status for.

Returns

Result Description

agent_id VARCHAR(128). The ID of the agent that produced this
event.

remote_id VARCHAR(128). The ID of the remote database that the
event applies to.

task_name VARCHAR(128). The name of the task.

task_id BIGINT. The task ID.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 639

Result Description

state VARCHAR(4). The state of the deployed task. State can be
one of the following:

P

Pending. Awaiting confirmation that the agent has re
ceived the task.
A

Active. The agent has the task and will run it when it is
scheduled to run.
S

Succeeded. The task is complete and will not run again
unless it is reassigned.
F

Failed. The task is complete and will not run again un
less it is reassigned.
CP

Cancel pending. Waiting for confirmation that the agent
has canceled the task.
C

Canceled. The task is complete and will not run again
unless it is reassigned.
E

Expired. The task is complete and will not run again un
less it is reassigned.

reported_exec_count BIGINT. The reported number of tasks that have been exe
cuted.

reported_error_count BIGINT. The reported number of errors.

reported_attempt_count BIGINT. The reported number of attempts to execute a task.

last_status_update TIMESTAMP. The time the last status update was given.

last_success TIMESTAMP. The time of the last successful task.

assignment_time TIMESTAMP. The time the task was assigned.

p_crsr SYS_REF_CURSOR. This is an OUT parameter for Oracle
only.

Remarks

The @agent_id and @task_name parameters can be set to null to get the status for all agent_ids, all
task_names or both.

640 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

The reported_attempt_count may be greater than the reported_exec_count so the precondition on the task
evaluated to false on an attempt and the task did not execute.

The success count can be computed by subtracting reported_error_count from reported_exec_count.

Related Information

ml_ra_get_task_results System Procedure [page 637]

1.14.2.47 ml_ra_manage_remote_db System Procedure

Add an agent-managed remote database.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the new agent to be defined in the consolidated database.

schema_name VARCHAR(128). This is an IN parameter that indicates the
type of remote database being created. This schema name
must have been previously defined in the consolidated data
base using SQL Central.

conn_str VARCHAR(128). This is an IN parameter that specifies the
database connection string used by the agent to connect to
the remote database.

Related Information

ml_ra_add_agent_id System Procedure [page 623]
ml_ra_clone_agent_properties System Procedure [page 626]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 641

1.14.2.48 ml_ra_notify_agent_sync System Procedure

Cause an agent to synchronize its state.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent you want to synchronize.

Remarks

This system procedure sends new tasks to the specified agent, and causes the agent to send any results it has
from the execution of tasks to the MobiLink server.

Related Information

ml_ra_get_task_results System Procedure [page 637]

1.14.2.49 ml_ra_notify_task System Procedure

Run a task using server initiated remote tasks (SIRT).

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the agent you want to run the task.

task_name VARCHAR(128). This is an IN parameter that specifies the
name of the task you want the agent to execute.

642 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

ml_ra_cancel_notification System Procedure [page 624]
ml_ra_delete_task System Procedure [page 629]

1.14.2.50 ml_ra_reassign_taskdb System Procedure

Reassign an agent database in the situation where you have an orphan agent database.

Parameters

Syntax Description

taskdb_remote_id VARCHAR(128). This is an IN parameter that specifies the
remote ID of the orphaned agent database.

new_agent_id VARCHAR(128). This is an IN parameter that specifies the ID
of the new agent you want to assign the orphaned agent da
tabase to.

Remarks

If there are two agent databases that both want to use the same agent_id, the system considers the first agent
database as the valid one, and the second agent database is considered an orphan, meaning it does not have a
valid agent_id associated with it.

Related Information

ml_ra_get_orphan_taskdbs System Procedure [page 635]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 643

1.14.2.51 ml_ra_set_agent_property System Procedure

Set remote agent properties.

Parameters

Syntax Description

agent_id VARCHAR(128). This is an IN parameter that specifies the
agent ID.

property_name VARCHAR(128). This is an IN parameter that specifies the
property name to be set.

property_value VARCHAR(2048). This is an IN parameter that specifies the
property value to be set.

Remarks

The agent supports the following properties:

mlstream

The MobiLink stream parameters, for example tcpip(host=localhost).
max_taskdb_sync_interval

The longest time in seconds that the agent should wait between synchronizing its agent database.
lwp_freq

The time between lightweight polls.

Related Information

ml_ra_clone_agent_properties System Procedure [page 626]

644 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.52 ml_ra_unmanage_remote_db System Procedure

Keep a remote database defined, but sever the link between the remote database and a remote agent, so that
the database is no longer managed by its agent.

Parameters

Syntax Description

remote_id VARCHAR(128). This is an IN parameter that specifies the
remote ID to be severed.

schema_name VARCHAR(128). This is an IN parameter that indicates the
type of the remote database.

Remarks

This procedure fails if there are tasks assigned to the remote database.

If you want the remote database to be managed by a different agent, you can call the
ml_ra_manage_remote_db procedure again with a new agent_id.

Related Information

ml_ra_manage_remote_db System Procedure [page 641]

1.14.2.53 ml_reset_sync_state System Procedure

Reset synchronization state information in MobiLink system tables.

 Syntax

ml_reset_sync_state ('user', 'remote_id')

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 645

Parameters

Syntax Description

user VARCHAR(128). The MobiLink user name.

remote_id VARCHAR(128). The remote ID.

Remarks

The parameters can be null. If both parameters are null, this procedure does nothing.

This stored procedure sets the progress, last_upload_time, and last_download_time columns in the
ml_subscription table to their default values for the given user_name and remote ID. The default value for the
progress is 0. The default value for the last_upload_time and last_download_time columns is '1900/01/01
00:00:00'.

If the remote ID is null and the MobiLink user name is not null, this procedure sets those columns to the default
values for the rows in the ml_subscription table referenced by the given MobiLink user name. If the MobiLink
user name is null and the remote ID is not null, it sets them to the default values for the rows in the
ml_subscription table with the given remote ID.

Use this stored procedure with extreme caution. The MobiLink server does not do any synchronization status
checking for this remote ID the next time the MobiLink client requests synchronization for this remote ID. It
may cause data inconsistency to reset a remote ID that did not have a successful synchronization in the last
synchronization.

646 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.2.54 ml_server_delete System Procedure

This procedure is for internal use only.

1.14.2.55 ml_server_update System Procedure

This procedure is for internal use only.

1.14.3 MobiLink Utilities

A set of utility programs are included with MobiLink server. Each of the utilities can be accessed from one or
more of SQL Central, Interactive SQL, or at a command prompt.

The following utilities are included with the MobiLink server:

• MobiLink Stop utility (mlstop)
• MobiLink User Authentication utility (mluser)
• MobiLink Replay utility (mlreplay)
• MobiLink Generated Replay API utility (mlgenreplayapi)
• MobiLink Arbiter Server utility for Microsoft Windows (mlarbiter)
• MobiLink Arbiter Server utility for UNIX and Linux (mlarbiter.sh)
• MobiLink Arbiter Stop utility (mlarbstop)

In this section:

MobiLink Stop Utility (mlstop) [page 648]
Stops the MobiLink server on the local computer.

MobiLink User Authentication Utility (mluser) [page 649]
Registers MobiLink users at the consolidated database. For SQL Anywhere remotes, the users must
have previously been created at the remote databases with the CREATE SYNCHRONIZATION USER
statement.

MobiLink Replay Utility (mlreplay) [page 651]
The mlreplay utility is a tool used to replay MobiLink protocol information that is recorded by the
MobiLink server.

MobiLink Generated Replay API Utility (mlgenreplayapi) [page 657]
The mlgenreplayapi tool reads a recorded protocol file and generates the MobiLink Replay API for the
schema in that file.

MobiLink Arbiter Server Utility for Windows (mlarbiter) [page 658]
The mlarbiter command starts the MobiLink arbiter server.

MobiLink Arbiter Server Utility for UNIX/Linux (mlarbiter.sh) [page 659]
The mlarbiter.sh command starts and stops the MobiLink arbiter server.

MobiLink Arbiter Stop Utility (mlarbstop) [page 660]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 647

The mlarbstop command is used to stop the MobiLink arbiter server.

Related Information

MobiLink Client Utilities
UltraLite Utilities
Database Administration Utilities

1.14.3.1 MobiLink Stop Utility (mlstop)

Stops the MobiLink server on the local computer.

 Syntax

mlstop [options] [name]

Option Description

@data Reads options from the specified environment variable or
configuration file. If both exist with the same name, the en
vironment variable is used.

To protect information in the configuration file, you can
use the File Hiding utility (dbfhide) to encode the contents
of the configuration file

-h Hard shutdown. MobiLink stops all synchronizations and
exits. Some remotes may report an error.

-q Quiet mode. This suppresses the banner.

-t time Soft shutdown, with a hard shutdown after the specified
time. time is a number followed by D, H, M, or S (for days,
hours, minutes and seconds). For example, -t 10m
specifies that the server should be shut down in 10 mi
nutes or when current synchronizations complete, which
ever is sooner. D, H, M, and S are not case sensitive.

-w Waits for the MobiLink server to shut down before return
ing from the command.

name If the MobiLink server is started using the -zs option, it
must be shut down by specifying the same server name.

648 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81ac11af6ce21014bb7a8e1727133665.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826f9fdc6ce21014a6d4f711a9bd750e.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/8135a8d86ce210149ee8b0f24eb80f5b.html

Remarks

By default (if neither -h or -t are specified), mlstop does a soft shutdown.

Soft shutdown

the MobiLink server stops accepting new connections and exits when the current synchronizations are
complete.
Hard shutdown

the MobiLink server stops all synchronizations and exits. Some remotes may report an error.

Related Information

Configuration Files
File Hiding Utility (dbfhide)
-zs mlsrv17 Option [page 108]

1.14.3.2 MobiLink User Authentication Utility (mluser)

Registers MobiLink users at the consolidated database. For SQL Anywhere remotes, the users must have
previously been created at the remote databases with the CREATE SYNCHRONIZATION USER statement.

 Syntax

mluser [options] -c "connection-string" { -f file | -u user [-p password] }

Option Description

@data Reads options from the specified environment variable or
configuration file. If both exist with the same name, the en
vironment variable is used.

To protect information in the configuration file, you can
use the File Hiding utility (dbfhide) to encode the contents
of the configuration file

-c "keyword=value;..." Use this to supply database connection parameters. The
connection string must provide the utility sufficient privi
leges to connect to the consolidated database using an
ODBC data source. This parameter is required.

-d Deletes the user name(s) specified by -f or -u. This option
cannot be used with mluser -r option.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 649

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html

Option Description

-f filename Reads the user names and passwords from the specified
file. The file should be a text file containing one user name
and password pair on each line, separated by white space.
You must specify either -f or -u.

-fips When set, mluser fails if support for FIPS-certified encryp
tion is not installed.

-n user authentication policy name Registers a MobiLink user with LDAP user authentication.

-o filename Logs output messages to the specified file.

-ot filename Truncate the message log file and then append output
messages to it. The default is to send output to the screen.

-pc collation-id Supplies a database collation ID for character set conver
sion of the user name and password. This should be one of
the SQL Anywhere collation labels.

This option is required when user names and passwords
are read from a file that is encoded in a different character
set than the default character set determined by locale.

-p password Password to associate with the user. This option can only
be used with -u.

-r remote-id Use this option with -u username and mluser resets the
synchronization state for the given remote ID and user
name. The last_upload_time and last_download_time col
umns in the ml_subscription table are reset to their default
values for the given username and remote ID. The default
values for the progress, last_upload_time, and last_down
load_time columns are 0, '1900/01/01 00:00:00', and
'1900/01/01 00:00:00', respectively.

This option cannot be used with the mluser -d option.

 Caution
This option resets the synchronization state informa
tion for the given username and remote ID and this
action cannot be undone. After the synchronization
status is reset, the MobiLink server always accepts
the first synchronization request from the client with
out checking the last synchronization status.

-u username Specify the user name to add (or delete, if used with -d).
Only one user can be specified on a single command line.
This option is used with -p if passwords are being used.
You must specify either -f or -u.

-v Specifies verbose logging.

650 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Remarks

Given a user/password pair, the mluser utility first attempts to add the user. If the user has already been added
to the consolidated database, it attempts to update the password for that user.

There are alternative ways to register user names in the consolidated database:

• Use SQL Central.
• Specify the -zu+ command line option with mlsrv17. In this case, any existing MobiLink users that have not

been added to the consolidated database are added when they first synchronize.

The MobiLink user must already exist in a remote database. To add users at the remote, you have the following
options:

• For SQL Anywhere remotes, set the name with CREATE SYNCHRONIZATION USER and synchronize with
that user name.

• For UltraLite remotes, you can either use the user_name field of the ul_sync_info structure; or in Java, use
the SetUserName() method of the ULSynchInfo class before synchronizing.

Related Information

Configuration Files
MobiLink Users in a Synchronization System
Transport Layer Security
File Hiding Utility (dbfhide)
Alternate Collations
-zu mlsrv17 Option [page 109]
CREATE SYNCHRONIZATION USER Statement [MobiLink]

1.14.3.3 MobiLink Replay Utility (mlreplay)

The mlreplay utility is a tool used to replay MobiLink protocol information that is recorded by the MobiLink
server.

 Syntax

mlreplay [options] [name=value [name2=value2...]] [[dll_name] filename]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 651

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/089ddfd5963649299c74e12feeacb0b6/17.0.01/en-US/81abfff76ce2101495d4a502cf86c555.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bc8c0bd6c5f1014890fd9779dc6da50.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/3bcda0436c5f1014b973a540a570cd5e.html
https://help.sap.com/viewer/93079d4ba8e44920ae63ffb4def91f5b/17.0.01/en-US/816ce1e96ce210148e83cfb8d989f496.html

Option Description

@data Reads options from the specified environment variable or
configuration file. If both exist with the same name, the en
vironment variable is used.

To protect information in the configuration file, you can
use the File Hiding utility (dbfhide) to encode the contents
of the configuration file

-ap Adjust the progress of synchronizations being replayed in
a replay session so that the mlreplay utility does not cause
progress offset mismatch warnings on the MobiLink
server and adjust sequence numbers to avoid sequence
number errors.

-f time_scale_factor A multiplier evenly applied to recorded times.

-ldt last_download_time Specify the last download time to send to the MobiLink
server during the replay session. If the recorded protocol
being replayed contains multiple synchronizations (this is
possible if a persistent connection was recorded) only the
first last download time is replaced; the rest will be re
placed by the last download time the MobiLink server
sends mlreplay during the replay session. Even if the -ldt
option is not used, mlreplay replaces the last download
time in all but the first synchronization with the last down
load time received from the MobiLink server during the re
play session. A last download time can also be specified
using the simulated client information file (when the -sci
option is used) or by the IdentifySimulatedClient callback
when a DLL is provided.

-ls Log the total running time, total time spent replaying, the
total number of repetitions that either completed success
fully, failed, or skipped for each simulated client. mlreplay
still logs this information before exiting even when this op
tion is not specified.

-n number_of_simulated_clients The number of simulated clients to run. The minimum is 1.

This option can be used with the -sci option when the
number of simulated clients specified by -n less than or
equal to the number of simulated clients in the simulated
client information file. When used together, -n specifies
the number of simulated clients run. These options allow
one simulated client information file, specifying x number
of simulated clients, to replay a protocol with 1 to x simu
lated clients.

-o file Log command line options and output messages to the
specified file.

-os size Limit the maximum size of a message log file. When the
log reaches the specified size (minimum 10 KB), it is re
named to YYMMDDxx.rlg and a new log file is started
with the original name.

652 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Option Description

-ot file Truncate the message log file. Log command line options
and output messages to the specified file.

-p password Replace passwords with the given password.

-ping seconds Ping a MobiLink server to determine whether the server is
ready to receive synchronizations. By default, mlreplay
pings the server for 60 seconds.

If the -ping option is used, the following return codes are
valid:

-1

Indicates that an error occurred.
0

Indicates that mlreplay was able to ping the server
and the server is ready to receive synchronizations.
1

Indicates that mlreplay tried to ping the server but got
no response; therefore, the server is not ready to re
ceive synchronizations.

-r remote ID Replace remote IDs with the given remote ID. This option
cannot be used with the -rg option.

-rep number_of_repetitions Specify the number of times simulated clients should re
play the recorded protocol. Each repetition can be cus
tomized if a replay DLL/shared object is used. When using
the generated replay API, the GetUploadTransaction, Get
DownloadApplyTime, ReportEndOfReplay, and DelayStar
tOfReplay callbacks are called for each repetition.

-rg Replace remote IDs with a GUID.

-rnt seconds Instruct simulated clients to start new repetitions of proto
col replays until the given number of seconds is reached.
Simulated clients are not stopped but no additional repeti
tions are started.

When specified, the numRepetitions parameter of any API
callbacks is set to 0

-rp pattern Replace the given pattern in usernames, passwords, and
remote IDs specified on the command line with the simu
lated client number.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 653

Option Description

-sci file Provide mlreplay with a list of user names, passwords, re
mote IDs, last download times, and script versions to use
for replaying. mlreplay creates a simulated client for each
line in the file to replay the recorded protocol with that cli
ent information. The format of each line should be: [user
name],[password],[remote ID],[last download time],
[script version]. The format of the last download time
should be yyyy-MM-dd hh:mm:ss.SSS. If the username,
password, last download time, or script version fields are
left blank, mlreplay uses the corresponding values in the
recorded protocol. If the remote ID is left blank, mlreplay
replaces the remote ID with a GUID. The -u, -p, -r, -rg, -ldt
and -sv options cannot be used with this option nor can a
DLL.

This option can be used with the -n option when the num
ber of simulated clients specified by -n is less than or
equal to the number of simulated clients in the simulated
client information file. When used together, -n specifies
the number of simulated clients run. These options allow
one simulated client information file, specifying x number
of simulated clients, to replay a protocol with 1 to x simu
lated clients.

-sv script version Replace script versions with the given script version.

-u user name Replace user names with the given user name.

-x stream(opts) The protocol stream and stream options to use to connect
to the MobiLink server. The liveness timeout can be set
with this option and is automatically adjusted based on
what the MobiLink server is using.

Remarks

The optional dll_name parameter is the name of the replay DLL you want mlreplay to use. The replay DLL is
compiled from the Replay API.

The name=value pairs are like command line arguments for the replay API. They are accessible in all mlreplay
callbacks and can be used to customize the behavior of the replay DLL. They are only used if a replay DLL is
used. For example, to use the same replay DLL to perform synchronizations to different databases (with
different instances of mlreplay) and at the end of the synchronizations you want to connect to the database to
make sure the data was upload successfully, you could use a name=value pair to specify the connection string
for the database rather than hard coding it in the replay DLL.

Each recorded file is called a recorded protocol file. Everything received from the start of a connection until
the end of that connection is recorded in a separate recorded protocol file. Each recorded protocol file is named

654 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

recorded_protocol_x.mlr where x is the job ID. The MobiLink server -rp option is used to specify that the
MobiLink server should record all MobiLink protocol it receives from its clients.

In addition to the data sent to and from the MobiLink server, the recorded protocol file also contains timing
information so that mlreplay can replay the recorded protocol information exactly as it was originally
performed. The timing information is also used to try to make the simulated client take the same amount of
time as the original client.

By default, mlreplay plays back the recorded protocol file without any changes. However, you can customize
the replay session using different options. The simulated client information consists of the username,
password, remote ID, last download time, and script version. This information can be customized using the -u, -
p, -r (or -rg), -ldt, and -sv options respectively.

The mlreplay utility can replay a recorded protocol file concurrently using multiple different simulated clients.
There are three ways to do this:

Using only the command line

You can concurrently replay a recorded protocol file by using a combination of the options -n, -u, -p, -sv, -r, -
rg, and -rp. The -n option is used to specify the number of simulated clients, whereas -u, -p, -sv, -r and -rg
are used to specify information about each client. By default, you can specify an asterisk (*) when using -u,
-p, -sv, and/or -r (as many times as you want), to tell mlreplay to replace the asterisk with the simulated
client number. You can change the asterisk to any other character using the -rp option).

For example, mlreplay -ap -x tcpip -n 2 -rp $ -u user_$ -p pwd_$ -r rid_$ -sv
test_script recorded_protocol.mlr runs mlreplay with two simulated clients. Simulated client 1
has the following information:

• user: user_1
• password: pwd_1
• remote id: rid_1
• script version: test_script

Simulated client 2 has the following information:

• user: user_2
• password: pwd_2
• remote id: rid_2
• script version: test_script

The following rules are used if any of the options are omitted:

• When a username, password, or script version is not specified, simulated clients use the username,
password, or script version that is recorded in the recorded protocol file.

• When a remote ID is not specified and the number of simulated clients is greater than 1, a different
GUID is automatically generated for each remote ID. When the number of simulated clients is 1, the
remote ID recorded in the recorded protocol file is used. You can force a GUID to be generated by using
the -rg option.

• When a username, password, remote ID, or script version is specified but does not contain an asterisk
(*) (or whatever character was specified by the -rp option), each simulated client uses the same
username, password, remote ID or script version.

Using a simulated client information file

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 655

You can concurrently replay a recorded protocol file by specifying a simulated client information file by
using the -sci option. The simulated client information file is a .csv file where each line has a username,
password, remote ID, last download time, and script version (in that order).

The mlreplay utility fills in any blank fields with the same rules described under the Using only the
command line option.

By default, mlreplay creates a simulated client for each line of information in the simulated client
information file. However, you can use the -n option along with the -sci file to limit the number of simulated
clients. If your simulated client information file specifies x simulated clients, you can use the -n option to
specify a number from 1 to x, so that mlreplay only uses that number of simulated clients.

Using a simulated client information file is more flexible than using just the command line but less flexible
than using a replay DLL.
Using a replay DLL

When using a replay DLL, you use the -n option to specify the number of simulated clients. All other
information is retrieved when mlreplay calls into the user implemented callbacks. This approach provides
the greatest flexibility as it allows other parts of the replay to be customized.

The mlreplay utility can run multiple simulated clients to replay a protocol at the command line. The number of
simulated clients to run can be specified by the -n option. Use the asterisk character to denote the simulated
client number when specifying usernames, passwords, remote IDs, and script versions with the -u, -p, -r, and -
sv options, respectively. The username, password, remote ID, and script version for each simulated client are
determined by the following rules:

• When a username or password is not specified, all simulated clients use the username or password
recorded in the recorded protocol file being replayed.

• When a remote ID is not specified and the number of simulated clients is greater than 1, each remote ID
becomes an automatically generated GUID. When the number of simulated clients is 1, the remote ID
recorded in the recorded protocol file is used; you can force a GUID value with the -rg option.

• When the specified username, password, or remote ID does not contain an asterisk, simulated clients use
the same username, password, or remote ID. When the specified username, password, or remote ID
contains at least one asterisk, simulated clients get their own unique username, password, or remote ID
where each asterisk is replaced with the simulated client number.

The amount of time the original synchronization took is part of what is recorded, so mlreplay can attempt to
replay the synchronization in the same amount of time.

Use the following MobiLink server options with the mlreplay utility:

-rp

Use this option to specify the directory from which synchronizations are recorded for playback with the
mlreplay utility.
-rrp

Use this option to run the mlreplay utility when the MobiLink server starts.
-lsc

Use this option to specify the connection information for the local server so the mlreplay utility can
connect to the server.

Further customizations can be made to the replay session using the MobiLink Generated Replay API utility.

656 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Related Information

Configuration Files
MobiLink Replay C++ Callbacks [page 570]
File Hiding Utility (dbfhide)
MobiLink Generated Replay API Utility (mlgenreplayapi) [page 657]
-rp mlsrv17 Option [page 80]
-rrp mlsrv17 Option [page 81]
-lsc mlsrv17 Option [page 65]

1.14.3.4 MobiLink Generated Replay API Utility
(mlgenreplayapi)

The mlgenreplayapi tool reads a recorded protocol file and generates the MobiLink Replay API for the schema
in that file.

 Syntax

mlgenreplayapi [options] filename

Option Description

@data Reads options from the specified environment variable or
configuration file. If both exist with the same name, the en
vironment variable is used.

To protect information in the configuration file, you can
use the File Hiding utility (dbfhide) to encode the contents
of the configuration file

-d directory The directory to output the generated files.

-o file Logs command line options and output messages to the
specified file.

-os size Limits the maximum size of a message log file. When the
log reaches the specified size (minimum 10 KB), it is re
named to YYMMDDxx.rlg and a new message log file is
started with the original name.

-ot file Truncates the message log file. Appends command line
options and output messages to the specified file. The de
fault is to send output to the screen.

Remarks

The API can be modified (only the code in mlreplaycallbacks.cpp needs to be modified) to customize the
data uploaded to the MobiLink server during the replay session. The Replay API can then be compiled into the

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 657

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html

replay DLL, which mlreplay uses to customize the replay session. The replay DLL and a simulated client
information file cannot be used at the same time. A callback is included in the Replay API that can be used to
give the simulated client information for each simulated client. The number of simulated clients to launch when
using the replay DLL is specified to mlreplay using the -n command line option.

Related Information

Configuration Files
MobiLink Replay C++ Callbacks [page 570]
File Hiding Utility (dbfhide)
MobiLink Replay Utility (mlreplay) [page 651]

1.14.3.5 MobiLink Arbiter Server Utility for Windows
(mlarbiter)

The mlarbiter command starts the MobiLink arbiter server.

 Syntax

mlarbiter

Remarks

The MobiLink arbiter listens on port 4953 by default.

The MobiLink arbiter server ensures that only a single MobiLink server in a server farm is running as the
primary server, preventing redundant notifications in a server-initiated synchronization environment.

This command is used with the MobiLink server -ca option, which provides the MobiLink server with the host
name of the arbiter.

If the MobiLink server is not able make a connection to the arbiter after the arbiter starts, the MobiLink server
tries to establish the connection every 15 seconds, and displays periodic error messages.

If the arbiter connection is dropped after the MobiLink servers in the server farm elect a primary server, the
primary server shuts down immediately and the secondary servers try to re-establish the arbiter connection
every 15 seconds. After a connection to the arbiter is established, the MobiLink servers re-elect a primary
server.

658 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813e42cc6ce2101485a5816b2d688224.html
https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/814147616ce21014aa2cc6898db20131.html

Example

The following example shows how to use the MobiLink arbiter server with a MobiLink server farm.

1. Start the MobiLink arbiter on a computer with the following command line.

mlarbiter

2. Start the MobiLink servers with a command line similar to the following. The MobiLink servers can be
started on the same computer as the arbiter, or on different computers.

mlsrv17 -c parameter1 -lsc parameter2 -ca Host_1 -notifier

In the above example, parameter1 is the consolidated database connection parameter and parameter2
is the local MobiLink server connection parameter. All the MobiLink servers in the same server farm must
contain the same setting for the -ca option.

Related Information

MobiLink Features and Architecture
-ca mlsrv17 Option [page 54]
-lsc mlsrv17 Option [page 65]

1.14.3.6 MobiLink Arbiter Server Utility for UNIX/Linux
(mlarbiter.sh)

The mlarbiter.sh command starts and stops the MobiLink arbiter server.

 Syntax

mlarbiter.sh [option]

Option Description

start Starts the MobiLink Arbiter Server utility.

stop Stops the MobiLink Arbiter Server utility.

Remarks

The MobiLink arbiter listens on port 4953 by default.

This command is used with the mlsrv17 -ca option, which provides the MobiLink server with the host name of
the arbiter.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 659

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b918596ce210148751d17f613010b8.html

The MobiLink arbiter server ensures that only a single MobiLink server in a server farm is running as the
primary server. This prevents redundant notifications in a server-initiated synchronization environment.

If the MobiLink server is not able make a connection to the arbiter after the arbiter starts, the MobiLink server
tries to establish the connection every 15 seconds, and displays periodic error messages.

If the arbiter connection is dropped after the MobiLink servers in the server farm elected a primary server, the
primary server shuts down immediately and the secondary servers try to re-establish the arbiter connection
every 15 seconds. After a connection to the arbiter is established, the MobiLink servers re-elect a primary
server.

Example

The following example shows how to use the MobiLink arbiter server with a MobiLink server farm.

1. Start the MobiLink arbiter on a computer with the following command line.

mlarbiter.sh start

2. Start the MobiLink servers with a command line similar to the following. The MobiLink servers can be
started on the same computer as the arbiter, or on different computers.

mlsrv17 -c parameter1 -lsc parameter2 -ca Host_1 -notifier

In the above example, parameter1 is the consolidated database connection parameter and parameter2
is the local MobiLink server connection parameter. All the MobiLink servers in the same server farm must
contain the same setting for the -ca option.

Related Information

MobiLink Features and Architecture
-ca mlsrv17 Option [page 54]
-lsc mlsrv17 Option [page 65]

1.14.3.7 MobiLink Arbiter Stop Utility (mlarbstop)

The mlarbstop command is used to stop the MobiLink arbiter server.

 Syntax

mlarbstop [option]

660 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b918596ce210148751d17f613010b8.html

Option Description

-y Stops the MobiLink arbiter server immediately, even if
there are connections to it.

Remarks

The mlarbstop utility can be used to stop the MobiLink arbiter server when it is running on the local computer.

If you run mlarbstop without the -y option and there are no connections to the arbiter server, the arbiter server
is stopped immediately.

If you run mlarbstop without the -y option and there are connections to the arbiter server, MobiLink server
issues an error.

Example

The following example shows how to stop the MobiLink arbiter server on a local computer.

1. Stop the MobiLink arbiter on a local computer with the following command line.

mlarbstop -y

Related Information

MobiLink Features and Architecture
MobiLink Arbiter Server Utility for Windows (mlarbiter) [page 658]
MobiLink Arbiter Server Utility for UNIX/Linux (mlarbiter.sh) [page 659]
-ca mlsrv17 Option [page 54]
-lsc mlsrv17 Option [page 65]

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 661

https://help.sap.com/viewer/a09ffd5a93ff477cbcf9d9b1aa4d0801/17.0.01/en-US/81b918596ce210148751d17f613010b8.html

1.14.4 MobiLink Data Mappings Between Remote and
Consolidated Databases

Depending on the consolidated database you are using, the MobiLink server may map a specified data type to
a different data type.

Data type mappings between SQL Anywhere and/or UltraLite and the following supported consolidated
databases are provided:

• Adaptive Server Enterprise
• IBM DB2 LUW (deprecated)
• Microsoft Azure
• Microsoft SQL Server
• MySQL
• Oracle
• SAP HANA
• SAP IQ Enterprise

In this section:

Adaptive Server Enterprise Data Mapping [page 663]
SQL Anywhere and UltraLite remote data types can be mapped to Adaptive Server Enterprise
consolidated data types and vice versa.

IBM DB2 LUW Data Mapping (Deprecated) [page 671]
SQL Anywhere and UltraLite remote data types can be mapped to IBM DB2 LUW consolidated data
types and vice versa.

Microsoft SQL Server Data Mapping [page 679]
SQL Anywhere and UltraLite remote data types can be mapped to Microsoft SQL Server consolidated
data types and vice versa.

MySQL Data Mapping [page 686]
SQL Anywhere and UltraLite remote data types can be mapped to MySQL consolidated data types and
vice versa.

Oracle Data Mapping [page 691]
SQL Anywhere and UltraLite remote data types can be mapped to Oracle consolidated data types and
vice versa.

SAP HANA Data Mapping [page 701]
SQL Anywhere and UltraLite remote data types can be mapped to SAP HANA consolidated data types
and vice versa.

SAP IQ Enterprise Data Mapping [page 705]
SQL Anywhere and UltraLite remote data types can be mapped to SAP IQ Enterprise consolidated data
types and vice versa.

662 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.4.1 Adaptive Server Enterprise Data Mapping

SQL Anywhere and UltraLite remote data types can be mapped to Adaptive Server Enterprise consolidated
data types and vice versa.

Mapping to Adaptive Server Enterprise Consolidated Data Types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to Adaptive
Server Enterprise consolidated data types. For example, a column of type LONG VARCHAR on the remote
database should be type TEXT on the consolidated database.

Maximum column length (MCL) depends on the Adaptive Server Enterprise page size. If the page size is 2K the
MCL is 1954; if the page size is 4K the MCL is 4002. For information about MCL, see the Adaptive Server
Enterprise documentation.

SQL Anywhere or UltraLite data type Adaptive Server Enterprise data type Notes

BIGINT BIGINT

BIT BIT

BINARY(n=<MCL) BINARY(n)

BINARY(n>MCL) IMAGE

CHAR(n=<MCL) VARCHAR(n)

CHAR(n>MCL) TEXT On download, ensure the values are not
too long.

DATE DATE For Adaptive Server Enterprise DATE
TIME, the year must be in the range
1753-9999.

For SQL Anywhere and UltraLite, the
time value must in the format
00:00:00.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 663

SQL Anywhere or UltraLite data type Adaptive Server Enterprise data type Notes

DATETIME DATETIME1 or BIGDATETIME2 The Adaptive Server Enterprise DATE
TIME values are accurate to 1/300 sec
ond. The last digit of the fractional sec
ond is always 0, 3, or 6. Other digits are
rounded to one of these three digits, so
0 and 1 round to 0; 2, 3, and 4 round to
3; 5, 6, 7, and 8 round to 6; and 9 rounds
to 10.

For download, SQL Anywhere keeps the
original values from Adaptive Server
Enterprise, but for upload, the values
may not be exactly the original values.

If DATETIME is used for a primary key,
conflict resolution may fail. To success
fully synchronize DATETIME, you
should round the fractional second to
10 milliseconds. Also, the year must be
in the range 1753-9999.

DECIMAL(p<39, s) DECIMAL(p,s) The precision of the Adaptive Server
Enterprise NUMERIC can be from 1 to
38 digits (p<39).

DECIMAL(p>=39,s) There is no corresponding data type in
Adaptive Server Enterprise.

DOUBLE DOUBLE PRECISION

FLOAT(p) FLOAT(p)

IMAGE IMAGE

INTEGER INTEGER

LONG BINARY IMAGE

LONG NVARCHAR UNITEXT

LONG VARBIT TEXT

LONG VARCHAR TEXT

MONEY MONEY

NCHAR(c=<MCL) UNIVARCHAR(c/2)

NCHAR(c>MCL) UNITEXT On download, ensure the values are not
too long.

664 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type Adaptive Server Enterprise data type Notes

NTEXT UNITEXT

NUMERIC(p<39,s) NUMERIC(p,s) The precision of the Adaptive Server
Enterprise decimal can be from 1 to 38
digits (p<39).

NUMERIC(p>=39,s) There is no corresponding data type in
Adaptive Server Enterprise.

NVARCHAR(c=<MCL) UNIVARCHAR(c/2)

NVARCHAR(c>MCL) UNIVARCHAR(c/2)

REAL REAL

SMALLDATETIME DATETIME1 or BIGDATETIME2 The Adaptive Server Enterprise DATE
TIME values are accurate to 1/300 sec
ond. The last digit of the fractional sec
ond is always 0, 3, or 6. Other digits are
rounded to one of these three digits, so
0 and 1 round to 0; 2, 3, and 4 round to
3; 5, 6, 7, and 8 round to 6; and 9 rounds
to 10. However, SQL Anywhere or Ultra
Lite SMALLDATETIME is accurate to
the microsecond. Furthermore, the
DATE part of a DATETIME in ASE can be
any dates between January 1, 1753 and
December 31, 9999, but the DATE part
of a SMALLDATETIME in SQL Anywhere
and UltraLite is restricted to dates be
tween January 1, 1900 and June 6,
2079. Therefore any DATETIME values
entered in an Adaptive Server Enter
prise database or a SQL Anywhere/
UltraLite database must be restricted
to satisfy these differences when these
values are involved in synchronization.
Otherwise, data inconsistency may oc
cur.

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

TEXT TEXT

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 665

SQL Anywhere or UltraLite data type Adaptive Server Enterprise data type Notes

TIME TIME1 or BIGTIME2 The Adaptive Server Enterprise TIME
values are accurate to 1/300 second.
The last digit of the fractional second is
always 0, 3, or 6. Other digits are
rounded to one of these three digits, so
0 and 1 round to 0; 2, 3, and 4 round to
3; 5, 6, 7, and 8 round to 6; and 9 rounds
to 10. For download, SQL Anywhere
keeps the original values from Adaptive
Server Enterprise, but for upload, the
values may not be exactly the original
values. If TIME is used for a primary key,
conflict resolution may fail. To success
fully synchronize TIME, you should
round the fractional second to 10 milli
seconds.

TIMESTAMP DATETIME1 or BIGDATETIME2 The Adaptive Server Enterprise DATE
TIME values are accurate to 1/300 sec
ond. The last digit of the fractional sec
ond is always 0, 3, or 6. Other digits are
rounded to one of these three digits, so,
0 and 1 round to 0; 2, 3, and 4 round to
3; 5, 6, 7, and 8 round to 6; and 9 rounds
to 10.

For download, SQL Anywhere keeps the
original values from Adaptive Server
Enterprise, but for upload, the values
may not be exactly the original values.

If DATETIME is used for a primary key,
conflict resolution may fail. To success
fully synchronize DATETIME, you
should round the fractional second to
10 milliseconds. Also, the year must be
in the range 1753-9999.

666 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type Adaptive Server Enterprise data type Notes

TIMESTAMP WITH TIME ZONE VARCHAR(34) There is no equivalent data type in
Adaptive Server Enterprise. Therefore,
a TIMESTAMP WITH TIME ZONE col
umn should be mapped to a VAR
CHAR(34) column. In upload, the Mobi
Link server first converts the data to a
string using the format YYYY-MM-DD
HH:NN:SS.SSSSSS [+|-]HH:NN and
then applies it to the consolidated data
base. In download, it converts the data
from string to TIMESTAMP WITH TIME
ZONE. Ensure the data in the consoli
dated database follows this format or
the download will fail.

TINYINT TINYINT

UNIQUEIDENTIFIER CHAR(36)

UNIQUEIDENTIFIERSTR CHAR(36) Do not use UNIQUEIDENTIFIERSTR.
Use UNIQUEIDENTIFIER instead.

UNSIGNED BIGINT UNSIGNED BIGINT

UNSIGNED INTEGER UNSIGNED INT

UNSIGNED SMALLINT UNSIGNED SMALLINT

UNSIGNED TINYINT TINYINT

VARBINARY(n=<MCL) VARBINARY

VARBINARY(n>MCL) IMAGE

VARBIT(n=<MCL) VARCHAR(n)

VARBIT(n>MCL) TEXT

VARCHAR(n=<MCL) VARCHAR(n)

VARCHAR(n>MCL) TEXT

XML TEXT

1 Only applies to Adaptive Server Enterprise before version 15.5.

2 Only applies to Adaptive Server Enterprise version 15.5 and later.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 667

Mapping to SQL Anywhere or UltraLite Remote Data Types

The following table identifies how Adaptive Server Enterprise consolidated data types are mapped to SQL
Anywhere and UltraLite remote data types. For example, a column of type DOUBLE PRECISION on the
consolidated database should be type DOUBLE on the remote database.

Adaptive Server Enterprise data type SQL Anywhere or UltraLite data type Notes

BIGINT BIGINT

BIGDATETIME1 TIMESTAMP

BIGTIME1 TIME

BINARY(n) BINARY(n)

BIT BIT

CHAR(n) VARCHAR(n) There is no equivalence between SQL
Anywhere CHAR/NCHAR and Adaptive
Server Enterprise CHAR/NCHAR. SQL
Anywhere CHAR/NCHAR is equivalent
to VARCHAR/NVARCHAR. You should
not use CHAR/NCHAR in a consoli
dated database column that is
synchronized. If you must use non-SQL
Anywhere CHAR/NCHAR, run the Mo
biLink server with the -b option.

DATE DATE For SQL Anywhere and UltraLite, the
time value must in the format
00:00:00.

DATETIME DATETIME The Adaptive Server Enterprise DATE
TIME values are accurate to 1/300 sec
ond. The last digit of the fractional sec
ond is always one of 0, 3, or 6. Other
digit numbers are rounded to one of
these three digits, so 0 and 1 round to
0; 2, 3, and 4 round to 3; 5, 6, 7, and 8
round to 6; and 9 rounds to 10.

For download, SQL Anywhere keeps the
original values from Adaptive Server
Enterprise, but for upload, the values
may not be exactly the original values.
Conflict resolution may fail. To success
fully synchronize DATETIME, you
should round the fractional second to
10 milliseconds. Also, the year must be
in the range 1753-9999.

668 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Adaptive Server Enterprise data type SQL Anywhere or UltraLite data type Notes

DECIMAL(p,s) DECIMAL(p,s)

DOUBLE PRECISION DOUBLE

FLOAT(p) FLOAT(p)

IMAGE LONG BINARY

INT INT

MONEY MONEY

NCHAR(n) VARCHAR(n) The Adaptive Server Enterprise NCHAR
and NVARCHAR store multibyte na
tional character strings, they are differ-
ent from SQL Anywhere NCHAR and
NVARCHAR. In a multibyte environ
ment, use SQL Anywhere or UltraLite
VARCHAR.

NUMERIC(p,s) NUMERIC(p,s)

NVARCHAR(n) VARCHAR(n) The Adaptive Server Enterprise NCHAR
and NVARCHAR store multibyte na
tional character strings, they are differ-
ent from SQL Anywhere NCHAR and
NVARCHAR. In a multibyte environ
ment, use SQL Anywhere or UltraLite
VARCHAR.

REAL REAL

SMALLDATETIME SMALLDATETIME The Adaptive Server Enterprise SMALL
DATETIME is accurate to the minute.
29.998 seconds or lower are rounded
down to the nearest minute; values with
29.999 seconds or higher are rounded
up to the nearest minute. SQL Any
where or UltraLite SMALLDATETIME is
accurate to the microsecond. To suc
cessfully synchronize, SQL Anywhere or
UltraLite SMALLDATETIME must be
rounded to the minute. Also, the year
must be in the range 1900-2078.

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 669

Adaptive Server Enterprise data type SQL Anywhere or UltraLite data type Notes

TEXT LONG VARCHAR

TIME TIME The Adaptive Server Enterprise TIME
values are accurate to 1/300 second.
The last digit of the fractional second is
always one of 0, 3, or 6. Other digit
numbers are rounded to one of these
three digits, so 0 and 1 round to 0; 2, 3,
and 4 round to 3; 5, 6, 7, and 8 round to
6; and 9 rounds to 10.

For download, SQL Anywhere keeps the
original values from Adaptive Server
Enterprise, but for upload, the values
may not be exactly the original values.
Conflict resolution may fail. To success
fully synchronize TIME, round the frac
tional second to 10 milliseconds.

TIMESTAMP VARBINARY(8) Within Adaptive Server Enterprise,
TIMESTAMP is a binary counter that
gets incremented with every change to
a row. So, each table can only contain
one TIMESTAMP column and it does
not make sense to synchronize it. If it
must be in a synchronization, map it to
a VARBINARY(8) data type in SQL Any
where or UltraLite.

This TIMESTAMP column cannot be ex
plicitly inserted or updated, because it
is maintained by the server. Keep this in
mind when you are implementing up
load scripts for tables that contain such
columns.

TINYINT TINYINT

UNSIGNED BIGINT UNSIGNED BIGINT

UNSIGNED INT UNSIGNED INT

UNSIGNED SMALLINT UNSIGNED SMALLINT

VARBINARY(n) VARBINARY(n)

VARCHAR(n) VARCHAR(n)

UNICHAR(n) NVARCHAR(n) Not available in UltraLite.

670 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Adaptive Server Enterprise data type SQL Anywhere or UltraLite data type Notes

UNITEXT LONG NVARCHAR Not available in UltraLite.

UNIVARCHAR(n) NVARCHAR(n) Not available in UltraLite.

1 Only applies to Adaptive Server Enterprise version 15.5 and later.

1.14.4.2 IBM DB2 LUW Data Mapping (Deprecated)

SQL Anywhere and UltraLite remote data types can be mapped to IBM DB2 LUW consolidated data types and
vice versa.

Mapping to IBM DB2 LUW Consolidated Data Types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to IBM DB2 LUW
consolidated data types. For example, a column of type BIT on the remote database should be type SMALLINT
on the consolidated database.

When creating an IBM DB2 LUW table, you need to pay attention to the DB2 page size. IBM DB2 LUW has a
maximum row length (MRL) based on the page size: the MRL is 4005 when the page size is 4K, 8101 when 8K,
16293 when 16K and 32677 when 32K. The length of all columns in a table cannot exceed the above limitation.
If a table has a BLOB or CLOB column, you count row length using the LOB locator, not BLOB or CLOB data
directly. For details, see the IBM DB2 LUW documentation.

SQL Anywhere or UltraLite data type IBM DB2 LUW data type Notes

BIGINT BIGINT

BINARY(n<MRL) VARCHAR(n) FOR BIT DATA

BINARY(n>=MRL) BLOB(n)

BIT SMALLINT

CHAR(n<MRL) VARCHAR(n)

CHAR(n>=MRL) CLOB(n) IBM DB2 LUW values can be longer
than SQL Anywhere or UltraLite values,
so make sure values are not too big
when downloading.

DATE DATE For SQL Anywhere and UltraLite, the
time value must in the format
00:00:00.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 671

SQL Anywhere or UltraLite data type IBM DB2 LUW data type Notes

DATETIME TIMESTAMP

DECIMAL(p<32,s) DECIMAL(p,s) The precision of SQL Anywhere DECI
MAL is between 1 and 127. The maxi
mum precision of IBM DB2 LUW DECI
MAL is 31.

DECIMAL(p>=32,s) Any data of SQL Anywhere DECIMAL
precision greater than 31 cannot be
synchronized to IBM DB2 LUW.

DOUBLE DOUBLE DOUBLE is an imprecise numeric data
type that is subject to rounding. When
working with different types of comput
ers, the underlying storage of DOUBLE
is often different, resulting in different
rounding. DOUBLE is a bad choice to
use in a primary key because primary
keys are looking for equality. This is es
pecially true in a synchronization envi
ronment because the consolidated da
tabase often runs on different hardware
from the remote database.

FLOAT(1-24) REAL FLOAT can cause problems if the con
solidated and remote databases don't
allow the exact same (imprecise) val
ues. Not all possible values are tested,
so care must be taken. To avoid prob
lems, do not use these types as part of
a primary key.

FLOAT(25-53) DOUBLE FLOAT can cause problems if the con
solidated and remote databases don't
allow the exact same (imprecise) val
ues. Not all possible values are tested,
so care must be taken. To avoid prob
lems, do not use these types as part of
a primary key.

IMAGE BLOB(n)

INTEGER INTEGER

LONG BINARY BLOB(n)

672 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type IBM DB2 LUW data type Notes

LONG NVARCHAR CLOB(n) There is no corresponding data type in
IBM DB2 LUW. If the IBM DB2 LUW
character set is Unicode, SQL Any
where LONG NVARCHAR can synchron
ize to IBM DB2 CLOB. UltraLite doesn't
have LONG NVARCHAR.

LONG VARBIT CLOB(n)

LONG VARCHAR CLOB(n)

MONEY DECIMAL(19,4)

NCHAR(c) VARCHAR(n) or CLOB(n) There is no corresponding data type in
IBM DB2 LUW. If the IBM DB2 LUW
character set is Unicode, NCHAR can
synchronize to IBM DB2 LUW VAR
CHAR or CLOB. The size of SQL Any
where NCHAR is characters and the
size of IBM DB2 LUW VARCHAR is
bytes. If you map to VARCHAR, the total
bytes of NCHAR cannot be bigger than
MRL. Otherwise, NCHAR should map to
CLOB. It is difficult to calculate the
number of bytes in NCHAR(c), but it is
approximately c=n/4. In general, if c is
less than MRL/4, map to VARCHAR(n),
but if c is greater than or equal to
MRL/4, map to CLOB(n).

NUMERIC(p<32,s) NUMERIC(p,s)

NUMERIC(p>=32,s) There is no corresponding data type in
IBM DB2 LUW.

NTEXT CLOB(n) There is no corresponding data type in
IBM DB2 LUW. If the IBM DB2 LUW
character set is Unicode, NTEXT can
synchronize to IBM DB2 LUW CLOB.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 673

SQL Anywhere or UltraLite data type IBM DB2 LUW data type Notes

NVARCHAR(c) VARCHAR(n) or CLOB(n) There is no corresponding data type in
IBM DB2 LUW. If the IBM DB2 LUW
character set is Unicode, NVARCHAR
can synchronize to IBM DB2 LUW VAR
CHAR or CLOB. The size of SQL Any
where NVARCHAR is characters and
the size of IBM DB2 LUW VARCHAR is
bytes. If you map to VARCHAR, the total
bytes of NVARCHAR cannot be bigger
than MRL. Otherwise, NVARCHAR
should map to CLOB. It is difficult to
calculate the number of bytes in
NVARCHAR(c), but it is approximately
c=n/4. In general, if c is less than
MRL/4, map to VARCHAR(n), but if c is
greater than or equal to MRL/4, map to
CLOB(n).

REAL REAL REAL can cause problems if the con
solidated and remote databases don't
allow the exact same (imprecise) val
ues. Not all possible values are tested,
so care must be taken. To avoid prob
lems, do not use these types as part of
a primary key.

SMALLDATETIME TIMESTAMP

SMALLINT SMALLINT

SMALLMONEY DECIMAL(10,4)

ST_GEOMETRY ST_GEOMETRY

TEXT CLOB(n)

674 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type IBM DB2 LUW data type Notes

TIME TIMESTAMP or TIME SQL Anywhere and UltraLite TIME val
ues with fractional seconds require IBM
DB2 LUW TIMESTAMP. SQL Anywhere
and UltraLite time values with fractional
seconds that are always zero can use
IBM DB2 TIME. To preserve the preci
sion of a time column, the MobiLink
server always binds the TIME column
with the ODBC SQL_TYPE_TIMESTAMP
data type. When the consolidated data
base is running on a DB2 9.7 server, you
may need to use DB2 conversion func
tions to explicitly convert the column
between TIMESTAMP and TIME if the
column is a part of a primary key.

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE VARCHAR(34) There is no equivalent data type in IBM
DB2 LUW. Therefore, a TIMESTAMP
WITH TIME ZONE column should be
mapped to a VARCHAR(34) column. In
upload, the MobiLink server first con
verts the data to a string using the for
mat YYYY-MM-DD HH:NN:SS.SSSSSS
[+|-]HH:NN and then applies it to the
consolidated database. In download, it
converts the data from string to TIME
STAMP WITH TIME ZONE. Ensure the
data in the consolidated database fol
lows this format or the download will
fail.

TINYINT SMALLINT For download, IBM DB2 LUW values
must be non-negative.

UNIQUEIDENTIFIER CHAR(36)

UNIQUEIDENTIFIERSTR CHAR(36) UNIQUEIDENTIFIERSTR is not recom
mended for IBM DB2 LUW. Use
UNIQUEIDENTIFIER instead.

UNSIGNED BIGINT DECIMAL(20) For download, IBM DB2 LUW values
must be non-negative.

UNSIGNED INTEGER DECIMAL(11) For download, IBM DB2 LUW values
must be non-negative.

UNSIGNED SMALLINT DECIMAL(5) For download, IBM DB2 LUW values
must be non-negative.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 675

SQL Anywhere or UltraLite data type IBM DB2 LUW data type Notes

UNSIGNED TINYINT SMALLINT For download, IBM DB2 LUW values
must be non-negative.

VARBINARY(n<MRL) VARCHAR(n) FOR BIT DATA

VARBINARY(n>=MRL) BLOB(n)

VARBIT(n<MRL) VARCHAR(n)

VARBIT(n>=MRL) CLOB(n)

VARCHAR(n<MRL) VARCHAR(n)

VARCHAR(n>=MRL) CLOB(n) IBM DB2 LUW values can be longer
than SQL Anywhere or UltraLite values,
so make sure values are not too big
when downloading.

XML CLOB(n)

Mapping to SQL Anywhere or UltraLite Remote Data Types

The following table identifies how IBM DB2 LUW consolidated data types are mapped to SQL Anywhere and
UltraLite remote data types. For example, a column of type INT on the consolidated database should be type
INTEGER on the remote database.

When creating an IBM DB2 LUW table, you need to pay attention to the page size. IBM DB2 LUW has a
maximum row length based on the page size: the MRL is 4005 when the page size is 4K, 8101 when 8K, 16293
when 16K and 32677 when 32K. The length of all columns in a table cannot exceed the above limitation. If a
table has a BLOB or CLOB column, you count row length using the LOB locator, not BLOB or CLOB data
directly. For details, see the IBM DB2 LUW documentation.

IBM DB2 LUW data type SQL Anywhere or UltraLite data type Notes

BLOB LONG BINARY

BIGINT BIGINT

CHAR(n) VARCHAR(n) There is no equivalent to IBM DB2 LUW
CHAR in SQL Anywhere. You should not
use CHAR in a consolidated database
column that is synchronized. If you
must synchronize IBM DB2 LUW CHAR
columns, run MobiLink server with the -
b option.

CHAR(n) FOR BIT DATA BINARY(n)

676 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

IBM DB2 LUW data type SQL Anywhere or UltraLite data type Notes

CLOB(n) LONG VARCHAR

DATE DATE For SQL Anywhere and UltraLite, the
time value must in the format
00:00:00.

DB2GSE.ST_GEOMETRY ST_GEOMETRY

DBCLOB(n) LONG VARCHAR The data type DBCLOB(n) is only used
for double-byte characters. SQL Any
where does not have a corresponding
data type. When the IBM DB2 LUW
character set is Unicode, DBCLOB(n) is
equivalent to CLOB.

DECIMAL(p,s) DECIMAL(p,s)

DOUBLE DOUBLE DOUBLE is an imprecise numeric data
type that is subject to rounding. When
working with different types of comput
ers, the underlying storage of DOUBLE
is often different, resulting in different
rounding. DOUBLE is a bad choice to
use in a primary key because primary
keys are looking for equality. This is es
pecially true in a synchronization envi
ronment because the consolidated da
tabase often runs on different hardware
from the remote database.

FLOAT DOUBLE FLOAT can cause problems if the con
solidated and remote databases don't
allow the exact same (imprecise) val
ues. Not all possible values are tested,
so care must be taken. To avoid prob
lems, do not use these types as part of
a primary key.

GRAPHIC(n) VARCHAR(2n) IBM DB2 LUW GRAPHIC does blank-
padding, but SQL Anywhere CHAR does
not. Do not use this data type.

The data type GRAPHIC is only used for
double-byte characters. SQL Anywhere
does not have a corresponding data
type. When the IBM DB2 LUW character
set is Unicode, GRAPHIC is equivalent
to CHAR.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 677

IBM DB2 LUW data type SQL Anywhere or UltraLite data type Notes

INT INTEGER

LONG VARCHAR VARCHAR(32700)

LONG VARCHAR FOR BIT DATA VARBINARY(32700)

LONG VARGRAPHIC(n) VARCHAR(32700) The data type LONG VARGRAPHIC is
only used for double-byte characters.
SQL Anywhere does not have a corre
sponding data type. When the IBM DB2
LUW character set is Unicode, LONG
VARGRAPHIC is equivalent LONG VAR
CHAR.

NUMERIC(p,s) NUMERIC(p,s)

REAL REAL REAL can cause problems if the con
solidated and remote databases don't
allow the exact same (imprecise) val
ues. Not all possible values are tested,
so care must be taken. To avoid prob
lems, do not use these types as part of
a primary key.

SMALLINT SMALLINT

TIME TIME The fractional seconds values from SQL
Anywhere TIME values are truncated on
download. To avoid problems, do not
use fractional seconds. To preserve the
precision of a TIME column, the Mobi
Link server always binds the time col
umn with the ODBC SQL_TYPE_TIME
STAMP data type. When the consoli
dated database is running on a DB2 9.7
server, you may need to use DB2 con
version functions to explicitly convert
the column between TIMESTAMP and
TIME if the column is a part of a primary
key.

TIMESTAMP TIMESTAMP

VARCHAR(n) VARCHAR(n)

VARCHAR(n) FOR BIT DATA VARBINARY(n)

678 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

IBM DB2 LUW data type SQL Anywhere or UltraLite data type Notes

VARGRAPHIC(n) VARCHAR(2n) The data type VARGRAPHIC is only
used for double-byte characters. SQL
Anywhere does not have a correspond
ing data type. When the IBM DB2 LUW
character set is Unicode, VARGRAPHIC
is equivalent to VARCHAR.

1.14.4.3 Microsoft SQL Server Data Mapping

SQL Anywhere and UltraLite remote data types can be mapped to Microsoft SQL Server consolidated data
types and vice versa.

Mapping to Microsoft SQL Server Consolidated Data Types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to Microsoft SQL
Server consolidated data types. For example, a column of type DATETIME on the remote database should be
type DATETIME2 on the consolidated database.

SQL Anywhere or UltraLite data type Microsoft SQL Server data type Notes

BIGINT BIGINT

BINARY(n<=8000) VARBINARY(n)

BINARY(n>8000) VARBINARY(MAX)

BIT BIT

CHAR(n<=8000) VARCHAR(n)

CHAR(n>8000) VARCHAR(MAX)

DATE DATE

DATETIME DATETIME2 Microsoft SQL Server DATETIME2 and
TIME values are accurate to 100 nano
seconds. However, TIMESTAMP and
TIME values are only accurate to 1 mi
crosecond. To successfully synchronize
DATETIME2 and TIME, round the frac
tional second to 1 microsecond.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 679

SQL Anywhere or UltraLite data type Microsoft SQL Server data type Notes

DECIMAL(p=<38,s) DECIMAL(p,s) Microsoft SQL Server DECIMAL/
NUMERIC precision ranges from 1 to
38, so p must be less than 39.

DECIMAL(p>38,s) There is no corresponding data type in
Microsoft SQL Server.

DOUBLE FLOAT(53)

FLOAT(p) FLOAT(p)

IMAGE VARBINARY(MAX)

INTEGER INT

LONG BINARY VARBINARY(MAX)

LONG NVARCHAR NVARCHAR(MAX)

LONG VARBIT VARCHAR(MAX)

LONG VARCHAR VARCHAR(MAX)

MONEY MONEY

NCHAR(n<=4000) NVARCHAR(c)

NCHAR(n>4000) NVARCHAR(MAX)

NTEXT NVARCHAR(MAX)

NUMERIC(p=<38,s) NUMERIC(p,s) Microsoft SQL Server DECIMAL/
NUMERIC precision ranges from 1 to
38, so p must be less than 39.

NUMERIC(p>38,s) There is no corresponding data type in
Microsoft SQL Server.

NVARCHAR(n<=4000) NVARCHAR(c)

NVARCHAR(n>4000) NVARCHAR(MAX)

REAL REAL

680 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type Microsoft SQL Server data type Notes

SMALLDATETIME SMALLDATETIME SQL Anywhere and UltraLite SMALLDA
TETIME is implemented as TIME
STAMP. Microsoft SQL Server SMALL
DATETIME is accurate to the minute.
29.998 seconds or lower are rounded
down to the nearest minute; values with
29.999 seconds or higher are rounded
up to the nearest minute. SQL Any
where or UltraLite SMALLDATETIME is
accurate to the microsecond. To suc
cessfully synchronize, SQL Anywhere or
UltraLite SMALLDATETIME must be
rounded to the minute. The year must
be in the range 1900-2078.

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

ST_GEOMETRY GEOMETRY

TEXT VARCHAR(MAX)

TIME TIME Microsoft SQL Server DATETIME2 and
TIME values are accurate to 100 nano
seconds. However, TIMESTAMP and
TIME values are only accurate to 1 mi
crosecond. To successfully synchronize
DATETIME2 and TIME, round the frac
tional second to 1 microsecond.

TIMESTAMP DATETIME2 Microsoft SQL Server DATETIME2 and
TIME values are accurate to 100 nano
seconds. However, TIMESTAMP and
TIME values are only accurate to 1 mi
crosecond. To successfully synchronize
DATETIME2 and TIME, round the frac
tional second to 1 microsecond.

TIMESTAMP WITH TIME ZONE DATETIMEOFFSET

TINYINT TINYINT For download, values must be non-neg
ative.

UNIQUEIDENTIFIER UNIQUEIDENTIFIER

UNIQUEIDENTIFIERSTR UNIQUEIDENTIFIER

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 681

SQL Anywhere or UltraLite data type Microsoft SQL Server data type Notes

UNSIGNED BIGINT NUMERIC(20) For download, values must be non-neg
ative.

UNSIGNED INTEGER NUMERIC(11) For download, values must be non-neg
ative.

UNSIGNED TINYINT TINYINT For download, values must be non-neg
ative.

UNSIGNED SMALLINT INT For download, values must be non-neg
ative.

VARBINARY(n<=8000) VARBINARY(n)

VARBINARY(n>8000) VARBINARY(MAX)

VARBIT(n<=8000) VARCHAR(n)

VARBIT(n>8000) VARCHAR(MAX)

VARCHAR(n<=8000) VARCHAR(c)

VARCHAR(n>8000) VARCHAR(MAX)

XML XML or VARCHAR(MAX) For Microsoft SQL Server 2005, use
XML. For other versions, use VAR
CHAR(MAX).

Mapping to SQL Anywhere or UltraLite Remote Data Types

The following table identifies how Microsoft SQL Server consolidated data types are mapped to SQL Anywhere
and UltraLite remote data types. For example, a column of type TEXT on the remote database should be type
LONG VARCHAR on the consolidated database.

Microsoft SQL Server data type SQL Anywhere or UltraLite data type Notes

BIGINT BIGINT

BINARY(n) BINARY(n)

BIT BIT

682 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Microsoft SQL Server data type SQL Anywhere or UltraLite data type Notes

CHAR(n) VARCHAR(n) A Microsoft SQL Server CHAR column
is blank padded. A SQL Anywhere
CHAR column is not blank padded by
default and is equivalent to a VARCHAR
column. Therefore, try to avoid using
the CHAR data type in the synchroniza
tion tables in Microsoft SQL Server. If
you must use the CHAR data type in the
Microsoft SQL Server consolidated da
tabase, run the MobiLink server with
the -b command line option to help re
solve the differences between SQL Any
where CHAR and non-SQL Anywhere
CHAR.

DATE DATE

DATETIME TIMESTAMP or DATETIME Microsoft SQL Server DATETIME values
are accurate to 1/300 second. The last
digit of the fractional second is always
0, 3, or 6. Other digits are rounded to
one of these three digits, so, 0 and 1
round to 0; 2, 3, and 4 round to 3; 5, 6, 7,
and 8 round to 6; and 9 rounds to 10.
For download, SQL Anywhere keeps the
original values from Microsoft SQL
Server, but for upload, the values may
not be exactly the original values. If DA
TETIME is used for a primary key, con
flict resolution may fail. To successfully
synchronize DATETIME, you should
round the fractional second to 10 milli
seconds. The year must be in the range
1753-9999.

DATETIME2 TIMESTAMP Microsoft SQL Server DATETIME2 and
TIME values are accurate to 100 nano
seconds. However, TIMESTAMP and
TIME values are only accurate to 1 mi
crosecond. To successfully synchronize
DATETIME2 and TIME, it is recom
mended that you round the fractional
second to 1 microsecond.

DECIMAL(p,s) DECIMAL(p,s)

FLOAT(p) FLOAT(p)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 683

Microsoft SQL Server data type SQL Anywhere or UltraLite data type Notes

GEOMETRY ST_GEOMETRY

IMAGE LONG BINARY

INT INT

MONEY MONEY

NCHAR(n) NVARCHAR(c) Not available in UltraLite.

There is no equivalence between SQL
Anywhere NCHAR and non-SQL Any
where NCHAR. SQL Anywhere NCHAR
is equivalent to NVARCHAR. You should
not use NCHAR in a consolidated data
base column that is synchronized. If
you must use non-SQL Anywhere
NCHAR, run the MobiLink server with
the -b option.

NTEXT LONG NVARCHAR Not available in UltraLite.

NVARCHAR(c) NVARCHAR(c) Not available in UltraLite.

NVARCHAR(MAX) LONG NVARCHAR Not available in UltraLite.

NUMERIC(p,s) NUMERIC(p,s)

REAL REAL REAL can cause problems if the con
solidated and remote databases don't
allow the exact same (imprecise) val
ues. Not all possible values are tested,
so care must be taken. To avoid prob
lems, do not use these types as part of
a primary key.

684 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Microsoft SQL Server data type SQL Anywhere or UltraLite data type Notes

SMALLDATETIME SMALLDATETIME SQL Anywhere and UltraLite SMALLDA
TETIME is implemented as TIME
STAMP. Microsoft SQL Server SMALL
DATETIME is accurate to the minute.
29.998 seconds or lower are rounded
down to the nearest minute; values with
29.999 seconds or higher are rounded
up to the nearest minute. SQL Any
where or UltraLite SMALLDATETIME is
accurate to the microsecond. To suc
cessfully synchronize, SQL Anywhere or
UltraLite SMALLDATETIME must be
rounded to the minute. The year must
be in the range 1900-2078.

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

TEXT LONG VARCHAR

TIME TIME Microsoft SQL Server DATETIME2 and
TIME values are accurate to 100 nano
seconds. However, TIMESTAMP and
TIME values are only accurate to 1 mi
crosecond. To successfully synchronize
DATETIME2 and TIME, round the frac
tional second to 1 microsecond.

TIMESTAMP VARBINARY(8) Within Microsoft SQL Server, TIME
STAMP is a binary counter that gets in
cremented with every change to a row.
So, each table can only contain one
TIMESTAMP column and it does not
make sense to synchronize it. If it must
be in a synchronization, map it to a
VARBINARY(8) data type in SQL Any
where or UltraLite.

This TIMESTAMP column cannot be ex
plicitly inserted or updated, because it
is maintained by the server. Keep this in
mind when you are implementing up
load scripts for tables that contain such
columns.

DATETIMEOFFSET TIMESTAMP WITH TIME ZONE

TINYINT TINYINT

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 685

Microsoft SQL Server data type SQL Anywhere or UltraLite data type Notes

UNIQUEIDENTIFIER UNIQUEIDENTIFIER

VARBINARY(n) VARBINARY(n)

VARBINARY(MAX) LONG BINARY

VARCHAR(n) VARCHAR(n)

VARCHAR(MAX) LONG VARCHAR

XML XML

1.14.4.4 MySQL Data Mapping

SQL Anywhere and UltraLite remote data types can be mapped to MySQL consolidated data types and vice
versa.

Mapping to MySQL Consolidated Data Types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to MySQL
consolidated data types. For example, a column of type TEXT on the remote database should be type
LONGTEXT on the consolidated database.

SQL Anywhere or UltraLite data type MySQL data type Notes

BIGINT BIGINT

BINARY(n<=255) BINARY(n)

BINARY(n>255) BLOB

BIT BIT

CHAR(n<=255) CHAR(n)

CHAR(n>255) TEXT(n)

DATE DATE The year must range from 1000 to
9999.

DATETIME DATETIME The MySQL DATETIME data type does
not support fractional seconds. The
year must range from 1000 to 9999.

686 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type MySQL data type Notes

DECIMAL(p<=65,s<=30) DECIMAL(p,s)

DECIMAL(p>65,s>30) There is no corresponding data type in
MySQL if the precision is greater than
65 or if the scale is greater than 30.

DOUBLE DOUBLE

FLOAT FLOAT

IMAGE LONGBLOB

INTEGER INTEGER

LONG BINARY LONGBLOB

LONG NVARCHAR LONGTEXT CHARACTER SET UTF8

LONG VARBIT LONGTEXT

LONG VARCHAR LONGTEXT

MONEY NUMERIC(19,4)

NCHAR(n<=255) CHAR(n) CHARACTER SET UTF8

NCHAR(n>255) TEXT CHARACTER SET UTF8

NTEXT LONGTEXT CHARACTER SET UTF8

NUMERIC(p<=65,s<=30) DECIMAL(p,s)

NUMERIC(p>65,s>30) There is no corresponding data type in
MySQL.

NVARCHAR(n) VARCHAR(n) CHARACTER SET UTF8

REAL REAL

SMALLDATETIME DATETIME The MySQL DATETIME data type does
not support fractional seconds. The
year must range from 1000 to 9999.

SMALLINT SMALLINT

SMALLMONEY NUMERIC(10,4)

ST_GEOMETRY GEOMETRY

TEXT LONGTEXT

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 687

SQL Anywhere or UltraLite data type MySQL data type Notes

TIME TIME The MySQL TIME data type does not
support fractional seconds.

TIMESTAMP DATETIME The MySQL DATETIME data type does
not support fractional seconds. The
year must range from 1000 to 9999.

TIMESTAMP WITH TIME ZONE VARCHAR(34) There is no equivalent data type in
MySQL. Therefore, a TIMESTAMP WITH
TIME ZONE column should be mapped
to a VARCHAR(34) column. In upload,
the MobiLink server first converts the
data to a string using the format YYYY-
MM-DD HH:NN:SS.SSSSSS
[+|-]HH:NN and then applies it to the
consolidated database. In download, it
converts the data from string to TIME
STAMP WITH TIME ZONE. Ensure the
data in the consolidated database fol
lows this format or the download will
fail.

TINYINT TINYINT UNSIGNED TINYINT is always unsigned in SQL
Anywhere and UltraLite.

UNIQUEIDENTIFIER CHAR(36)

UNIQUEIDENTIFIERSTR CHAR(36)

VARBINARY(n) VARCHAR(n)

VARBIT(n<=8000) VARCHAR(n)

VARBIT(n>8000) TEXT

VARCHAR(n) VARCHAR(n)

XML LONGTEXT

Mapping to SQL Anywhere or UltraLite Remote Data Types

The following table identifies how MySQL consolidated data types are mapped to SQL Anywhere and UltraLite
remote data types. For example, a column of type BOOL on the consolidated database should be type BIT on
the remote database.

MySQL data type SQL Anywhere or UltraLite data type Notes

BIGINT BIGINT

688 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

MySQL data type SQL Anywhere or UltraLite data type Notes

BINARY(n) BINARY(n)

BIT(1) BIT

BIT(n>1) UNSIGNED BIGINT

BLOB(n<=32767) VARBINARY(n)

BLOB(n>32767) IMAGE

BOOL BIT

CHAR(n) CHAR(n)

DATE DATE The year must range from 1000 to
9999.

DATETIME DATETIME The MySQL DATETIME data type does
not support fractional seconds. The
year must range from 1000 to 9999.

DOUBLE DOUBLE

DECIMAL DECIMAL

ENUM There is no corresponding data type in
SQL Anywhere or UltraLite.

GEOMETRY ST_GEOMETRY

INTEGER INTEGER

LINESTRING There is no corresponding data type in
SQL Anywhere or UltraLite.

LONGBLOB IMAGE

LONGTEXT TEXT

MEDIUMBLOB IMAGE

MEDIUMINT INTEGER

MEDIUMTEXT TEXT

MULTILINESTRING There is no corresponding data type in
SQL Anywhere or UltraLite.

MULTIPOINT There is no corresponding data type in
SQL Anywhere or UltraLite.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 689

MySQL data type SQL Anywhere or UltraLite data type Notes

MULTIPOLYGON There is no corresponding data type in
SQL Anywhere or UltraLite.

NCHAR NCHAR Not available in UltraLite.

NUMERIC NUMERIC

NVARCHAR NVARCHAR Not available in UltraLite.

POINT There is no corresponding data type in
SQL Anywhere or UltraLite.

POLYGON There is no corresponding data type in
SQL Anywhere or UltraLite.

REAL REAL

SET There is no corresponding data type in
SQL Anywhere or UltraLite.

SMALLINT SMALLINT

TEXT(n<=32767) VARCHAR(n)

TEXT(n>32767) TEXT

TIME TIME The MySQL TIME data type does not
support fractional seconds. The range
of TIME in MySQL is '-838:59:59' to
'838:59:59'. The range of TIME in SQL
Anywhere or UltraLite is
'00:00:00.000000' to
'23:59:59:999999'.

TIMESTAMP TIMESTAMP The MySQL DATETIME data type does
not support fractional seconds. The
year must range from 1000 to 9999. Al
though MySQL offers automatic initiali
zation and updating on TIMESTAMP
columns, SQL Anywhere and UltraLite
only offers automatic initialization.

TINYBLOB VARBINARY

TINYINT SMALLINT TINYINT is always unsigned in SQL
Anywhere and UltraLite. Must be a posi
tive value.

TINYINT UNSIGNED TINYINT TINYINT is always unsigned in SQL
Anywhere and UltraLite.

690 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

MySQL data type SQL Anywhere or UltraLite data type Notes

TINYTEXT VARCHAR

VARBINARY(n<=32767) VARBINARY(n)

VARBINARY(n>32767) IMAGE

VARCHAR(n<=32767) VARCHAR(n)

VARCHAR(n>32767) TEXT

YEAR[(2|4)] INTEGER SQL Anywhere and UltraLite do not
support the YEAR data type. YEAR
needs to be mapped to INTEGER in a
remote database. The INTEGER value
must range from 1000 to 9999.

1.14.4.5 Oracle Data Mapping

SQL Anywhere and UltraLite remote data types can be mapped to Oracle consolidated data types and vice
versa.

Mapping to Oracle Consolidated Data Types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to Oracle
consolidated data types. For example, a column of type BIT on the remote database should be type NUMBER
on the consolidated database.

SQL Anywhere or UltraLite data type Oracle data type Notes

BIGINT NUMBER(20)

BINARY(n) RAW(n) Only valid for Oracle 12.1 or later.

BINARY(n<=2000) RAW(n)

BINARY(n>2000) BLOB Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

BIT NUMBER(1)

CHAR(n) VARCHAR2(n) Only valid for Oracle 12.1 or later.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 691

SQL Anywhere or UltraLite data type Oracle data type Notes

CHAR(n<=4000) VARCHAR2(n byte) Oracle VARCHAR2 allows you to specify
the maximum number of bytes or char
acters. The maximum length of VAR
CHAR2 data is 4000 bytes. If you spec
ify the character number, make sure
the maximum data length is not over
4000 bytes.

CHAR(n>4000) CLOB Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

DATE DATE

DATETIME TIMESTAMP The year must be in the range 1-9999.

DECIMAL(p<=38,s) NUMBER(p, 0<=s<=38) In SQL Anywhere DECIMAL, p is be
tween 1 and 127, and s is always less
than or equal to p. In Oracle NUMBER, p
ranges from 1 to 38, and s ranges from
-84 to 127. To synchronize, the Oracle
NUMBER scale must be restricted to
between 0 and 38.

DECIMAL(p>38,s) There is no corresponding data type in
Oracle.

DOUBLE DOUBLE PRECISION or BINARY_DOU
BLE1

The special values INF, -INF and NAN of
Oracle Database 11g BINARY_FLOAT
and BINARY_DOUBLE cannot be
synchronized with SQL Anywhere or Ul
traLite.

FLOAT(p) FLOAT(p)

IMAGE BLOB Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

INTEGER INT

LONG BINARY BLOB Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

692 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type Oracle data type Notes

LONG NVARCHAR NCLOB Oracle CLOB and NCLOB can hold up to
4G of data. SQL Anywhere LONG VAR
CHAR and LONG NVARCHAR can only
hold up to 2G.

Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

LONG VARBIT CLOB Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

LONG VARCHAR CLOB Oracle CLOB and NCLOB can hold up to
4G of data. SQL Anywhere LONG VAR
CHAR and LONG NVARCHAR can only
hold up to 2G.

Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

MONEY NUMBER(19,4)

NCHAR(c) NVARCHAR2(c) or NCLOB For versions of Oracle prior to 12.1, the
size of SQL Anywhere NCHAR and Ora
cle NVARCHAR2 indicates the maxi
mum number of Unicode characters.
The data length of Oracle NVARCHAR2
cannot be over 4000 bytes. It is difficult
to calculate the maximum byte length
from character size. In general, if the
size is over 1000, map to NCLOB, other
wise map to NVARCHAR2.

For Oracle 12.1 or later, the size of SQL
Anywhere NCHAR and NVARCHAR in
dicates the maximum number of Uni
code characters, whereas the size of
Oracle NVARCHAR2 indicates the maxi
mum number of bytes. It is difficult to
calculate the maximum byte length
from character size. In general, if the
size is over 16383, map to NCLOB, oth
erwise map to NVARCHAR2.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 693

SQL Anywhere or UltraLite data type Oracle data type Notes

NTEXT NCLOB Oracle NCLOB can hold up to 4G of
data. SQL Anywhere NTEXT (or LONG
NVARCHAR) can only hold up to 2G.

Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

NUMERIC(p<=38,s) NUMBER(p, 0<=s<=38) In SQL Anywhere NUMERIC, p is be
tween 1 and 127, and s is always less
than or equal to p. In Oracle NUMBER,
p ranges from 1 to 38, and s ranges
from -84 to 127. To synchronize, the
Oracle NUMBER scale must be re
stricted to between 0 and 38.

NUMERIC(p>38,s) There is no corresponding data type in
Oracle.

694 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type Oracle data type Notes

NVARCHAR NVARCHAR2(c) or NCLOB The size of NVARCHAR2 is the maxi
mum number of Unicode characters in
Oracle and the size of NCHAR and
NVARCHAR is the maximum number of
characters in SQL Anywhere. A multi-
byte character can take as many as four
bytes to be stored in a SQL Anywhere
database. In general, it is difficult to cal
culate maximum byte length from char
acter size. For versions of Oracle prior
to 12.1, NVARCHAR2 cannot be over
2000 unicode characters. Therefore,
SQL Anywhere NVARCHAR(n) should
be mapped to Oracle NVARCHAR2,
when n<= 1000. Otherwise, it should be
mapped to NCLOB.

For versions of Oracle prior to 12.1, the
size of SQL Anywhere NCHAR and Ora
cle NVARCHAR2 indicates the maxi
mum number of Unicode characters.
The data length of Oracle NVARCHAR2
cannot be over 4000 bytes. It is difficult
to calculate the maximum byte length
from character size. In general, if the
size is over 1000, map to NCLOB, other
wise map to NVARCHAR2.

For Oracle 12.1 or later, the size of SQL
Anywhere NCHAR and NVARCHAR in
dicates the maximum number of Uni
code characters, whereas the size of
Oracle NVARCHAR2 indicates the maxi
mum number of bytes. It is difficult to
calculate the maximum byte length
from character size. In general, if the
size is over 16383, map to NCLOB, oth
erwise map to NVARCHAR2.

REAL REAL or BINARY_FLOAT1 The special values INF, -INF and NAN of
Oracle Database 11g BINARY_FLOAT
and BINARY_DOUBLE cannot be
synchronized with SQL Anywhere or Ul
traLite.

SMALLDATETIME TIMESTAMP The year must be in the range 1-9999.

SMALLINT NUMBER(5)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 695

SQL Anywhere or UltraLite data type Oracle data type Notes

SMALLMONEY NUMBER(10,4)

ST_GEOMETRY SDO_GEOMETRY

TEXT CLOB Oracle CLOB can hold up to 4G of data.
SQL Anywhere TEXT (or LONG VAR
CHAR) can only hold up to 2G.

Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

TIME TIMESTAMP

TIMESTAMP TIMESTAMP The year must be in the range 1-9999.

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

TINYINT NUMBER(3) For download, Oracle values must be
non-negative.

UNSIGNED BIGINT NUMBER(20) For download, Oracle values must be
non-negative.

UNSIGNED INTEGER NUMBER(11) For download, Oracle values must be
non-negative.

UNSIGNED SMALLINT NUMBER(5) For download, Oracle values must be
non-negative.

UNSIGNED TINYINT NUMBER(3) For download, Oracle values must be
non-negative.

UNIQUEIDENTIFIER CHAR(36)

UNIQUEIDENTIFIERSTR CHAR(36) UNIQUEIDENTIFIERSTR is not recom
mended to use for Oracle. Use UNIQUE
IDENTIFIER instead.

VARBINARY(n<=2000) RAW(n)

VARBINARY(n>2000) BLOB Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

VARBIT(n) VARCHAR2(n) Only valid for Oracle 12.1 or later.

VARBIT(n<=4000) VARCHAR2(n byte)

696 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type Oracle data type Notes

VARBIT(n>4000) CLOB Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

VARCHAR(n) VARCHAR2(n) Only valid for Oracle 12.1 or later.

VARCHAR(n<=4000) VARCHAR2(n byte) Oracle VARCHAR2 allows you to specify
the maximum number of bytes or char
acters. The maximum length of VAR
CHAR2 data is 4000 bytes. If you spec
ify the character number, make sure
the maximum data length is not over
4000 bytes.

VARCHAR(n>4000) CLOB Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

XML XMLTYPE The Oracle database server checks the
syntax of the XMLTYPE data but SQL
Anywhere does not.

Not available in UltraLite.

1 Only applies to Oracle Database 11g or later.

 Note
The LONG data types are deprecated in Oracle 8, 8i and 9i.

Mapping to SQL Anywhere or UltraLite Remote Data Types

The following table identifies how Oracle consolidated data types are mapped to SQL Anywhere and UltraLite
remote data types. For example, a column of type LONG on the consolidated database should be type LONG
VARCHAR on the remote database.

Oracle data type SQL Anywhere or UltraLite data type Notes

BFILE LONG BINARY Download only.

Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 697

Oracle data type SQL Anywhere or UltraLite data type Notes

BINARY_DOUBLE DOUBLE The special values INF, -INF and NAN of
BINARY_FLOAT cannot be synchron
ized with SQL Anywhere or UltraLite.
The precision of FLOAT and DOUBLE in
Oracle is different from SQL Anywhere
and UltraLite. The value of the data may
change depending on the precision.

BINARY_FLOAT REAL The special values INF, -INF and NAN of
BINARY_FLOAT cannot be synchron
ized with SQL Anywhere or UltraLite.
The precision of FLOAT and DOUBLE in
Oracle is different from SQL Anywhere
and UltraLite. The value of the data may
change depending on the precision.

BLOB LONG BINARY Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

CHAR(n byte) VARCHAR(n) There is no equivalence between SQL
Anywhere CHAR and Oracle CHAR. SQL
Anywhere CHAR is equivalent to VAR
CHAR. You should not use CHAR/
NCHAR in a consolidated database col
umn that is synchronized. If you must
use non-SQL Anywhere CHAR, run the
MobiLink server with the -b option.

SQL Anywhere or UltraLite values can
be longer than Oracle values, so make
sure values are not too big when up
loading.

CLOB LONG VARCHAR Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

DATE TIMESTAMP The year must be in the range 1-9999.

INTERVAL YEAR(year_precision)
TO MONTH

There is no corresponding data type in
SQL Anywhere or UltraLite.

INTERVAL DAY(day_precision) TO
SECOND(p)

There is no corresponding data type in
SQL Anywhere or UltraLite.

LONG LONG VARCHAR

698 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

Oracle data type SQL Anywhere or UltraLite data type Notes

LONG RAW LONG BINARY

NCHAR(c char) NVARCHAR(c) There is no equivalence between SQL
Anywhere NCHAR and Oracle NCHAR.
SQL Anywhere NCHAR is equivalent to
NVARCHAR. You should not use
NCHAR in a consolidated database col
umn that is synchronized. If you must
use non-SQL Anywhere NCHAR, run
the MobiLink server with the -b option.

SQL Anywhere or UltraLite values can
be longer than Oracle values, so make
sure values are not too big when up
loading.

NCLOB LONG NVARCHAR Not available in UltraLite.

Oracle values can be longer than SQL
Anywhere or UltraLite values, so make
sure values are not too big when down
loading.

NUMBER(p,s) NUMBER(p,s) In SQL Anywhere NUMBER, p is be
tween 1 and 127, and s is always less
than or equal to p. In Oracle NUMBER,
p ranges from 1 to 38, and s ranges
from -84 to 127. To synchronize, the
Oracle NUMBER scale must be between
0 and 38.

NVARCHAR2(c char) NVARCHAR(c) Not available in UltraLite.

SQL Anywhere or UltraLite values can
be longer than Oracle values, so make
sure values are not too big when up
loading.

RAW BINARY SQL Anywhere or UltraLite values can
be longer than Oracle values, so make
sure values are not too big when up
loading.

ROWID VARCHAR(64) UROWID and ROWID are read-only and
so are unlikely to be synchronized.

SDO_GEOMETRY ST_GEOMETRY

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 699

Oracle data type SQL Anywhere or UltraLite data type Notes

TIMESTAMP(p<=6) TIMESTAMP When p<6, you may need to ensure
SQL Anywhere or UltraLite values have
the same precision. Otherwise, conflict
detection may fail and/or duplicate
rows may result. The year must be in
the range 1-9999.

TIMESTAMP(p>6) There is no corresponding data type in
SQL Anywhere or UltraLite.

TIMESTAMP(p) WITH LOCAL TIME
ZONE

There is no corresponding data type in
SQL Anywhere or UltraLite.

TIMESTAMP(p<=6) WITH TIME ZONE TIMESTAMP WITH TIME ZONE

TIMESTAMP(p) WITH TIME ZONE There is no corresponding data type in
SQL Anywhere or UltraLite.

UROWID VARCHAR(64) UROWID and ROWID are read-only and
so are unlikely to be synchronized.

VARCHAR2(n byte) VARCHAR(n) SQL Anywhere or UltraLite values can
be longer than Oracle values, so make
sure values are not too big when up
loading.

XMLTYPE XML, LONG VARCHAR or VARCHAR(n) The Oracle database server checks the
syntax of the XMLTYPE data. SQL Any
where does not check the contents of
the XML data, and treats the XML data
as VARCHAR data.

Related Information

Oracle XMLTYPE Data Type [page 176]

700 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.4.6 SAP HANA Data Mapping

SQL Anywhere and UltraLite remote data types can be mapped to SAP HANA consolidated data types and vice
versa.

Mapping to SAP HANA Consolidated Data Types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to SAP HANA
consolidated data types. For example, a column of type LONG VARBIT on the remote database should be type
CLOB on the consolidated database.

SQL Anywhere or UltraLite data type SAP HANA data type Notes

BIT TINYINT

TINYINT TINYINT

SMALLINT SMALLINT

UNSIGNED SMALLINT INTEGER

INTEGER INTEGER

UNSIGNED INTEGER BIGINT

BIGINT BIGINT

UNSIGNED BIGINT DECIMAL(20,0)

DECIMAL(p,s) DECIMAL(p,s)

NUMERIC(p,s) DECIMAL(p,s)

FLOAT FLOAT The FLOAT data type should be avoided
in remote databases with tables that
download data from SAP HANA be
cause HANA only supports DOUBLE
values and they cannot be fully repre
sented by FLOAT .

REAL REAL The REAL data type should be avoided
in remote databases with tables that
download data from SAP HANA be
cause HANA only supports DOUBLE
values and they cannot be fully repre
sented by REAL.

DOUBLE DOUBLE

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 701

SQL Anywhere or UltraLite data type SAP HANA data type Notes

SMALLMONEY DECIMAL(10,4)

MONEY DECIMAL(19,4)

DATE DATE

TIME TIME SQL Anywhere and UltraLite fractional
seconds cannot be preserved when us
ing an SAP HANA TIME data type,
which has no fractional seconds. To
avoid problems, do not use fractional
seconds.

SMALLDATETIME TIMESTAMP

DATETIME TIMESTAMP

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE VARCHAR(34) There is no equivalent data type in SAP
HANA so a TIMESTAMP WITH TIME
ZONE column should be mapped to a
VARCHAR(34) column. During upload,
the MobiLink server converts the data
to a string using the format 'yyyy-mm-
dd hh:nn:ss.ssssss [+|-]hh:nn' and then
applies it to the consolidated database.
During download, the MobiLink server
converts the data from a string to TIME
STAMP WITH TIME ZONE. Make sure
the data in the consolidated database
follows this format to avoid errors and
synchronization failure.

CHAR(n<=5000) VARCHAR(n)

CHAR(n>5000) CLOB

VARCHAR(n<=5000) VARCHAR(n)

VARCHAR(n>5000) CLOB

LONG VARCHAR CLOB

NCHAR(n<=5000) NVARCHAR

NCHAR(n>5000) NCLOB

NVARCHAR(n<=5000) NVARCHAR(n)

702 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SQL Anywhere or UltraLite data type SAP HANA data type Notes

NVARCHAR(n>5000) NCLOB

LONG NVARCHAR NCLOB

BINARY(n<=5000) VARBINARY(n)

BINARY(n>5000) BLOB

VARBINARY(n<=5000) VARBINARY(n)

VARBINARY(n>5000) BLOB

LONG BINARY BLOB

VARBIT(n<=5000) VARCHAR(n)

VARBIT(n>5000) CLOB

LONG VARBIT CLOB

UNIQUEIDENTIFIER VARCHAR(36)

ST_GEOMETRY

Mapping to SQL Anywhere or UltraLite Remote Data Types

The following table identifies how SAP HANA consolidated data types are mapped to SQL Anywhere and
UltraLite remote data types. For example, a column of type ALPHANUM(n) on the consolidated database
should be type VARCHAR(n) on the remote database.

SAP HANA data type SQL Anywhere or UltraLite data type Notes

TINYINT TINYINT

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

SMALLDECIMAL DECIMAL(p,s) In SQL Anywhere, DECIMAL p is be
tween 1 and 127 and s is always less
than or equal to p. In SAP HANA, p
ranges from 1 to 16 and s ranges from
-369 to 368.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 703

SAP HANA data type SQL Anywhere or UltraLite data type Notes

DECIMAL(p,s) DECIMAL(p,s) In SQL Anywhere, DECIMAL p is be
tween 1 and 127 and s is always less
than or equal to p. In SAP HANA, p
ranges from 1 to 34 and s ranges from
-6111 to 6176.

FLOAT DOUBLE SAP HANA promotes FLOAT and REAL
to DOUBLE.

REAL DOUBLE SAP HANA promotes FLOAT and REAL
to DOUBLE.

DOUBLE DOUBLE

DATE DATE

TIME TIME SQL Anywhere and UltraLite fractional
seconds cannot be preserved when us
ing an SAP HANA TIME data type,
which has no fractional seconds. To
avoid problems, do not use fractional
seconds.

SECONDDATE TIMESTAMP SQL Anywhere and UltraLite fractional
seconds cannot be preserved when us
ing an SAP HANA SECONDDATE data
type, which has no fractional seconds.
To avoid problems, do not use fractional
seconds.

TIMESTAMP TIMESTAMP

VARCHAR(n) VARCHAR(n)

NVARCHAR(n) NVARCHAR(n)

ALPHANUM(n) VARCHAR(n)

VARBINARY(n) VARBINARY(n)

CLOB LONG VARCHAR

NCLOB LONG NVARCHAR

BLOB LONG BINARY

ST_GEOMETRY ST_GEOMETRY

704 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.4.7 SAP IQ Enterprise Data Mapping

SQL Anywhere and UltraLite remote data types can be mapped to SAP IQ Enterprise consolidated data types
and vice versa.

Mapping to SAP IQ Consolidated Data Types

The following table identifies how SQL Anywhere and UltraLite remote data types are mapped to SAP IQ
consolidated data types. For example, a column of type LONG VARBIT on the remote database should be type
LONG VARCHAR on the consolidated database.

SQL Anywhere or UltraLite data type SAP IQ Notes

BIGINT BIGINT

BIT BIT

BINARY(n) BINARY(n)

CHAR(n) CHAR(n) There are some restrictions on CHAR
and VARCHAR columns over 255 bytes.
For more information, see the SAP IQ
documentation.

DATE DATE

DATETIME DATETIME

DECIMAL(p,s) DECIMAL(p,s)

DOUBLE DOUBLE

FLOAT(p) FLOAT(p)

INT INT

LONG BINARY / IMAGE LONG BINARY / IMAGE

LONG NVARCHAR / NTEXT This data type is not available in SAP IQ.

LONG VARBIT LONG VARCHAR

LONG VARCHAR / TEXT TEXT

MONEY MONEY

NCHAR(n) This data type is not available in SAP IQ.

NVARCHAR(n) This data type is not available in SAP IQ.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 705

SQL Anywhere or UltraLite data type SAP IQ Notes

NUMERIC(p,s) NUMERIC(p,s)

SMALLDATETIME SMALLDATETIME

SMALLMONEY SMALLMONEY

ST_GEOMETRY This data type is not available in SAP IQ.

TIME TIME

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE VARCHAR(34)

TINYINT TINYINT

UNIQUEIDENTIFIER UNIQUEIDENTIFIER

UNSIGNED BIGINT UNSIGNED BIGINT

UNSIGNED INT UNSIGNED INT

UNSIGNED SMALLINT SMALLINT

UNSIGNED TINYINT TINYINT

VARBINARY(n) VARBINARY(n)

VARBIT(n) VARCHAR(n)

VARCHAR(n) VARCHAR(n) There are some restrictions on CHAR
and VARCHAR columns over 255 bytes.
For more information, see the SAP IQ
documentation.

XML LONG BINARY / IMAGE

Mapping to SQL Anywhere or UltraLite Remote Data Types

The following table identifies how SAP IQ consolidated data types are mapped to SQL Anywhere and UltraLite
remote data types. For example, a column of type DOUBLE PRECISION on the consolidated database should
be type DOUBLE on the remote database.

SAP IQ SQL Anywhere or UltraLite data type Notes

BIGINT BIGINT

BINARY(n) BINARY(n)

706 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

SAP IQ SQL Anywhere or UltraLite data type Notes

BIT BIT

CHAR(n) VARCHAR(n)

DATE DATE

DATETIME DATETIME

DECIMAL(p,s) DECIMAL(p,s)

DOUBLE DOUBLE

FLOAT(p) FLOAT(p)

INT INT

LONG BINARY / IMAGE LONG BINARY / IMAGE

LONG VARCHAR / TEXT LONG VARCHAR / TEXT

MONEY MONEY

NUMERIC(p,s) NUMERIC(p,s)

REAL REAL

SMALLDATETIME SMALLDATETIME

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

TIME TIME

TIMESTAMP TIMESTAMP

TINYINT TINYINT

UNIQUEIDENTIFIER UNIQUEIDENTIFIER

UNSIGNED BIGINT UNSIGNED BIGINT

UNSIGNED INT UNSIGNED INT

VARBINARY(n) VARBINARY(n)

VARCHAR(n) VARCHAR(n)

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 707

1.14.5 Character Set Considerations

Each character of text is represented in one or more bytes. The mapping from characters to binary codes is
called the character set encoding.

Some character sets used for languages with small alphabets, such as European languages, use a single-byte
representation. Others, such as Unicode, use a double-byte representation. Because they use twice the storage
space for each character, double-byte character sets can represent a much larger number of characters.

Conversion errors can occur or data can be lost when text using one character set must be converted to
another character set. Not all characters can be represented in all character sets. In particular, single-byte
character sets can represent a much smaller number of characters than multibyte systems because of the
limited number of codes available.

When the character set of your MobiLink remote database is the same as your consolidated database,
character conversion issues are avoided.

Text often needs to be sorted to build indexes and to prepare ordered result sets, such as directory listings. The
sort order identifies the order of the characters. For example, a sort order typically states that the letter "a"
comes before the letter "b", which comes before the letter "c".

Each database has a collation sequence. You set the collation sequence when you create the database,
although how you do so can differ between database systems. The collation sequence defines both the
character set and the sort order for that database.

 Note
Whenever possible, define the collation sequence of your remote database to be the same as that of your
consolidated database. This arrangement reduces the chance of erroneous conversions.

In this section:

Character Set Conversion During Synchronization [page 708]
During synchronization, characters may need to be converted from one character set to another.

Related Information

International Languages and Character Sets
UltraLite Character Sets
MobiLink Consolidated Databases [page 152]
Recommended ODBC Drivers For MobiLink

1.14.5.1 Character Set Conversion During Synchronization

During synchronization, characters may need to be converted from one character set to another.

The following conversions occur as characters are passed between the remote application and the
consolidated database.

708 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/61ecb3d4d8be4baaa07cc4db0ddb5d0a/17.0.01/en-US/813826126ce210149074e3a77d2e1dce.html
https://help.sap.com/viewer/7eca48cee41b418bbd54feff83d57803/17.0.01/en-US/826b4b726ce21014a5c8d06d2688fd14.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-63337

Character Set Conversion During Upload

The MobiLink client sends data to the MobiLink server using the character set of the remote database.

1. The MobiLink server communicates with the consolidated database using the Unicode ODBC API. To do so,
the MobiLink server converts all characters received from the remote database into Unicode and sends the
Unicode to the ODBC driver.

2. If necessary, the ODBC driver for the consolidated database server converts the characters from Unicode
into the character set of your consolidated database. This conversion is controlled solely by the ODBC
driver for your consolidated database system. So, behavior can differ between two different database
systems, particularly systems made by different manufacturers. MobiLink synchronization works with
several database systems. Check the documentation of your particular consolidated server and ODBC
driver for details.

Character Set Conversion During Download

1. The ODBC driver for the consolidated database system receives characters in the coding of the
consolidated database. It converts these characters into Unicode to pass them through the Unicode API to
the MobiLink server. This conversion is controlled solely by the ODBC driver for your consolidated
database system. Check the documentation of your particular consolidated server and ODBC driver for
details.

2. The MobiLink server receives characters through the Unicode ODBC API. If the remote database uses a
different character set, the MobiLink server converts the characters before downloading them.

Example

• UltraLite applications on Microsoft Windows Mobile devices use the Unicode character set.
When you synchronize a Microsoft Windows Mobile application, no character conversion occurs within the
MobiLink server. The server finds that data arriving from the application is already in Unicode and passes it
directly to the ODBC driver. Similarly, no character set conversion is necessary when downloading data.

• All SQL Anywhere databases and all UltraLite applications on platforms other than Microsoft Windows
Mobile use the character set determined by the collating sequence of the remote database.
When you synchronize a remote database, the MobiLink server performs character set conversions
between the character set of the remote database and Unicode.

In this section:

ODBC Driver Character Set Conversion [page 710]
Because most consolidated databases are unlikely to use Unicode, it is important to understand how
the ODBC driver for your consolidated database system converts data to and from Unicode.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 709

1.14.5.1.1 ODBC Driver Character Set Conversion

Because most consolidated databases are unlikely to use Unicode, it is important to understand how the ODBC
driver for your consolidated database system converts data to and from Unicode.

Some ODBC drivers use the language settings of the computer running MobiLink to determine what character
set to use. In these cases, it is best if the language and code-page settings of the computer running the
MobiLink server match those of the consolidated database.

Other ODBC drivers, such as the driver for SAP Adaptive Server Enterprise, allow each connection to use a
specific character set. To avoid conversion errors, the character set used by MobiLink should be set to match
that of the consolidated database.

For a detailed description of how character set conversions take place in your consolidated database server's
ODBC driver, consult that product's ODBC driver documentation.

1.14.6 ODBC Drivers for MobiLink

The MobiLink server can work with a variety of consolidated databases and ODBC drivers. Some drivers,
though compatible for use with MobiLink, may have functional restrictions associated with their use.

In this section:

SQL Anywhere 17 - Oracle ODBC Driver [page 710]
The SQL Anywhere 17 - Oracle ODBC driver is custom-tailored for use with SQL Anywhere software.
This driver does not work with third-party software.

Related Information

Supported Platforms

1.14.6.1 SQL Anywhere 17 - Oracle ODBC Driver

The SQL Anywhere 17 - Oracle ODBC driver is custom-tailored for use with SQL Anywhere software. This driver
does not work with third-party software.

If you use Oracle with MobiLink or remote data access, then install an Oracle client on the same computer as
this Oracle driver.

The Oracle driver can be configured using the ODBC Data Source Administrator (Microsoft Windows), the Data
Source utility (dbdsn), or by editing the .odbc.ini file (UNIX and Linux).

The following table provides the configuration options for the Oracle driver.

710 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

https://help.sap.com/viewer/5c834e66874441e7b5017d502bbc12d0/17.0.01/en-US/8155387d6ce21014937df18c3511be8f.html

Microsoft Windows ODBC Data
Source Administrator

Configuration for dbdsn command
line or .odbc.ini file Description

Data source name For dbdsn, use the -w option and spec
ify the data source name.

A name to identify your data source.

User ID For dbdsn, use the UserID connection
parameter in the connection string.
Short form UID.

The default logon ID that the applica
tion uses to connect to your Oracle da
tabase. If you leave this field blank, you
are prompted for the information when
you connect.

Password For dbdsn, use the Password connec
tion parameter in the connection string.
Short form PWD.

The password that the application uses
to connect to your Oracle database. If
you leave this field blank, you are
prompted for the information when you
connect.

TNS service name For dbdsn, use the ServiceName con
nection parameter in the connection
string. Short form SN.

The TNS Service Name that is stored in
network/admin/tnsnames.ora
under your Oracle installation directory.

Encode password For dbdsn, use the -pet option and
specify the plain text password in the
connection string by using the
Password or PWD connection parame
ter.

Select this option to store the password
in an encoded form in the data source.
When using the ODBC Data Source Ad
ministrator, re-enter the password to
change an existing encoding option.

Procedure returns results or uses VAR
RAY parameters

For dbdsn, use the ProcResults connec
tion parameter in the connection string.
Short form PROC.

Select this field if your stored proce
dures can return results or if the stored
procedures use Oracle VARRAYs. The
default is that this option is not se
lected. If your download_cursor or
download_delete_cursor scripts are
stored procedure invocations, select
this check box.

If no stored procedures use VARRAYs
and none of them returns a result set,
clear this check box to improve per
formance.

Array size For dbdsn, use the ArraySize connec
tion parameter in the connection string.
Short form SIZE.

The size, in bytes, of the byte array used
to prefetch rows, on a per-statement
basis. The default is 60000. Increasing
this value can significantly improve
fetch performance (such as during Mo
biLink server downloads) at the cost of
extra memory allocation.

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 711

Microsoft Windows ODBC Data
Source Administrator

Configuration for dbdsn command
line or .odbc.ini file Description

Enable Microsoft distributed transac
tions

For dbdsn, use the EnableMSDTC con
nection parameter in the connection
string. Short form EDTC.

Not supported for UNIX and Linux.

Select this check box to enlist your
transactions in the Microsoft Distrib
uted Transaction Coordinator. When se
lected, the Oracle ODBC driver requires
an Oracle binary file, oramts10.dll
for Oracle Database 10g clients or
oramts11.dll for Oracle Database
11g clients.

Fetch array size (rows) For dbdsn, use the FetchArraySize con
nection parameter in the connection
string.

The number of rows fetched from the
Oracle database. The default value is
20. Increasing the value reduces the
number of round trips on the network
and increases performance, but also in
creases ODBC driver memory use.

The ideal setting varies with each appli
cation. To calculate the ideal setting, di
vide the network packet size (in bytes)
by the size of the rows that you are
fetching (in bytes). After you calculate
this number, leave space for packet
overhead. For example, if your Network
Packet size is 1024 bytes and the row
size is 8 bytes, then divide 1024 by 8,
which equals 128. The ideal setting for
this option is smaller than 128 because
the number of rows times the row size
must be slightly smaller than the net
work packet size.

In this section:

Creating an ODBC Data Source for the Oracle Driver in Microsoft Windows [page 713]
Use this procedure to create an ODBC data source for the Oracle driver in Microsoft Windows.

UNIX/Linux Configuration [page 713]
On UNIX and Linux, if you are setting up the driver in an ODBC system information file (typically
called .odbc.ini), the section for this driver should appear as follows (with appropriate values
entered for each field).

Creating an ODBC Data Source for the Oracle Driver (dbdsn Utility) [page 714]
To create an Oracle DSN with the dbdsn utility, use the following syntax.

712 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

1.14.6.1.1 Creating an ODBC Data Source for the Oracle Driver
in Microsoft Windows

Use this procedure to create an ODBC data source for the Oracle driver in Microsoft Windows.

Procedure

1. Open the ODBC Administrator:

• Click Start Programs SQL Anywhere 17 Administration Tools Open ODBC Data Source
Administrator .

The ODBC Data Source Administrator appears.
2. Click Add.
3. Choose SQL Anywhere 17 - Oracle and click Finish.
4. Specify the configuration options you need.
5. Click Test Connection, and then click OK.

Results

The ODBC data source for the Oracle driver is created.

Next Steps

Use the ODBC data source to connect.

1.14.6.1.2 UNIX/Linux Configuration

On UNIX and Linux, if you are setting up the driver in an ODBC system information file (typically
called .odbc.ini), the section for this driver should appear as follows (with appropriate values entered for
each field).

[sample_dsn_using_the_ias_odbc_driver_for_oracle] Driver=full-path/libdboraodbc17_r.so UserID=user-id Password=password ServiceName=TNS-service-name ProcResults=[yes|no] ArraySize=bytes

MobiLink Server Administration
MobiLink - Server Administration PUBLIC 713

1.14.6.1.3 Creating an ODBC Data Source for the Oracle
Driver (dbdsn Utility)

To create an Oracle DSN with the dbdsn utility, use the following syntax.

dbdsn -w data-source-name -or -c configuration-options

The configuration-options are described in the documentation for the SQL Anywhere 17 - Oracle ODBC
driver.

For example:

dbdsn -w MyOracleDSN -or -pet u -c
"Userid=dba;Password=passwd;ServiceName=abcd;ArraySize=100000;ProcResults=y"

Related Information

Recommended ODBC Drivers For MobiLink

714 PUBLIC
MobiLink Server Administration

MobiLink - Server Administration

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-63337

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

• Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

• The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.

• SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any
damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

• Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Bias-Free Language
SAP supports a culture of diversity and inclusion. Whenever possible, we use unbiased language in our documentation to refer to people of all cultures, ethnicities,
genders, and abilities.

MobiLink Server Administration
Important Disclaimers and Legal Information PUBLIC 715

www.sap.com/contactsap

© 2022 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	MobiLink Server Administration
	Content
	1 MobiLink - Server Administration
	1.1 MobiLink Deployment
	1.1.1 MobiLink Server Deployment
	1.1.2 Microsoft Windows 32-Bit Applications
	1.1.3 Microsoft Windows 64-Bit Applications
	1.1.4 64-Bit Applications on UNIX and Linux
	1.1.5 SQL Anywhere MobiLink Client Deployment
	1.1.6 Microsoft Windows Applications
	1.1.7 Applications on UNIX, Linux, and macOS
	1.1.8 UltraLite MobiLink Client Deployment

	1.2 MobiLink Server
	1.2.1 Required Privileges for MobiLink Server
	1.2.2 MobiLink Connectivity
	1.2.3 MobiLink Server Shutdown
	1.2.4 MobiLink Server Logging
	1.2.4.1 MobiLink Server Log Viewing
	1.2.4.2 MobiLink Server Logging and SAP Passports

	1.2.5 MobiLink Server Use Outside the Current Session
	1.2.5.1 Running the MobiLink Server as a Daemon on UNIX/Linux
	1.2.5.2 MobiLink Server as a Service on Microsoft Windows
	1.2.5.2.1 Working with Services
	1.2.5.2.2 Startup Options for Services
	1.2.5.2.3 Command Line Options
	1.2.5.2.4 Account Options
	1.2.5.2.5 Changing the Executable File
	1.2.5.2.6 Starting and Stopping a Service
	1.2.5.2.7 Multiple Services
	1.2.5.2.7.1 Checking and Changing Which Group a Service Belongs to
	1.2.5.2.7.2 Adding a Service or Group to a List of Dependencies

	1.2.6 MobiLink Server in a Server Farm
	1.2.7 Troubleshooting MobiLink Server Startup
	1.2.7.1 Ensure That Network Communication Software is Running
	1.2.7.2 Debug Network Communications Startup Problems
	1.2.7.3 Verify MobiLink Server Connectivity

	1.3 MobiLink Server Options
	1.3.1 mlsrv17 Syntax
	1.3.2 @data mlsrv17 Option
	1.3.3 -a mlsrv17 Option
	1.3.4 -b mlsrv17 Option
	1.3.5 -bn mlsrv17 Option
	1.3.6 -c mlsrv17 Option
	1.3.7 -ca mlsrv17 Option
	1.3.8 -cinit mlsrv17 Option
	1.3.9 -cn mlsrv17 Option
	1.3.10 -cr mlsrv17 Option
	1.3.11 -cs mlsrv17 Option
	1.3.12 -ct mlsrv17 Option
	1.3.13 -dl mlsrv17 Option
	1.3.14 -dr mlsrv17 Option
	1.3.15 -ds mlsrv17 Option
	1.3.16 -dsd mlsrv17 Option
	1.3.17 -dt mlsrv17 Option
	1.3.18 -e mlsrv17 Option
	1.3.19 -esu mlsrv17 Option
	1.3.20 -et mlsrv17 Option
	1.3.21 -fips mlsrv17 Option
	1.3.22 -ftr mlsrv17 Option
	1.3.23 -ftru mlsrv17 Option
	1.3.24 -lsc mlsrv17 Option
	1.3.25 -nc mlsrv17 Option
	1.3.26 -ncs mlsrv17 Option
	1.3.27 -ncsd mlsrv17 Option
	1.3.28 -ncsp mlsrv17 Option
	1.3.29 -notifier mlsrv17 Option
	1.3.30 -o mlsrv17 Option
	1.3.31 -on mlsrv17 Option
	1.3.32 -oq mlsrv17 Option
	1.3.33 -os mlsrv17 Option
	1.3.34 -ot mlsrv17 Option
	1.3.35 -ppv mlsrv17 Option
	1.3.36 -q mlsrv17 Option
	1.3.37 -r mlsrv17 Option
	1.3.38 -rd mlsrv17 Option
	1.3.39 -rp mlsrv17 Option
	1.3.40 -rrp mlsrv17 Option
	1.3.41 -s mlsrv17 Option
	1.3.42 -sl dnet mlsrv17 Option
	1.3.43 -sl java mlsrv17 Option
	1.3.44 -sm mlsrv17 Option
	1.3.45 -tc mlsrv17 Option
	1.3.46 -tf mlsrv17 Option
	1.3.47 -ts mlsrv17 Option
	1.3.48 -tx mlsrv17 Option
	1.3.49 -ud mlsrv17 Option
	1.3.50 -ui mlsrv17 Option
	1.3.51 -ux mlsrv17 Option
	1.3.52 -v mlsrv17 Option
	1.3.53 -w mlsrv17 Option
	1.3.54 -wm mlsrv17 Option
	1.3.55 -wn mlsrv17 Option
	1.3.56 -wu mlsrv17 Option
	1.3.57 -x mlsrv17 Option
	1.3.58 -zf mlsrv17 Option
	1.3.59 -zp mlsrv17 Option
	1.3.60 -zs mlsrv17 Option
	1.3.61 -zt mlsrv17 Option
	1.3.62 -zu mlsrv17 Option
	1.3.63 -zup mlsrv17 Option
	1.3.64 -zus mlsrv17 Option
	1.3.65 -zw mlsrv17 Option
	1.3.66 -zwd mlsrv17 Option
	1.3.67 -zwe mlsrv17 Option

	1.4 Synchronization Techniques
	1.4.1 Implementing Timestamp-based Downloads
	1.4.1.1 Last Download Times in Scripts
	1.4.1.1.1 How Download Timestamps Are Generated and Used

	1.4.1.2 Daylight Savings Time Solutions

	1.4.2 Snapshot Synchronization
	1.4.3 Partitioned Rows Among Remote Databases
	1.4.3.1 Disjoint Partitioning with MobiLink
	1.4.3.2 Partitions with Overlaps
	1.4.3.3 Partitioned Foreign Key Tables

	1.4.4 Upload-only and Download-only Synchronizations
	1.4.5 Unique Primary Keys
	1.4.5.1 Composite Keys
	1.4.5.2 UUIDs
	1.4.5.3 GLOBAL AUTOINCREMENT
	1.4.5.3.1 Using GLOBAL AUTOINCREMENT Columns
	1.4.5.3.2 DEFAULT GLOBAL AUTOINCREMENT
	1.4.5.3.3 Global Database IDs

	1.4.5.4 Primary Key Pools

	1.4.6 Conflict Handling Overview
	1.4.6.1 Conflict Detection
	1.4.6.1.1 Conflict Detection with upload_fetch or upload_fetch_column_conflict Scripts
	1.4.6.1.2 Conflict Detection with upload_update Scripts

	1.4.6.2 Conflict Resolution
	1.4.6.2.1 Conflict Resolution with resolve_conflict Scripts
	1.4.6.2.2 Conflict Resolution with upload_update Scripts

	1.4.7 Deletes
	1.4.7.1 Temporarily Stopping the Synchronization of Deletes

	1.4.8 Failed Downloads
	1.4.8.1 Resumption of Failed Downloads

	1.4.9 Download Acknowledgement
	1.4.10 Result Sets from Stored Procedure Calls
	1.4.11 Self-referencing Tables
	1.4.12 MobiLink Isolation Levels

	1.5 MobiLink Consolidated Databases
	1.5.1 How Remote Tables Relate to Consolidated Tables
	1.5.2 Consolidated Database Setup
	1.5.2.1 MobiLink System Database
	1.5.2.2 MobiLink Server System Tables

	1.5.3 RDBMS-Dependent Synchronization Scripts
	1.5.4 Synchronization of Spatial Data
	1.5.4.1 Upload and Download Scripts

	1.5.5 Adaptive Server Enterprise Consolidated Database
	1.5.6 IBM DB2 LUW Consolidated Database
	1.5.7 Microsoft SQL Server and Microsoft Azure Consolidated Databases
	1.5.8 MySQL Consolidated Database
	1.5.9 Oracle Consolidated Database
	1.5.9.1 Oracle XMLTYPE Data Type
	1.5.9.2 Oracle VARRAY

	1.5.10 SAP HANA Consolidated Database
	1.5.11 SQL Anywhere Consolidated Database
	1.5.12 SAP IQ Consolidated Database

	1.6 MobiLink Performance
	1.6.1 Test to Improve Performance
	1.6.2 Avoid Contention
	1.6.3 Use Multithreaded Network Processing
	1.6.4 Use an Optimal Number of Database Worker Threads
	1.6.5 Automatic Adjustment of Database Worker Threads
	1.6.6 Use Smaller Upload Transactions
	1.6.7 Avoid Synchronizing Unnecessary BLOBs
	1.6.8 Set the Maximum Number of Database Connections
	1.6.9 Have Enough Physical Memory
	1.6.10 Use Enough Processing Power
	1.6.11 Optimize Script Execution
	1.6.12 Use Minimum Logging Verbosity
	1.6.13 Plan for Operating System Limitations
	1.6.14 Java or .NET vs. SQL Synchronization Logic
	1.6.15 Priority Synchronization
	1.6.16 Download Only the Rows You Need
	1.6.17 Only Synchronize When You Need to
	1.6.18 For Large Uploads, Estimate the Number of Rows
	1.6.19 Use Background Synchronization
	1.6.20 Key Factors Influencing MobiLink Performance
	1.6.20.1 MobiLink Tuning for Performance
	1.6.20.1.1 Contention
	1.6.20.1.2 Number of Database Worker Threads
	1.6.20.1.3 MobiLink Database Connections

	1.6.21 MobiLink Performance Monitoring

	1.7 MobiLink Client/Server Communications Encryption
	1.7.1 End-to-end Encryption
	1.7.2 Starting the MobiLink Server with Transport Layer Security
	1.7.3 MobiLink Client Configuration to Use Transport Layer Security
	1.7.3.1 Server Authentication
	1.7.3.2 Client Security Options
	1.7.3.3 Transport Layer Security over TCP/IP and HTTPS

	1.8 Manage Remote Databases
	1.8.1 Central Administration Concepts
	1.8.1.1 Central Administration Setup Overview

	1.8.2 MobiLink Agents
	1.8.2.1 MobiLink Agent on the Client Device
	1.8.2.1.1 mlagent Command
	1.8.2.1.2 Interactive Configuration of the MobiLink Agent
	1.8.2.1.3 MobiLink Agent Stop Utility

	1.8.2.2 MobiLink Agents in SQL Central
	1.8.2.2.1 Adding a Remote Schema Name
	1.8.2.2.2 Importing Remote Schema Names
	1.8.2.2.3 Adding an Agent
	1.8.2.2.4 Agent Properties
	1.8.2.2.4.1 Viewing or Changing Agent Properties

	1.8.2.2.5 Adding Managed Remote Databases
	1.8.2.2.6 Adding a Group

	1.8.2.3 Agent Authentication

	1.8.3 Remote Tasks
	1.8.3.1 Remote Task Logic
	1.8.3.2 Creating a Remote Task
	1.8.3.3 Editing a Remote Task
	1.8.3.4 Deploying a Remote Task
	1.8.3.5 Exporting a Remote Task
	1.8.3.6 Deployed Remote Tasks
	1.8.3.6.1 Canceling a Deployed Remote Task for All Agents
	1.8.3.6.2 Canceling a Deployed Remote Task for a Single Agent
	1.8.3.6.3 Initiating a Deployed Remote Task for All Agents
	1.8.3.6.4 Initiating a Deployed Remote Task for a Single Agent
	1.8.3.6.5 Reactivating a Deployed Remote Task for a Single Agent
	1.8.3.6.6 Adding Recipients to a Deployed Remote Task

	1.8.3.7 Server-initiated Remote Tasks (SIRT)
	1.8.3.7.1 Remote Task Notifier (RTNotifier)

	1.8.3.8 Task Commands
	1.8.3.8.1 Copy File Command
	1.8.3.8.2 Create Database Command
	1.8.3.8.3 Delete File Command
	1.8.3.8.4 Download File Command
	1.8.3.8.5 Drop Database Command
	1.8.3.8.6 Execute SQL Command
	1.8.3.8.7 Prompt Command
	1.8.3.8.8 Rename File Command
	1.8.3.8.9 Run Program Command
	1.8.3.8.10 Synchronize Command
	1.8.3.8.11 Upload File Command
	1.8.3.8.12 Command Usage
	1.8.3.8.12.1 Adding a Command to a Remote Task

	1.8.3.9 Variables in Parameters
	1.8.3.10 Status
	1.8.3.11 MobiLink System Procedures

	1.8.4 Deployment and Configuration

	1.9 MobiLink Profiler
	1.9.1 Starting the MobiLink Profiler (Administration Tools)
	1.9.2 MobiLink Profiler (mlprof) on the Command Line
	1.9.3 Starting a Profiling Session
	1.9.4 Ending a Profiling Session
	1.9.5 Opening or Deleting a Previous Profiling Session
	1.9.6 The Profiling Database
	1.9.7 MobiLink Profiler Interface
	1.9.7.1 Details Table Pane
	1.9.7.2 Utilization Graph Pane
	1.9.7.2.1 How the Utilization Graph Works

	1.9.7.3 Chart Pane
	1.9.7.4 Overview Pane
	1.9.7.4.1 Marquee Tool
	1.9.7.4.1.1 Changing the Color of the Marquee Tool

	1.9.7.5 Options Window
	1.9.7.6 Session Properties
	1.9.7.7 Sample Properties
	1.9.7.8 Synchronization Properties

	1.9.8 Statistic Customization
	1.9.8.1 Creating a New Watch

	1.9.9 Using the Profiling Database
	1.9.10 MobiLink Synchronization Statistical Properties

	1.10 MobiLink File-based Download
	1.10.1 File-Based Download Setup
	1.10.1.1 File-Definition Database
	1.10.1.2 Changes at the Consolidated Database
	1.10.1.3 Download File Creation
	1.10.1.4 Application of the Download File

	1.10.2 Validation Checks
	1.10.2.1 Automatic Validation
	1.10.2.2 MobiLink Generation Numbers
	1.10.2.3 Custom Validation

	1.10.3 File-Based Download Examples
	1.10.3.1 Snapshot Example
	1.10.3.2 Timestamp-Based Example

	1.11 The Relay Server Reverse Proxy
	1.12 MobiLink Events
	1.12.1 Synchronization Scripts
	1.12.1.1 Simple Synchronization Script Example
	1.12.1.2 Scripts and the Synchronization Process
	1.12.1.3 Script Types
	1.12.1.3.1 Connection Scripts
	1.12.1.3.2 Table Scripts

	1.12.1.4 Script Parameters
	1.12.1.4.1 Named Script Parameters
	1.12.1.4.2 Script Parameters Represented by Question Marks (Deprecated for SQL)
	1.12.1.4.3 Commenting Script Parameters
	1.12.1.4.4 MobiLink System Parameters and Events
	1.12.1.4.5 User-defined Named Parameters
	1.12.1.4.6 Authentication Parameters

	1.12.1.5 Script Versions
	1.12.1.5.1 Adding a Script Version to a Consolidated Database
	1.12.1.5.2 Removing a Script Version From a Consolidated Database

	1.12.1.6 Scripts Required for Synchronization
	1.12.1.7 Script Additions and Deletions
	1.12.1.7.1 Adding a Connection Script
	1.12.1.7.2 Deleting a Connection Script
	1.12.1.7.3 Adding a Table Script
	1.12.1.7.4 Deleting a Table Script
	1.12.1.7.5 Direct Inserts of Scripts
	1.12.1.7.6 Ignored Scripts

	1.12.1.8 Scripts to Upload Rows
	1.12.1.8.1 upload_insert Scripts
	1.12.1.8.2 upload_update Scripts
	1.12.1.8.3 upload_delete Scripts
	1.12.1.8.4 upload_fetch Scripts

	1.12.1.9 Scripts to Download Rows
	1.12.1.9.1 download_cursor Scripts
	1.12.1.9.2 download_delete_cursor Scripts

	1.12.1.10 Scripts to Handle Errors
	1.12.1.10.1 Error Reporting

	1.12.2 Synchronization Events
	1.12.2.1 Overview of MobiLink Events
	1.12.2.1.1 Transactions Within a Synchronization
	1.12.2.1.2 The Upload Transaction
	1.12.2.1.3 The Download Transaction
	1.12.2.1.4 The Non-Blocking Download Acknowledgement Transaction
	1.12.2.1.5 MobiLink Event Model Notes
	1.12.2.1.6 MobiLink Complete Event Model
	1.12.2.1.7 Events During Upload
	1.12.2.1.8 Events During Download

	1.12.2.2 Data Scripts
	1.12.2.3 authenticate_file_transfer Connection Event
	1.12.2.4 authenticate_file_upload Connection Event
	1.12.2.5 authenticate_parameters Connection Event
	1.12.2.6 authenticate_user Connection Event
	1.12.2.7 authenticate_user_hashed Connection Event
	1.12.2.8 begin_connection Connection Event
	1.12.2.9 begin_connection_autocommit Connection Event
	1.12.2.10 begin_download Connection Event
	1.12.2.11 begin_download Table Event
	1.12.2.12 begin_download_deletes Table Event
	1.12.2.13 begin_download_rows Table Event
	1.12.2.14 begin_publication Connection Event
	1.12.2.15 begin_synchronization Connection Event
	1.12.2.16 begin_synchronization Table Event
	1.12.2.17 begin_upload Connection Event
	1.12.2.18 begin_upload Table Event
	1.12.2.19 begin_upload_deletes Table Event
	1.12.2.20 begin_upload_rows Table Event
	1.12.2.21 download_cursor Table Event
	1.12.2.22 download_delete_cursor Table Event
	1.12.2.23 download_statistics Connection Event
	1.12.2.24 download_statistics Table Event
	1.12.2.25 end_connection Connection Event
	1.12.2.26 end_download Connection Event
	1.12.2.27 end_download Table Event
	1.12.2.28 end_download_deletes Table Event
	1.12.2.29 end_download_rows Table Event
	1.12.2.30 end_publication Connection Event
	1.12.2.31 end_synchronization Connection Event
	1.12.2.32 end_synchronization Table Event
	1.12.2.33 end_upload Connection Event
	1.12.2.34 end_upload Table Event
	1.12.2.35 end_upload_deletes Table Event
	1.12.2.36 end_upload_rows Table Event
	1.12.2.37 generate_next_last_download_timestamp Connection Event
	1.12.2.38 handle_DownloadData Connection Event
	1.12.2.39 handle_error Connection Event
	1.12.2.40 handle_odbc_error Connection Event
	1.12.2.41 handle_UploadData Connection Event
	1.12.2.42 modify_error_message Connection Event
	1.12.2.43 modify_last_download_timestamp Connection Event
	1.12.2.44 modify_next_last_download_timestamp Connection Event
	1.12.2.45 modify_user Connection Event
	1.12.2.46 nonblocking_download_ack Connection Event
	1.12.2.47 prepare_for_download Connection Event
	1.12.2.48 publication_nonblocking_download_ack Connection Event
	1.12.2.49 report_error Connection Event
	1.12.2.50 report_odbc_error Connection Event
	1.12.2.51 resolve_conflict Table Event
	1.12.2.52 synchronization_statistics Connection Event
	1.12.2.53 synchronization_statistics Table Event
	1.12.2.54 time_statistics Connection Event
	1.12.2.55 time_statistics Table Event
	1.12.2.56 upload_delete Table Event
	1.12.2.57 upload_fetch Table Event
	1.12.2.58 upload_fetch_column_conflict Table Event
	1.12.2.59 upload_insert Table Event
	1.12.2.60 upload_new_row_insert Table Event
	1.12.2.61 upload_old_row_insert Table Event
	1.12.2.62 upload_statistics Connection Event
	1.12.2.63 upload_statistics Table Event
	1.12.2.64 upload_update Table Event

	1.13 MobiLink Server APIs
	1.13.1 Synchronization Script Writing in Java
	1.13.1.1 Setting up Java Synchronization Logic
	1.13.1.2 Java Synchronization Logic
	1.13.1.2.1 Class Instances
	1.13.1.2.2 Transactions
	1.13.1.2.3 SQL-Java Data Types
	1.13.1.2.4 Constructors
	1.13.1.2.5 Java Methods
	1.13.1.2.6 Java Class Debugging
	1.13.1.2.7 MobiLink Server Error Handling in Java
	1.13.1.2.8 User-Defined Start Classes in Java

	1.13.1.3 Java Synchronization Example

	1.13.2 MobiLink Server Java API Reference
	1.13.3 Synchronization Scripts in Microsoft .NET
	1.13.3.1 Implementing Synchronization Scripts in .NET
	1.13.3.2 .NET Synchronization Logic
	1.13.3.2.1 Class Instances
	1.13.3.2.2 Transactions
	1.13.3.2.3 SQL-.NET Data Types
	1.13.3.2.4 Constructors
	1.13.3.2.5 .NET Methods
	1.13.3.2.6 User-Defined Start Classes in .NET
	1.13.3.2.7 How to Print Information From .NET
	1.13.3.2.8 MobiLink Server Error Handling With .NET
	1.13.3.2.9 Setting Break Points to Debug .NET Synchronization Logic
	1.13.3.2.10 Debugging .NET Synchronization Logic

	1.13.3.3 .NET Synchronization Techniques
	1.13.3.4 .NET Assembly Loading
	1.13.3.5 .NET Synchronization Example

	1.13.4 MobiLink Server .NET API Reference
	1.13.5 Direct Row Handling
	1.13.5.1 The Components of Direct Row Handling
	1.13.5.2 Direct Row Handling Setup
	1.13.5.3 Development Tips for Direct Row Handling
	1.13.5.4 Direct Uploads
	1.13.5.5 Direct Upload Conflicts
	1.13.5.6 Direct Downloads

	1.14 MobiLink Reference
	1.14.1 MobiLink Replay C++ Callbacks
	1.14.1.1 CreateAndInitMLReplayUploadTransaction Callback
	1.14.1.2 DelayCreationOfSimulatedClient Callback
	1.14.1.3 DelayDestructionOfSimulatedClient Callback
	1.14.1.4 DelayStartOfReplay Callback
	1.14.1.5 DestroyMLReplayUploadTransaction Callback
	1.14.1.6 FiniIdentifySimulatedClient Callback
	1.14.1.7 GetDownloadApplyTime Callback
	1.14.1.8 GetMLReplayAPIVersion Callback
	1.14.1.9 GetUploadTransaction Callback
	1.14.1.10 GlobalFini Callback
	1.14.1.11 GlobalInit Callback
	1.14.1.12 IdentifySimulatedClient Callback
	1.14.1.13 ReportEndOfReplay Callback

	1.14.2 MobiLink Server System Procedures
	1.14.2.1 ml_add_certificates_file System Procedure
	1.14.2.2 ml_add_column System Procedure (Deprecated)
	1.14.2.3 ml_add_connection_script System Procedure
	1.14.2.4 ml_add_dnet_connection_script System Procedure
	1.14.2.5 ml_add_dnet_table_script System Procedure
	1.14.2.6 ml_add_java_connection_script System Procedure
	1.14.2.7 ml_add_java_table_script System Procedure
	1.14.2.8 ml_add_lang_connection_script System Procedure
	1.14.2.9 ml_add_lang_connection_script_chk System Procedure
	1.14.2.10 ml_add_lang_table_script System Procedure
	1.14.2.11 ml_add_lang_table_script_chk System Procedure
	1.14.2.12 ml_add_ldap_server System Procedure
	1.14.2.13 ml_add_missing_dnld_scripts System Procedure
	1.14.2.14 ml_add_passthrough System Procedure
	1.14.2.15 ml_add_passthrough_repair System Procedure
	1.14.2.16 ml_add_passthrough_script System Procedure
	1.14.2.17 ml_add_property System Procedure
	1.14.2.18 ml_add_table_script System Procedure
	1.14.2.19 ml_add_user System Procedure
	1.14.2.20 ml_add_user_auth_policy System Procedure
	1.14.2.21 ml_delete_passthrough System Procedure (Deprecated)
	1.14.2.22 ml_delete_passthrough_repair System Procedure (Deprecated)
	1.14.2.23 ml_delete_passthrough_script System Procedure (Deprecated)
	1.14.2.24 ml_delete_sync_state System Procedure
	1.14.2.25 ml_delete_sync_state_before System Procedure
	1.14.2.26 ml_delete_user System Procedure
	1.14.2.27 ml_model_drop System Procedure
	1.14.2.28 ml_model_check_all_schema System Procedure
	1.14.2.29 ml_model_check_version_schema System Procedure
	1.14.2.30 ml_ra_add_agent_id System Procedure
	1.14.2.31 ml_ra_assign_task System Procedure
	1.14.2.32 ml_ra_cancel_notification System Procedure
	1.14.2.33 ml_ra_cancel_task_instance System Procedure
	1.14.2.34 ml_ra_clone_agent_properties System Procedure
	1.14.2.35 ml_ra_delete_agent_id System Procedure
	1.14.2.36 ml_ra_delete_events_before System Procedure
	1.14.2.37 ml_ra_delete_remote_id System Procedure
	1.14.2.38 ml_ra_delete_task System Procedure
	1.14.2.39 ml_ra_get_agent_events System Procedure
	1.14.2.40 ml_ra_get_agent_ids System Procedure
	1.14.2.41 ml_ra_get_agent_properties System Procedure
	1.14.2.42 ml_ra_get_latest_event_id System Procedure
	1.14.2.43 ml_ra_get_orphan_taskdbs System Procedure
	1.14.2.44 ml_ra_get_remote_ids System Procedure
	1.14.2.45 ml_ra_get_task_results System Procedure
	1.14.2.46 ml_ra_get_task_status System Procedure
	1.14.2.47 ml_ra_manage_remote_db System Procedure
	1.14.2.48 ml_ra_notify_agent_sync System Procedure
	1.14.2.49 ml_ra_notify_task System Procedure
	1.14.2.50 ml_ra_reassign_taskdb System Procedure
	1.14.2.51 ml_ra_set_agent_property System Procedure
	1.14.2.52 ml_ra_unmanage_remote_db System Procedure
	1.14.2.53 ml_reset_sync_state System Procedure
	1.14.2.54 ml_server_delete System Procedure
	1.14.2.55 ml_server_update System Procedure

	1.14.3 MobiLink Utilities
	1.14.3.1 MobiLink Stop Utility (mlstop)
	1.14.3.2 MobiLink User Authentication Utility (mluser)
	1.14.3.3 MobiLink Replay Utility (mlreplay)
	1.14.3.4 MobiLink Generated Replay API Utility (mlgenreplayapi)
	1.14.3.5 MobiLink Arbiter Server Utility for Windows (mlarbiter)
	1.14.3.6 MobiLink Arbiter Server Utility for UNIX/Linux (mlarbiter.sh)
	1.14.3.7 MobiLink Arbiter Stop Utility (mlarbstop)

	1.14.4 MobiLink Data Mappings Between Remote and Consolidated Databases
	1.14.4.1 Adaptive Server Enterprise Data Mapping
	1.14.4.2 IBM DB2 LUW Data Mapping (Deprecated)
	1.14.4.3 Microsoft SQL Server Data Mapping
	1.14.4.4 MySQL Data Mapping
	1.14.4.5 Oracle Data Mapping
	1.14.4.6 SAP HANA Data Mapping
	1.14.4.7 SAP IQ Enterprise Data Mapping

	1.14.5 Character Set Considerations
	1.14.5.1 Character Set Conversion During Synchronization
	1.14.5.1.1 ODBC Driver Character Set Conversion

	1.14.6 ODBC Drivers for MobiLink
	1.14.6.1 SQL Anywhere 17 - Oracle ODBC Driver
	1.14.6.1.1 Creating an ODBC Data Source for the Oracle Driver in Microsoft Windows
	1.14.6.1.2 UNIX/Linux Configuration
	1.14.6.1.3 Creating an ODBC Data Source for the Oracle Driver (dbdsn Utility)

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

