

Migrating a PostgreSQL

Database to SQL Anywhere 12

www.sybase.com

A WHITEPAPER FROM SYBASE , AN SAP COMPANY

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011 i

Contents:
Introduction .. 2

Differences between PostgreSQL 9.1 and SQL Anywhere 12.. 3

Data types .. 3
PostgreSQL function mappings to SQL Anywhere ... 6
Aggregate Functions .. 7
String Functions ... 7
Numeric Functions ... 3
Date and Time Functions ... 3
Syntax Mappings .. 2
Operators ... 2
Data Manipulation Language .. 2
Miscellaneous Syntax .. 3
Other migration issues .. 4

Migrating a PostgreSQL database to a SQL Anywhere database ... 6

Requirements .. 6
Creating a SQL Anywhere database ... 6
Creating a data source for the PostgreSQL database ... 6
Migrating the PostgreSQL database to SQL Anywhere .. 7
Connecting to the SQL Anywhere Database .. 7
Creating a Remote Server and External Login.. 7
Migrating the PostgreSQL database ... 9

Tweaking the new SQL Anywhere database ... 10

Migrating applications from PostgreSQL to SQL Anywhere .. 12

Migrating a PYTHON application from PostgreSQL to SQL Anywhere .. 12
Migrating a Perl application from PostgreSQL to SQL Anywhere .. 12
Migrating a PHP application from PostgreSQL to SQL Anywhere ... 13
Function mapping .. 13
PHP migration notes .. 14

Summary .. 15

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 2

Introduction

Migrating data from PostgreSQL to SQL Anywhere can be a straightforward process if there are not a lot of
PostgreSQL extensions in use within your database and application. SQL Anywhere simplifies migration by
including built-in tools that facilitate a smooth transition from PostgreSQL (and other RDBMS’s) to SQL
Anywhere.

The first part of this document discusses in detail differences between SQL Anywhere and PostgreSQL,
including data type differences, feature differences, and syntax differences. Some of the features that are
unique to PostgreSQL can hinder migration. Approaches to how you might choose to deal with these issues are
provided. The second part of this document includes a systematic explanation of how to migrate data from a
PostgreSQL database into a SQL Anywhere database using the Sybase Central Data Migration wizard. Finally,
the third part of this document supplies an example of how you might migrate an existing application running
against PostgreSQL to one that runs against SQL Anywhere.

This document was written for SQL Anywhere version 12 and later, and PostgreSQL version 9.1 and later.

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 3

Differences between PostgreSQL 9.1 and SQL Anywhere 12

The following sections describe some of the differences between PostgreSQL and SQL Anywhere that you may
encounter during migration, along with some suggested solutions that can be used as starting points to resolve
any issues that arise during migration. There are many ways to optimize your code with SQL Anywhere
features that are missing from PostgreSQL.

It is highly recommended that you review the SQL Anywhere documentation as well as the developer
resources, including samples and technical documents, available on the SQL Anywhere Tech Corner website at
http://www.sybase.com/developer/library/sql-anywhere-techcorner when moving to SQL Anywhere.

Data types
In most cases, the PostgreSQL data types can map directly to SQL Anywhere data types. The following table
lists some examples:

PostgreSQL data type Equivalent SQL Anywhere data type Notes

BIGINT BIGINT

BIGSERIAL BIGINT With a default system-defined
autoincrement value

BIT BIT

BIT VARYING(n) VARBIT(n) In SQL Anywhere, length is 1 by
default

BIT VARYING LONG VARBIT

BOOLEAN TINYINT OR BIT

BOX ST_POLYGON(ST_POINT, ST_POINT) The two ST_POINTS represent the
lower-left and upper right corners

BYTEA LONG BINARY

CHARACTER VARYING(n) VARCHAR(n CHAR) Length in characters must be
defined

CHARACTER(n) CHAR(n CHAR) Length in characters must be
defined

CIDR N/A No equivalence

CIRCLE ST_CIRCULARSTRING(ST_POINT, ...)

DATE DATE

DOUBLE PRECISION DOUBLE

INET N/A No equivalence

4

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

INTEGER INTEGER

INTERVAL INTEGER Can be converted to date format

LINE N/A No equivalence

LSEG ST_LINESTRING(ST_POINT, ...)

MACADDR N/A No equivalence

MONEY MONEY

NUMERIC NUMERIC

PATH(open) ST_LINESTRING(ST_POINT, ...)

PATH(closed) ST_POLYGON(ST_POINT, ...)

POINT ST_POINT

POLYGON ST_POLYGON(ST_POINT, ...)

REAL FLOAT

SMALLINT SMALLINT

SERIAL INTEGER With a default system-defined
autoincrement value

TEXT TEXT

TIME TIME

TIME WITH TIME ZONE N/A Timestamp with timezone

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

TSQUERY N/A No equivalence

TSVECTOR N/A No equivalence

TXID_SNAPSHOT N/A No equivalence

UUID UNIQUEIDENTIFIER

XML XML

Note: In addition to the differences in data types themselves, there is also a difference in the declaration of
data types. PostgreSQL provides an optional parameter for its numeric types that allow you to specify the
maximum display width for integer types. For example, an INT(4) column would return the value ‘1’ as
‘<s><s><s>1’, where <s> is a space. The optional ZEROFILL modifier on the type definition would replace the

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 5

spaces in the previous example with zeros and add the UNSIGNED attribute to the column. For example, ‘1’ is
returned as ‘0001’. The merge of display format and data values in the type definition is not supported by SQL
Anywhere. The CAST and CONVERT functions, along with the various string manipulation functions are
available to format data values when they are retrieved from the database.

The following data types differ from SQL Anywhere more substantially than by syntax:

MEDIUMINT: These are 3-byte integer values. They can easily be simulated using an INTEGER (4 bytes) or
SMALLINT (2 bytes) in SQL Anywhere, depending on the expected range of values for the column.

YEAR: Year is a 2 or 4 digit value. The SQL Anywhere DATE data type can be used to hold year values, but uses
slightly more storage space. Date arithmetic and conversion can be performed using the SQL Anywhere built-
in functions listed under “Date and Time Functions” in the “SQL Functions” chapter of the “SQL Anywhere
Server - SQL Reference” manual.

The following data types do not match exactly, and will require some work to migrate to SQL Anywhere:

NCHAR/NVARCHAR: As of PostgreSQL 5, an NCHAR value is stored in PostgreSQL using the UTF8 character set.
SQL Anywhere supports a variety of character sets, including UTF8. With a database created using the proper
collation, the use of a special data type to store international values is not required, though SQL Anywhere does
support the NCHAR data type. To learn more about the latest international character set support in SQL
Anywhere, see the chapter “International Language and Character Sets” in the “SQL Anywhere Server -
Database Administration” manual.

ENUM: An ENUM value is a string object whose value must be chosen from a list of supplied values enumerated
in the column definition when a table is created. The enumerated values can also be inserted or retrieved by
their index position in the ENUM definition. The index value 0 is reserved for the empty string. The ENUM
data type is represented in SQL Anywhere by a TINYINT column. There are a few options to accomplish the
same behavior as the PostgreSQL ENUM, but changes to the client application will almost certainly be required.
Some options are:

• Altering the client side application to remove the need for ENUM values

• Translating the ENUM values on the client side

• Adding some logic to the server side to attempt to mimic the PostgreSQL behavior of ENUM values
by using stored procedures, triggers, computed columns, view, and/or a mapping table for the
ENUM types

For example, a view could be created on the table containing the ENUM fields to allow for the return of the
values as a string, while a regular SELECT could be used to return them as a number. Here is an example of a
view that could be used:

CREATE TABLE enumtbl (pkey INTEGER NOT NULL PRIMARY KEY, enumval TINYINT);

CREATE VIEW v_enumtable AS
 SELECT pkey
 CASE WHEN 0 then ‘’
 WHEN 1 then ‘val1’
 WHEN 2 then ‘val2’
 WHEN 3 then ‘val3’
 ELSE NULL
 END
FROM enumtbl;

Then, a query may look something like this:

SELECT pkey, enumval FROM v_enumtable;

Alternatively, a mapping table could be created for the ENUM vales and whenever you retrieve data from
enumtbl, a join can be made to the mapping table containing the ENUM strings.

6

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

CREATE TABLE enummap(enumval TINYINT NOT NULL PRIMARY KEY, enumstr CHAR(16));

Then a query may look something like this:

SELECT pkey, enumval FROM enumtbl, enummap
WHERE enumtbl.enumval = enummap.enumval;

An insert on the table can be done directly if you are using the index values of the ENUM; otherwise, a stored
procedure could be used to insert a row into any table containing an ENUM. The stored procedure would
contain the logic to decode the ENUM values. Following is a sample stored procedure implementation to deal
with an ENUM column equivalent in SQL Anywhere (using the same table definition as above):

CREATE PROCEDURE sp_insert_enumval (IN pkeyval int, IN enum CHAR(16))
BEGIN
 DECLARE enum_map TINYINT;
 IF enum IS NOT NULL THEN
 CASE enum
 WHEN ‘’ THEN SET enum_map = 0
 WHEN ‘val1’ THEN SET enum_map = 1
 WHEN ‘val2’ THEN SET enum_map = 2
 WHEN ‘val3’ THEN SET enum_map = 3
 ELSE SET enum_map = 0
 END CASE
 END IF;

 INSERT INTO enumtbl VALUES(pkeyval, enum_map);
END

SET: A SET value is a string object whose value must be chosen from a list of values supplied when the column
is defined. It is different from the ENUM type in that 0 or more values from the list can be combined to create a
valid value for the column. Each value in the set is assigned a binary value and data can be assigned or
retrieved by using a number representing the combination of values to be set. For example, specifying a value
of 9 would insert the first and fourth value from the set into the column. Depending on how many values are
in the set (64 is maximum), anything from a TINYINT to a BIGINT is required to map a SET value from
PostgreSQL to SQL Anywhere. To achieve the same behavior as PostgreSQL, methods similar to those
demonstrated above with the ENUM data type can be used.

PostgreSQL function mappings to SQL Anywhere
Many of the functions in both PostgreSQL and SQL Anywhere have the same name. Most PostgreSQL functions
that have different names have an equivalent SQL Anywhere version. PostgreSQL contains a few built-in
functions that do not exist in SQL Anywhere. Most of these functions can be created in SQL Anywhere as user-
defined functions that perform the same activity. If you give these functions the same name in the SQL
Anywhere database, you will not need to modify the existing client application’s SQL statements. Here are
some examples of how SQL Anywhere user-defined functions can supply the same functionality as their
PostgreSQL built-in counterparts:

CREATE FUNCTION FROM_UNIXTIME (IN fromdt bigint default 0, IN fmt varchar(32) default ‘Mmm dd,
yyyy hh:mm:ss’) RETURNS datetime
BEGIN
 RETURN(dateformat(dateadd(second, fromdt, ‘1970/01/01 00:00:00’, fmt))
END;

CREATE FUNCTION SEC_TO_TIME (IN sec bigint default 0) RETURNS time
BEGIN
 RETURN (dateadd(second, sec, ‘1970/01/01 00:00:00’))
END;

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 7

The following sections detail many of the PostgreSQL functions along with their SQL Anywhere equivalents.
The list is extensive, but not exhaustive, as the list of function in both SQL Anywhere and PostgreSQL changes
with each release.

Aggregate Functions
Almost all PostgreSQL aggregate functions are identical to SQL Anywhere aggregate functions, with the
exception of the following which have no equivalence:

• ARRAY_AGG

• BOOL_AND

• BOOL_OR

• EVERY

• STRING_AGG

String Functions

PostgreSQL function Equivalent SQL Anywhere function Notes

ASCII(string) ASCII(string)

BTRIM(string text [, characters
text])

N/A No equivalence

CHR(int) CHAR(integer)

CONCAT(str “any” [, str “any [,
...]]))

STRING (a, b, …)

CONCAT_WS(sep text, str “any” [,
str “any” [,...]])

STRING(str1, sep, str2, sep …)

CONVERT(String bytea,
src_encoding name, dest_encoding
name)

CSCONVERT(string,dest,src)

CONVERT_FROM(String bytea,
src_encoding name)

CSCONVERT(String, ‘db_charset’,src)

CONVERT_TO(String text,
dest_encoding name)

CSCONVERT(String, dest)

DECODE(String text, ‘base64’) BASE64_DECODE

ENCODE(Data bytea, ‘base64’) BASE64_ENCODE

FORMAT(Formatstr text [, str “any”
[, ...]])

N/A No equivalence

INITCAP(String) N/A No equivalence

LEFT(Str text, n int) LEFT(String, Integer) For negative integers, use RIGHT

2

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

LENGTH(String) LENGTH(String)

LPAD(String text, Length int[, Fill
text])

N/A

LTRIM(String text [, Characters
text])

MD5(String) HASH

PG_CLIENT_ENCODING() N/A No equivalence

REGEXP_MATCHES(String text,
Pattern text [, Flags text])

REGEXP_SUBSTR

REGEXP_REPLACE(String text,
Pattern text, Replacement text [,
Flags text])

REGEXP_SUBSTR

REPLACE

Use the two in conjunction to
represent REGEXP_REPLACE

REGEXP_MSPLIT_TO_ARRAY(String
text, Pattern text [, Flags text])

N/A No equivalence

REGEXP_SPLIT_TO_TABLE(String
text, Pattern text [, Flags text])

N/A No equivalence

REPEAT(String text, Numer int) REPEAT(String, Integer)

REPLACE(String text, Number int) REPLACE(String, Integer)

REVERSE(String) REVERSE(String)

RIGHT(String text, n int) RIGHT(String, Integer) For negative integers, use LEFT

RPAD(String text, Length int[, Fill
text])

N/A No equivalence

RTRIM(String text [,Characters
text])

RTRIM(String) No support for character trim

SPLIT_PART(String text, Delimiter
text, Field int)

N/A SELECT row_value FROM
sa_split_list(string, delimiter)
WHERE line_num = field

STRPOS(String, Substring) LOCATE(String, Substring)

TO_ASCII(String text [, Encoding
text])

TO_CHAR(String [, Charset])

TO_HEX(Number Int|Bigint) INTTOHEX(Integer)

TRANSLATE N/A No equivalence

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 3

NOTE: SQL Anywhere does not support the Quote functions in PostgreSQL

Numeric Functions
The following numeric functions are identical in PostgreSQL and SQL Anywhere:

• ABS

• CEILING

• DEGREES

• EXP

• FLOOR

• MOD

• PI

• POWER

• RADIANS

• SIGN

• SQRT

The following numeric functions have direct equivalences between PostgreSQL and SQL Anywhere:

PostgreSQL function Equivalent SQL Anywhere
function

Notes

CBRT(dp) POWER(Numeric, 1/3)

DIV(Y numeric, X numeric) ROUND(Numeric, Integer)

LN(dp or numeric) LOG(Numeric)

LOG(numeric) LOG10(Numeric)

LOG(X numeric, B numeric) LOG(X Numeric)/LOG(B
numeric)

RANDOM() RAND

ROUND(dp or numeric) ROUND(Numeric, 0)

ROUND(V numeric, S int) ROUND(Numeric, Integer)

SETSEED(dp) RAND(Integer)

TRUNC(dp or numeric) TRUNCNUM(Numeric, 0)

TRUNC(V numeric, S int) TRUNCNUM(Numeric,
Integer)

NOTE: WIDTH_BUCKET in PostgreSQL does not have a SQL anywhere equivalent

Date and Time Functions
The date and time functions vary the most between the two database servers, with no identical functions. The
following lists date and time functions in PostgreSQL with equivalences in SQL Anywhere:

PostgreSQL function Equivalent SQL Anywhere
function

Notes

2

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

AGE(Timestamp,
Timestamp)

DATEDIFF(Datepart,
Getdate(), Timestamp)

AGE(Timestamp) DATEDIFF(Datepart,
Getdate(), Timestamp)

CLOCK_TIMESTAMP() GETDATE()

CURRENT_DATE CURRENT DATE

CURRENT_TIME CURRENT TIME

CURRENT_TIMESTAMP CURRENT TIMESTAMP

DATE_PART(‘Datepart’,
TIMESTAMP Timestamp)

DATEPART(Datepart,
Timestamp)

EXTRACT(Field
fromtimestamp)

DATEPART(Datepart,
Timestamp)

LOCALTIME CURRENT TIME

LOCALTIMESTAMP CURRENT TIMESTAMP

NOW() CAST(GETDATE() AS
TIMESTAMP WITH
TIMEZONE)

TIMEOFDAY() NOW()

The following PostgreSQL date time functions have no equivalence in SQL Anywhere:

• DATE_PART(Text,
Interval)

• DATE_TRINC(Text,
Timestamp)

• EXTRACT(Field
frominterval)

• ISFINITE(Date)

• ISFINITE(Timestamp)

• ISFINITE(Interval)

• JUSTIFY_DAYS(Interva
l)

• JUSTIFY_HOURS(Inter
val)

• JUSTIFY_INTERVAL(In
terval)

• STATEMENT_TIMESTA
MP()

• TRANSACTION_TIMES
TAMP()

Syntax Mappings
Most of the syntax features of PostgreSQL are available in SQL Anywhere, but occasionally the syntax for
accessing those features is different. The following charts detail many of these statements along with their SQL
Anywhere equivalents. For specific examples of SQL Anywhere syntax listed below, see the “SQL Statements”
chapter of the “SQL Anywhere Server - SQL Reference” manual.

Operators

PostgreSQL operator Equivalent SQL Anywhere Notes

2

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

operator

!= <>

<=> (expr1 = expr2 OR ((expr1
IS NULL) AND (expr2 IS
NULL)))

The <=> operator represents equality
including NULL values (NULL=NULL
is true).

ISNULL(expr) IS NULL expr

INTERVAL(N, N1, N2,…) None built in A user defined function could easily
be used to achieve the same
functionality. For example: if (N <
N1) then 0 elseif (N < N2) then 1
elseif…

! NOT

&& AND

|| OR

A XOR B ((a AND (NOT b)) OR ((NOT
a) AND b))

The SQL Anywhere expression is
complex for large numbers of XOR
arguments, so an alternative
migration technique is
recommended dependent on the
application scenario.

Data Manipulation Language

PostgreSQL statement Equivalent SQL Anywhere
statement

Notes

INSERT … INSERT …

ON DUPLICATE KEY UPDATE ON EXISTING UPDATE SQL Anywhere also offers the options
ERROR and SKIP for existing rows.

SELECT …. INTO OUTFILE UNLOAD SELECT

DBISQL OUTPUT TO

SELECT/UPDATE/DELETE …
LIMIT

FIRST or TOP n

DEFAULT ‘0’ NOT NULL
auto_increment

NOT NULL DEFAULT
AUTOINCREMENT

LIMIT offset, numRows TOP numRows START AT
offset

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 3

Insert IGNORE INSERT … ON EXISTING
SKIP

Replace … INSERT … ON EXISTING
UPDATE

GROUP_CONCAT LIST

INSERT INTO … DEFAULT
VALUES

INSERT INTO … VALUES
(DEFAULT)

LOAD DATA INFILE LOAD TABLE

Miscellaneous Syntax
The following is a miscellaneous list of compatibility items that do not fit into the aforementioned categories.
It also includes mappings between functions that are not exactly the same, but are designed to provide the
same functionality.

PostgreSQL syntax Equivalent SQL Anywhere
syntax

Notes

VERSION() @@version global variable

PostgreSQL_insert_id() @@identity global variable

LAST_INSERT_ID variable @@identity global variable

PostgreSQL_affected_rows() @@rowcount global
variable

ANALYZE TABLE sa_table_page_usage,
sa_table_fragmentation

SQL Anywhere also offers access to
other properties via the property()
function.

OPTIMIZE TABLE CREATE STATISTICS SQL Anywhere has a self-tuning
optimizer that automatically
maintains statistics, so statistics do
not need to be updated manually.

CHECK TABLE sa_validate () procedure

USE database-name There is no equivalent in SQL
Anywhere. Each database running
on a server requires its own
connection.

LOCK TABLES (name) WRITE LOCK TABLES table-name
IN EXCLUSIVE MODE

SQL Anywhere supports row-level
locking, so table locks are generally
not required.

4

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

UNLOCK TABLES COMMIT A COMMIT releases all locks, unless a
cursor is opened using the WITH
HOLD clause.

DO CALL

FLUSH/RESET sa_flush_cache,
sa_flush_statistics

Most of the other flushable elements
in PostgreSQL are automatically
managed by SQL Anywhere and do
not need to be flushed.

REGEXP/RLIKE SIMILAR SIMILAR works differently from the
PostgreSQL REGEX syntax, but
performs the same function. It may
suit the needs where the PostgreSQL
REGEXP expression is being used.

BINARY str CAST str AS BINARY

CURDATE() |
CURRENT_DATE()

CURRENT DATE

CURTIME() |
CURRENT_TIME()

CURRENT TIME

SYSDATE() | LOCALTIME() |
CURRENT_TIMESTAMP() |
NOW()

NOW(),

CURRENT TIMESTAMP

UTC_DATE() CURRENT UTC TIMESTAMP

DATABASE() CURRENT DATABASE

LOAD_FILE(file) xp_read_file(file) In SQL Anywhere, the contents of a
file are returned as a long binary
field, while in PostgreSQL they are
returned as a string.

CONNECTION_ID() CONNECTION_PROPERTY
(‘Number’)

Other migration issues
The following is a list of miscellaneous notes to keep in mind when migrating from PostgreSQL to SQL
anywhere:

• The identifiers in PostgreSQL are optionally enclosed with the back quote (‘), while SQL Anywhere
uses the double quote (“) or , alternatively, square brackets ([]).

• Some words that are keywords in SQL Anywhere are not in PostgreSQL, such as ‘comment’ and
‘session’. These keywords must be enclosed in double quotes in order to be used with SQL
Anywhere. Alternatively, you can use the SQL Anywhere NON_KEYWORDS option to change the list
of recognized keywords. For information about the NON_KEYWORDS option, see

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 5

“NON_KEYWORDS option [compatibility]” in the “Database Options” chapter of the “SQL Anywhere
Server - Database Administration” manual.

• The minimum timestamp value in SQL Anywhere is ‘0001-01-01 00:00:00’, while it is ‘0000-0000-00
00:00:00’ in PostgreSQL.

• Timestamps in PostgreSQL have the format of YYYY-MM-DD hh:mm:ss. SQL Anywhere includes
fractions of a second as part of the timestamp value. The TIME_FORMAT option allows you to
specify the exact format used to return datetime value. For information about the TIME_FORMAT
option, see “TIME_FORMAT option [compatibility]” in the “Database Options” chapter of the “SQL
Anywhere Server - Database Administration” manual.

• While PostgreSQL allows the use of single or double quotes around string literals, by default single
quotes must be used to enclose string values in SQL Anywhere and double quotes signify the use of
a database object identifier. This behavior can be changed by setting the QUOTED_IDENTIFIER
option in the database. For information about the QUOTED_INDENTIFIER option, see
“QUOTED_IDENTIFIER option [compatibility]” in the “Database Options” chapter of the “SQL
Anywhere Server - Database Administration” manual.

6

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

Migrating a PostgreSQL database to a SQL Anywhere
database

Migrating data from PostgreSQL to SQL Anywhere is a straightforward process, with minor issues occurring
only if you are using the PostgreSQL-specific data types mentioned previously. Data migration can be
accomplished using the Data Migration wizard that is part of Sybase Central. Alternatively, a more customized
migration can be done using the sa_migrate set of stored procedures in SQL Anywhere. The PostgreSQLdump
utility, coupled with the SQL Anywhere LOAD TABLE statement, could also be used to migrate the data. Note
that if the PostgreSQL SET or ENUM data types are used in the PostgreSQL database, you may have some
additional considerations when migrating your PostgreSQL database to SQL Anywhere. For information about
these data types and the differences from SQL Anywhere, see “Data types” on page 3.

Requirements

• This document assumes you have a PostgreSQL database running on any of its supported platforms
and SQL Anywhere 12 installed on any of the supported Windows platforms.

• If you have not created a PostgreSQL database, you can create a few tables in the PostgreSQL test
database to walk through the migration steps.

• The PostgreSQL ODBC 5.1 (or later) driver must also be installed on the computer running the SQL
Anywhere database.

Creating a SQL Anywhere database
You must first create a SQL Anywhere database to migrate the PostgreSQL database to. The following steps
explain how to create a new database using Sybase Central.

1. Start Sybase Central. From the Start Menu, choose Program � SQL Anywhere 12 �
Administration Tools � Sybase Central.

2. Create a new SQL Anywhere 12 database. Choose Tools � SQL Anywhere 12 � Create Database.
Follow the instruction in the wizard to create a new database.

Creating a data source for the PostgreSQL database
The migration process requires an ODBC connection to the source database. Therefore, you need to create an
ODBC data source (DSN) for the PostgreSQL database.

1. Download and install the PostgreSQL ODBC 5.1 driver if you have not already done so. The most
recent driver is located at http://dev.PostgreSQL.com/downloads/connector/odbc/.

2. From Sybase Central, choose Tools � SQL Anywhere 12 � Open ODBC Administrator. The ODBC
Data Source Administration dialog appears.

3. Click Add to add a new DSN. The Create New Data Source wizard appears.

4. Select the PostgreSQL ODBC 5.1 Driver from the list of available drivers and then click Finish. The
PostgreSQL ODBC 5.1 Driver - DSN Configuration dialog appears.

5. Type a name for the data source in the Data Source Name field. For example, name the data source
‘PostgreSQL migrate’.

6. Supply the server name, user ID, password, and database name on the logic page of the PostgreSQL
ODBC Connector dialog.

7. Click the Test Data Source button to ensure you have configured the data source correctly.

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 7

8. Click OK.

Migrating the PostgreSQL database to SQL Anywhere
The steps to migration are outlined below.

Connecting to the SQL Anywhere Database

In order to migrate the new SQL Anywhere database, you must first connect to the SQL Anywhere database.

1. If you are not already connected, from Sybase Central, choose Connections � Connect with SQL
Anywhere 12. The Connect dialog appears.

2. Type a valid User ID and password for your database. By default, there is a user ‘DBA’ with
password ‘SQL’.

3. If the database is not yet running, from the Actions dropdown, select ‘Start and connect to a
database on this computer’. If it is already running, simply select ‘Connect to a database on this
computer’. Click the Browse button and then select the SQL Anywhere database file you created.

4. Click Connect. The SQL Anywhere database server starts automatically.

Creating a Remote Server and External Login

The next step is to tell Sybase Central where to find the PostgreSQL database. This is done by creating a
remote server.

8

Migrating a PostgreSQL Database to SQL Anywhere 12

1. In the left pane of Sybase Central, expand your database server and
below, the database named migrate is running on a database server that is also named migrate.

2. In Sybase Central, from the Tools menu, select SQL Anywhere 12
Database Wizard will appear.

3. Select the SQL Anywhere 12 database you just created and click Next.

4. Click ‘Create Remote Server Now…’ and follow the instructions in the wizard to create a remote
server that connects to your

a. On the first page of the wizard, type a name fo
‘PostgreSQL migrate’ and then click Next.

b. Choose PostgreSQL

c. Select the Open Database Connectivity (ODBC) Option and type the name of the ODBC data
source for your PostgreSQL
you named your ODBC data source ‘
‘PostgreSQL migrate’ in the connection information field.

5. Click Next.

6. Do not choose to make the server read only. Click

7. If the remote server does not define a user that is the same as the user ID you are connected to the
SQL Anywhere database with, you must create an external login for your current user. For

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

In the left pane of Sybase Central, expand your database server and database icons. In the example
below, the database named migrate is running on a database server that is also named migrate.

In Sybase Central, from the Tools menu, select SQL Anywhere 12 � Migrate Database. The Migrate
Database Wizard will appear.

t the SQL Anywhere 12 database you just created and click Next.

Click ‘Create Remote Server Now…’ and follow the instructions in the wizard to create a remote
server that connects to your PostgreSQL database.

On the first page of the wizard, type a name for the remote server, for example
migrate’ and then click Next.

PostgreSQL as the type of remote server. Click Next.

Select the Open Database Connectivity (ODBC) Option and type the name of the ODBC data
PostgreSQL database in the connection information field. For example, if

you named your ODBC data source ‘PostgreSQL migrate’ when you created it, type
migrate’ in the connection information field.

Do not choose to make the server read only. Click Next.

If the remote server does not define a user that is the same as the user ID you are connected to the
SQL Anywhere database with, you must create an external login for your current user. For

database icons. In the example
below, the database named migrate is running on a database server that is also named migrate.

Migrate Database. The Migrate

Click ‘Create Remote Server Now…’ and follow the instructions in the wizard to create a remote

r the remote server, for example

Select the Open Database Connectivity (ODBC) Option and type the name of the ODBC data
se in the connection information field. For example, if

migrate’ when you created it, type

If the remote server does not define a user that is the same as the user ID you are connected to the
SQL Anywhere database with, you must create an external login for your current user. For

Migrating a PostgreSQL Database to SQL Anywhere 12

example, if you connected to the SQL Anywhere database with the u
PostgreSQL database does not contain a user ID DBA, then you must create an external login. Type
a user name from the PostgreSQL
user in the Password and Confirm Password f

8. Use the “Test Connection” button to ensure you can connect. Then, click Finish.

Migrating the PostgreSQL database

Now you are ready to migrate your PostgreSQL
communicate to the PostgreSQL database via ODBC. Back in the Migration wizard, you now have a remote
server from which to perform the migration.

1. From Sybase Central, choose Tools
Migration Wizard appears.

2. Select the current database an

3. Select the PostgreSQL remote server you created, for example,
Next.

4. The tables in the PostgreSQL
add by clicking on the table name
all tables.

5. Select the SQL Anywhere database user you wish to own the tables or create a new user. Click
Next.

6. Select the options you wish to use.

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

example, if you connected to the SQL Anywhere database with the user ID DBA, and your
database does not contain a user ID DBA, then you must create an external login. Type

PostgreSQL database in the Login Name field. Type the password for this
user in the Password and Confirm Password fields.

Use the “Test Connection” button to ensure you can connect. Then, click Finish.

database

PostgreSQL database: SQL Anywhere is running, connected and able to
tabase via ODBC. Back in the Migration wizard, you now have a remote

server from which to perform the migration.

From Sybase Central, choose Tools � SQL Anywhere 12 � Migrate Database. The Database
Migration Wizard appears.

Select the current database and then click Next.

remote server you created, for example, PostgreSQL migrate, and then click

PostgreSQL database appear in the left list box. Select the ones you would like to
add by clicking on the table name on the left and clicking Add or simply clicking Add All to migrate

Select the SQL Anywhere database user you wish to own the tables or create a new user. Click

Select the options you wish to use.

 9

ser ID DBA, and your
database does not contain a user ID DBA, then you must create an external login. Type

database in the Login Name field. Type the password for this

Use the “Test Connection” button to ensure you can connect. Then, click Finish.

database: SQL Anywhere is running, connected and able to
tabase via ODBC. Back in the Migration wizard, you now have a remote

Migrate Database. The Database

migrate, and then click

database appear in the left list box. Select the ones you would like to
on the left and clicking Add or simply clicking Add All to migrate

Select the SQL Anywhere database user you wish to own the tables or create a new user. Click

10

Migrating a PostgreSQL Database to SQL Anywhere 12

7. Click Finish to start the migration
window when the status changes to ‘Completed’.

Tweaking the new SQL Anywhere database
Now that you have migrated the PostgreSQL
enjoying the benefit SQL Anywhere brings. One immediate benefit is transactional support.

Since not all PostgreSQL tables support referential integrity, your
keys. If in step 6 of ‘Migrating the PostgreSQL
add referential integrity support later. To add referential integrity support:

1. List the foreign keys in my
PostgreSQL database:
 SHOW TABLE STATUS FROM database_name

Alternatively, SHOW CREATE TABLE table_name
relationships. The referential constraints are listed under the comment column for each table in
the form.
 (column_name) REFER ref_db_name/

2. Specify referential integrity constraints:

a. You can use Sybase Central to add foreign keys to your database.

b. Alternatively, for each of the foreign keys, issue the following SQL statement against the
SQL Anywhere database (us
ALTER TABLE “table

 ADD FOREIGN KEY “foreign_key_name” (“column_name”)

 REFERENCES “ref_table_name” (“ref_column_name”);

With the new foreign key constraints in place, the SQL Anywhere database checks f
referential integrity automatically and greatly improves data integrity.

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

Click Finish to start the migration. The Migration Database window appears. You can close this
window when the status changes to ‘Completed’.

Tweaking the new SQL Anywhere database
PostgreSQL schema and data to the SQL Anywhere database, you can start

ng the benefit SQL Anywhere brings. One immediate benefit is transactional support.

tables support referential integrity, your PostgreSQL schema may not have foreign
PostgreSQL Database’ you chose to ignore foreign key relationships, you can

add referential integrity support later. To add referential integrity support:

List the foreign keys in my PostgreSQL database by issuing the following SQL statement against the

OW TABLE STATUS FROM database_name
SHOW CREATE TABLE table_name will also reveal any foreign key

relationships. The referential constraints are listed under the comment column for each table in

(column_name) REFER ref_db_name/ref_table_name(ref_column_name)

Specify referential integrity constraints:

You can use Sybase Central to add foreign keys to your database.

Alternatively, for each of the foreign keys, issue the following SQL statement against the
SQL Anywhere database (using the Interactive SQL utility: dbisql):
ALTER TABLE “table-name”

ADD FOREIGN KEY “foreign_key_name” (“column_name”)

REFERENCES “ref_table_name” (“ref_column_name”);

With the new foreign key constraints in place, the SQL Anywhere database checks f
referential integrity automatically and greatly improves data integrity.

. The Migration Database window appears. You can close this

schema and data to the SQL Anywhere database, you can start

schema may not have foreign
hose to ignore foreign key relationships, you can

database by issuing the following SQL statement against the

will also reveal any foreign key
relationships. The referential constraints are listed under the comment column for each table in

ref_table_name(ref_column_name)

Alternatively, for each of the foreign keys, issue the following SQL statement against the

ADD FOREIGN KEY “foreign_key_name” (“column_name”)

REFERENCES “ref_table_name” (“ref_column_name”);

With the new foreign key constraints in place, the SQL Anywhere database checks for

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 11

Properly placed indexes improve database performance significantly, while poorly placed ones hinder
performance with equal significance. SQL Anywhere 12 offers the Index Consultant that inspects database
usage and workload and recommends changes to the indexing structure as needed. PostgreSQL dictates that
foreign key columns must have indexes explicitly defined, but this is not the case in SQL Anywhere. Also, for
each Primary key, PostgreSQL creates a primary index that is redundant in SQL Anywhere. The Index
Consultant will likely recommend removing the redundant indexes that are copied from the PostgreSQL
database during the migration process. The Index Consultant can prove to be a useful tool to boost the
performance of the migrated SQL Anywhere database. For information about optimizing your schema, refer to
your SQL Anywhere documentation and the SQL Anywhere developer resources available online at
http://www.sybase.com/developer/library.

12

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

Migrating applications from PostgreSQL to SQL Anywhere

Application migration from PostgreSQL to SQL Anywhere depends on the interface used to access your
PostgreSQL application. The following are some of the more popular interfaces that should required only
minimal work to migrate:

• ODBC: Both SQL Anywhere and PostgreSQL support the ODBC 5.1 API specification. Generally,
migration of these applications involves changes the ODBC data source to point to SQL Anywhere
instead of PostgreSQL. There may be some specific differences in terms of the implementations of
creating API functions, but given the maturity of the ODBC specification, these should be minor.

• JDBC: PostgreSQL has a type 4 JDBC Driver (100% Java implementation). To migrate to the SQL
Anywhere equivalent, the Sybase jConnect driver should be used. However, to achieve the
maximum performance benefits of SQL Anywhere, it is recommended that you use the SQL
Anywhere JDBC driver. The SQL Anywhere JDBC driver is a type 2 JDBC driver. The SQL Anywhere
JDBC drivers support all of the core elements of the JDBC 3.0 and JDBC 4.0 specifications.

• Python: For information about migrating Python applications, see “Migrating a Python application
from PostgreSQL to SQL Anywhere” on page 12.

• Perl: For information about migrating Perl applications, see “Migrating a Perl application from
PostgreSQL to SQL Anywhere” on page 12.

• PHP: For information about migrating PHP applications, see “Migrating a PHP application from
PostgreSQL to SQL Anywhere” on page 13.

Applications written using the other interfaces supported by PostgreSQL will require more work to migrate
as there is no support for these drivers in SQL Anywhere. This includes the PostgreSQL C/C++ API and the
Tcl, and Eiffel access drivers. In some cases, a third-party driver may be found that allows you to bridge to
ODBC and natively access SQL Anywhere.

Migrating a PYTHON application from PostgreSQL to SQL Anywhere
Migrating Python applications from PostgreSQL to SQL Anywhere is very simple. The SQL Anywhere

Python database interface, sqlanydb, is included with SQL Anywhere. This API specification defines a set of
methods that provides a consistent database interface independent of the actual database being used.

The sqlanydb module implements the Python Database API specification v2.0. The module is thread-safe
when using Python with threads.

To use the sqlanydb module, you will need to have the Python ctypes module included with your Python
installation.

Migrating a Perl application from PostgreSQL to SQL Anywhere
Migrating Perl applications from PostgreSQL to SQL Anywhere is very simple. You have the option of using
ODBC to connect using the DBD::ODBC driver or using the native SQL Anywhere driver (called
DBD::SQLAnywhere) that is included with SQL Anywhere.

If you are already using the DBD::ODBC driver, application migration is simply a matter of changing your
connection string to refer to SQL Anywhere. Once that is complete, there may be some minor tweaks required
to deal with the differences between SQL Anywhere and PostgreSQL as discussed in pervious sections of this
paper, but minimal work is required to complete the migration.

Some PostgreSQL-specific methods can be migrated to SQL Anywhere equivalents by using queries or standard
DBD functionality. For example:

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 13

PostgreSQL Equivalent SQL Anywhere Note

PostgreSQL_insertid SELECT @@identity

is_blob, is_num, is_not_null,
length, name, table, type

NAME, TYPE, SCALE,
PRECISION, NULLABLE

All of these property items are DBD
standard elements.

is_key, is_pri_key SELECT .. FROM syscolumn
WHERE

Detection of indexes/keys can be
done by looking at the table and
column definitions in the system
tables.

Migrating a PHP application from PostgreSQL to SQL Anywhere
Migrating a PHP application from PostgreSQL to SQL anywhere is simple. You have the option of using ODBC to
connect to SQL Anywhere or using the SQL Anywhere PHP module.

Windows users may prefer to migrate to the ODBC API. Setting up a DSN in Windows for use with ODBC is
simple. In addition, the Windows binary for PHP already has built-in ODBC support.

Linux users, on the other hand, may find the PHP module more convenient to set up. SQL Anywhere support
can be compiled into PHP using the –with sqlanywhere=[path_to_sa] flag when calling the configure script.
Details about the module can be found in the “SQL Anywhere PHP API” chapter of the “SQL Anywhere Server –
Programming” manual.

If the PHP application is already using ODBC to connect to the PostgreSQL database, then there is no need to
change the function calls. You can skip the section below and go directly to “PHP migration notes” on page 14.

Function mapping

The PostgreSQL, ODBC and SQL Anywhere APIs are very similar. It is often possible to map one function
directly to another. Sometimes, when a function has no equivalent counterpart, you must be creative and
write alternative code that achieves the same result. In certain cases, you may be better off rewriting small
portions of the code to take advantage of advanced features provided by SQL Anywhere. For example, with
transaction support, the application can efficiently maintain atomicity and easily ensure data integrity.

The following table lists some commonly used PostgreSQL functions and their ODBC and SQL Anywhere
equivalents:

PostgreSQL Equivalent SQL Anywhere
(ODBC)

Equivalent SQL Anywhere
(PHP Module)

PostgreSQL_close odbc_close sasql_disconnet

PostgreSQL_connect odbc_connect sasql_connect

PostgreSQL_errno odbc_error sasql_errorcode

PostgreSQL_error odbc_errormsg Sasql_error

PostgreSQL_escape_string See
“PostgreSQL_escape_string”
note.

sasql_escape_string()

14

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

PostgreSQL_fetch_row odbc_fetch_row sqlanywhere_fetch_row

PostgreSQL_insert_id See “PostgreSQL_insert_id”
note.

sasql_insert_id

PostgreSQL_num_fields odbc_num_fields sqlanywhere_num_fields

PostgreSQL_num_rows odbc_num_rows sqlanywhere_num_rows

PostgreSQL_query odbc_exec sqlanywhere_query

PostgreSQL_select_db none none

Notes:

PostgreSQL_escape_string: The ODBC php driver does not provide a way to escape a SQL string. However,
this can be easily done by replacing each single quote with two single quotes.

PostgreSQL_insert_id: This function returns the last inserted ID of an autoincrement column. The same
result can be obtained by issuing the following SQL statement:

SELECT @@identity

PHP migration notes

These are subtle differences in the way SQL strings are treated by the various database vendors. For example,
timestamps in PostgreSQL have the format YYYY-MM-DD hh:mm:ss, while SQL Anywhere supports timestamps
with fractions of a second. Extra work must be done to remove the fractional second portion of the SQL
Anywhere timestamp for sue with strtotime() for example.

SQL Anywhere via ODBC also provides support for transactions and prepared statements. The odbc_commit
and odbc_rollback functions terminate a transaction as you would expect. One point to notice is that PHP
defaults to autocommit, meaning every statement is committed as soon as it is successfully executed. The
odbc_autocommit function is used to set the autocommit behavior to enable the use of large transactions.
Prepared statements are useful if the same queries, possibly with different parameters, are to be executed
many times. This can help create efficiency as each dynamic SQL statement is built within the engine once
only. The odbc_prepare and odbc_execute functions are used to execute prepared statements.

Migrating a PostgreSQL Database to SQL Anywhere 12

December 2011
 15

Summary

Migrating from PostgreSQL to SQL Anywhere involves migrating the database, changing PostgreSQL function
calls to SQL Anywhere calls, and tweaking the schema and SQL statements to resolve any differences between
the databases. Typically, some performance gains can be achieved by utilizing advanced features available in
SQL Anywhere.

Migrating a PostgreSQL Database to SQL Anywhere 12

SYBASE, INC.
WORLDWIDE HEADQUARTERS
ONE SYBASE DRIVE
DUBLIN, CA 94568-7902 USA
Tel: 1 800 8 SYBASE

www.sybase.com

Copyright © 2011 Sybase, Inc. All rights reserved. Unpublished rights reserved under U.S.
copyright laws. Sybase, and the Sybase logo are trademarks of Sybase, Inc. or its subsidiaries. All
other trademarks are the property of their respective owners. ® in
United States. Specifications are subject to change without notice. 3/

Migrating a PostgreSQL Database to SQL Anywhere 12
December 2011

Sybase, Inc. All rights reserved. Unpublished rights reserved under U.S.
copyright laws. Sybase, and the Sybase logo are trademarks of Sybase, Inc. or its subsidiaries. All
other trademarks are the property of their respective owners. ® indicates registration in the
United States. Specifications are subject to change without notice. 3/10.

 1

