
Tutorial

Getting started with Hibernate 3.0 with SQL Anywhere and Tomcat 5.5
Author: Rahul Jain
Audience

It is assumed that readers have some working knowledge of Java and JSP and the web paradigm.

About the author
Rahul Jain is a Principal Consultant with Keane, Inc. He has more than 9 years of experience developing and managing Client-Server and Web applications. He can be reached at: Rahul_Jain@keane.com.
Table of Contents

- 1 -Goal

- 1 -Software needed

- 1 -What is Hibernate and why do we need it?

- 2 -Database Setup

- 2 -Create New Database

- 2 -Create Database Service

- 2 -Create FAQ Table

- 3 -Tomcat Setup

- 3 -Eclipse Setup

- 6 -Hibernate Setup

- 8 -Configure Hibernate

- 9 -Creating first Hibernate Persistent Class

- 15 -Telling Hibernate about Persistent Class

- 15 -Hibernate Session and Startup

- 17 -Create JSP to Insert Data

- 19 -Retrieving and Displaying the Data

- 20 -Building User Interface for the Insert FAQ Page

- 21 -Update FAQ

Goal
This paper will cover following items:

· Setup your development environment for developing a web-based application using Tomcat, Hibernate and SQL Anywhere.

· Walk you through a retrieve from a database table and display data on the browser.

· Walk you through creating a page that will insert a row.

· Walk you though creating a page that will update a row.

We will be building a tiny application in this tutorial that will let us add/ view/ modify FAQs (Frequently Asked Questions). Not a real world app, but that’s intentional to keep this tutorial simple.
Software needed

You will need following software on your computer to start development:

1. Eclipse – not necessary but highly recommended. Your development will be a lot easier if you use an IDE.
Eclipse can be downloaded from http://eclipse.org. There is no special installation for eclipse, simply unzip and run the application.

If you are going to use eclipse, also download these plug-ins:

a. Eclipse Web Toolkit: you can download a complete package that includes eclipse IDE and Eclipse Web Toolkit bundled. Can be downloaded from http://eclipse.org.
b. Hibernate Synchronizer: this plug-in will ease our development of classes and surrounding files that are needed for development with Hibernate. Can be downloaded from http://hibernatesynch.sourceforge.net.
2. Tomcat – we need a servlet container for web development. If you wish to use any other web server (EAServer/ JBoss/ etc) you can, but you will have to be familiar with those servers in order to complete this tutorial.
Tomcat can be downloaded from http://tomcat.apache.org.

3. Sybase SQL Anywhere – this will be our database engine for the tutorial. If you wish to use any other database, you can, but you will need to be familiar with that database and will need to know what the JDBC driver for the database is and how to use it.
Free developer edition of SQL Anywhere can be downloaded from http://www.ianywhere.com/products/sql_anywhere.html

4. Hibernate – download the latest version of Hibernate from http://hibernate.org.
What is Hibernate and why do we need it?

For database development, Java provides basic classes, but does not provide a framework. We need some database framework for Java development. If you have done any kind of serious database development with Java, I am sure you would have written some kind of framework classes yourself.

For PowerBuilder programmers trying their hands on with Java: there is nothing like DataWindow in the Java world (that I know of). Hibernate does seem to take me past the hurdle of database handling by providing a framework that is relatively easier to use than other classes in Java.

Database Setup
We will need a simple database table for our tutorial. If you are not familiar with SQL Anywhere (aka Adaptive Server Anywhere), we have also provided a few steps to help you create a new database and the table.

These steps are completely optional. If you are an experienced database programmer, you can even jump right to the Table creation section.
Create New Database

If you have not created a new database in SQL Anywhere ASA in the past, here’s how to do it.
1. Open Sybase Central, click on Adaptive Server Anywhere on the left.
2. Select the Utilities tab in the right pane. You will see the list of utilities, double click on Create Database.
3. Follow the simple steps in the wizard to create a brand new database – remember the name and the location of the database file (.db) that you provide here.

Create Database Service

Now that you have database, it is best to create a database server and start the database as a service that way it would always be available. If you have not done this before, open Sybase Central, click on Adaptive Server Anywhere on the left. Select the Services tab on the right. Right click and select New | Service… and follow the steps below for each step in the wizard:

1. On the first step, give name to your service. Keep in mind that this is not the server name, just a name to the service. The server name is specified by the parameter “-n” that you will see below.
2. On the second step, select Network Database Server in the service type.

3. On the third step, accept default executable, which in most cases is: C:\Program Files\Sybase\SQL Anywhere 9\win32\dbsrv9.exe.

4. On the fourth step, the specify parameters of the service as follows:
-n faqserver -x tcpip(ServerPort=2639) -c 8m "C:\faq\Database\ASA\saleswf.db"

where switches denote following:
–n faqserver = name of the server (faqserver in this case)
-x tcpip(ServerPort=2639) = protocol and port to use
-c 8m = to start the server with cache size of 8MB
last parameter is the path and name of the database file.

Create FAQ Table

We will be creating one table for the purpose of our tutorial. Here’s the DDL for the table creation:

CREATE TABLE "faq"

("faq_id" integer NOT NULL DEFAULT autoincrement,

"faq_category" varchar(50) NULL DEFAULT NULL,

"faq_tags" varchar(500) NULL DEFAULT NULL,

"faq_question" varchar(2000) NOT NULL DEFAULT NULL,

"faq_answer" varchar(2000) NULL DEFAULT NULL ,

PRIMARY KEY ("faq_id"))
You might have guessed from above SQL, we will be creating a simple FAQ application. Using this application, user will be able to view a list of FAQs, update an entry or create a new entry.
Notice that our primary key is an autoincrement column. Some databases do not have this feature, so you will have to come up with key assignment strategy for those databases. Example Oracle has sequences; Sybase has Identity columns – Hibernate supports those.

Tomcat Setup

Tomcat installation is very simple. If you have not already installed Tomcat, please do so now by running the Tomcat Setup application. Do not start Tomcat server at this time, we will be controlling Tomcat startup from Eclipse. If you have Tomcat running, you may want to shut it down.
We will refer the Tomcat installation directory as %TOMCAT% in this paper.

To be able to access database from Tomcat, we will have to provide the database driver to Tomcat. SQL Anywhere database driver comes packaged in JAR file called jconn2.jar. You can find it in

%SYBASE%\shared\jConnect-X_X\classes\

%SYBASE% = Sybase parent directory, usually C:\Program Files\Sybase
jConnect-X_X = X_X could vary depending on the version of SQL Anywhere installed on your machine. If you have multiple, pick up the latest.

Copy jconn2.jar to:
%TOMCAT%\common\lib

If you are using any other database, copy the JAR file for that database driver to %TOMCAT%\common\lib. Note: for Sybase ASE, the driver is same jconn2.jar.

Note: jconn2.jar is the current version, but a newer version is also due out soon which is named as jconn3.jar.
Eclipse Setup
As I mentioned earlier, there is no special installation needed for eclipse, you can simply unzip it and run eclipse.exe. Go ahead and run it. If this is the first time you are running eclipse, it may ask you for location of the workspace, you can safely accept the default location.

When it opens, click on File | New | Project menu item. If you have installed or downloaded with the Eclipse Web Toolkit, you will see “Web” category of project. Expand it and select Dynamic Web Project (Figure 1).
[image: image1.png]€ New Project

Select a wizard
Creste 2 Dynamic Web project

wizards:

3 Java Project from Existing Ant Buidfie
52 Plgn Project
o
& Edipse Modelng Framenork
=
&
@ Java
& Javaprosect
4 Java Project from Existing Ant Buidfie
& Plug-n Development
& simde

deTo mami
5 S o e
(= Examples

Figure 1
In the next step of the wizard you will need to provide name of the web application. Provide “faq” as the name.

Note: The web application name “faq” has nothing to do with the database table “faq” we created earlier. If you wish, you can give some other name to the web application and use that through out the rest of the tutorial.

See Figure 2 for other values. For the Target runtime, click on New and it will bring up the Tomcat setup wizard. Take time to setup Tomcat at this time. When you return select Tomcat and click Next.

[image: image2.png]€ New Dynamic Web Project

Dynamic Web Project
Create a standalone Dynamic Web project o add it o a new or xisting Enterprise Appicaton.

project Name: [fa

Project contents
¥ Use gefauit

Drectory: [o

Target runtine: [apache Tomeat v5.5 (3)
I~ Add project to an EAR

AR project ame: [EAR

Figure 2
Accept defaults on the rest of the wizard steps and complete the wizard. Eclipse might ask you to open the Web Perspective, select Yes, as it is easier to work with Web perspective when doing web development. In the project explorer (Figure 3), you will see “faq” project under Dynamic Web Projects.

[image: image3.png]™ Project Explorer X

& Appicaton ClentFojects
(g Comector rojecs
5G9 Dynamic ieh Projects
& hb

S|

(g B oot

(78 Enterprie Appications
(8 Otrerprojects

(G2 web sevices

Figure 3

Before proceeding, let’s make sure we have our web application working at this point. Expand faq project, right click on WebContent and select New | JSP. Name the JSP as index.jsp. Eclipse will open the pre-coded JSP when you complete the wizard. In the <body> of the JSP, type “Hello Hibernate!” Save the JSP and right click on it in the tree view on the left side (Figure 4). Click on Run As | Run on Server.

[image: image4.png]coisc
oty
Dekete
AtsshsT >

</body>
</nem1>

Figure 4
Eclipse will now ask you about the server information. Since we have already configured the server, accept defaults through the wizard. When you complete the wizard, Eclipse will start Tomcat server and run the JSP page.

Troubleshooting:

1. If Tomcat is already running, eclipse may encounter problems in startup. Make sure you have shutdown Tomcat before running.

2. If Tomcat does not start up, it is possible you may not have set it up correctly.

If your JSP runs correctly and you will see Hello Hibernate printed on the window, we are good to move to the next step of setting up Hibernate.

Hibernate Setup
To use Hibernate, we will need to import Hibernate and other libraries that it depends on in to our project. There no real setup involved.

Figure 5 lists the set of libraries that we need. The physical file names might change as newer versions release. The figure shows the current available file names. You will find all of these libraries in lib directory of the Hibernate ZIP file that you downloaded from hibernate.org, except hibernate3.jar, which is located in the root of the ZIP file.

[image: image5.png][t 3 7 et
Hesmimr

B eomatsior

[cgib-2.1.3ar

[commons <olectons 2.1, 1
[E—————
[Bcomas-L6. 1500
[Behcache-t Lo

[rbematesor

[Fszor

[Fogsri2.11

Figure 5
To import these files in Eclipse, expand WebContent | WEB-INF and right click on “lib”. Click on Import menu. In the list of resources, choose File System and click Next. On the next step, navigate to the lib directory of extracted Hibernate zip and select the above mentioned libraries. Also navigate to root of the extracted zip and select hibernate3.jar. Finish the wizard and you will at this point see Eclipse importing the JARs.

When done, you can double click on Web App Libraries to see the list of JARs imported (Figure 6). Note that you will not see the JARs under WebContent | WEB-INF | lib (kind of counter intuitive, but that’s how eclipse likes to present this).
[image: image6.png]=h JRE System Library [idk1.5.0_07]
) Tomcat vS.5 runtime.

0 ehcache-v.1ger
0 hbermatedsor
0 ftaer
 log4rt.2.115er
@ buid
=& WebContent.
B ndexs
& vETamE
B WEB-INF
8] nebaxm
=1
C§ EXProjects

Figure 6
Configure Hibernate
Our next step is to tell Hibernate what database to connect. It is done through Hibernate’s XML-based configuration file. The XML configuration file is placed in the context classpath (WEB-INF/classes) and named as hibernate-cfg-xml. If you choose you can create the XML file by hand (by typing) or if you have HibernateSynchronizer plug-in installed, its wizard will help you create the file.

In this paper, we shall be using the HibernateSynchronizer plug-in. Right click on “src” folder under “faq” project and select New | Other. In the list of the available wizards, select Hibernate | Hibernate Configuration File. Look at Figure 7 to enter the values in the form that will create the Hibernate Configuration file.

[image: image7.png]Hibernate Configuration File
T wizard creates a new Hibemate configuraton fie

Fracjsrc

hibernate. cfg.xml

Sybase Anyuhere

v -
tocal | patasaurce
Driver Glss:
YocisybaserTesnPC-1156632639

£

sa

E==|

Figure 7
When you finish the wizard, open the XML file and change the value of hibernate.show_sql property to true. This will cause the SQL to be logged out in the server console, which is helpful during development.

While you are there editing hibernate.cfg.xml file, add one more configuration entry to it under <session-factory>:

 <!-- Enable Hibernate's automatic session context management -->
 <property name="current_session_context_class">thread</property>
We will discuss the purpose of this entry later in this paper.

Your XML file should look like this at this point:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration
 PUBLIC "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory >

<!-- local connection properties -->

<property name="hibernate.connection.url">jdbc:sybase:Tds:XPC-115663:2639</property>

<property name="hibernate.connection.driver_class">com.sybase.jdbc2.jdbc.SybDriver</property>

<property name="hibernate.connection.username">dba</property>

<property name="hibernate.connection.password">sql</property>

<!-- dialect for Sybase Anywhere -->
 <property name="dialect">org.hibernate.dialect.SybaseAnywhereDialect</property>
 <property name="hibernate.show_sql">true</property>
 <property name="hibernate.transaction.factory_class">org.hibernate.transaction.JDBCTransactionFactory</property>
 <!-- Enable Hibernate's automatic session context management -->
 <property name="current_session_context_class">thread</property>
 </session-factory>
</hibernate-configuration>
Creating first Hibernate Persistent Class

At this point we are all set to create our first Hibernate persistent class. If that big name scares you, don’t be. In reality (and in its simplest form that we will see) Hibernate persistent class is nothing but a POJO (Plain Old Java Object) with a bunch of properties (PowerBuilder developers – think instance variables) and getter and setters methods for these properties.
Again, you can choose to create class by typing the whole thing yourself, or you can use HibernateSynchronizer to create it for you (which we will next).

Right click on “src” under “faq” project and select New | Other. From the list of wizard, select “Hibernate Mapping File”. On the form, the first thing you will notice is this message on the top:

[image: image8.png]Hibernate Mapping File
(@ Click Refresh” after entering your database connecton information

Figure 8
Figure 8 shows the message that you might get as soon as you open the window. Not very intuitive, it is more like an instruction than an error, but I digress.

There is a good possibility the database information has already been defaulted for you in the form. If it is, go ahead and click on Refresh button. If not, enter the database driver, URL, user id and password and then hit Refresh (Figure 9).
[image: image9.png]Hibernate Mapping File

This wizard creates new Hibernate mapoing fie

‘Configuration | ropertes |

dbcisybase Tos:XPC-115663:2639

£

O eaf _sessions
O esf_varisbles
2

Qinsurance
Dpbeatcol
[Dpbeatedt

D pbeatfnt
Debeattol
Opbeatvid

<

com.mycompany.faa

Figure 9
Once you hit refresh, you will see a list of tables from your database. Select faq table from the list (Figure 9). Once you select the table, a message on the top should tell you that you cannot use default package for the business objects. It is actually a good idea to store your classes in a package. Go ahead and supply a new package name, as in Figure 9, you can see the name is: com.mycompany.faq.
Now click on the Properties tab. You will notice the ID Generator column has a value of sequence. This ID generator will tell Hibernate how to generate Primary Key value for the table. In our case, we have defined the column as autogenerated key, so we need to change the ID Generator value to “native” (Figure 10).
[image: image10.png]Hibernate Mapping File

This wizard creates new Hibernate mapoing fie

Configuration Properties

Extension Fomxm

Composte ID Name [1d

D Generator

[V Generate Sets to represent inverse foreign relationships
I~ Use Lazy Loading

T start Properties with Lower Case

T~ Use Proxy Classes

Figure 10
Here’s a list of other frequently used ID generators:
	Generator
	Description

	Increment
	It generates identifiers of type long, short or int that are unique only when no other process is inserting data into the same table. It should not the used in the clustered environment.

	Identity
	It supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The returned identifier is of type long, short or int.

	Sequence
	The sequence generator uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi or a generator in Interbase. The returned identifier is of type long, short or int

	Hilo
	The hilo generator uses a hi/lo algorithm to efficiently generate identifiers of type long, short or int, given a table and column (by default hibernate_unique_key and next_hi respectively) as a source of hi values. The hi/lo algorithm generates identifiers that are unique only for a particular database. Do not use this generator with connections enlisted with JTA or with a user-supplied connection.

	Seqhilo
	The seqhilo generator uses a hi/lo algorithm to efficiently generate identifiers of type long, short or int, given a named database sequence.

	Uuid
	The uuid generator uses a 128-bit UUID algorithm to generate identifiers of type string, unique within a network (the IP address is used). The UUID is encoded as a string of hexadecimal digits of length 32.

	Guid
	It uses a database-generated GUID string on MS SQL Server and MySQL.

	Native
	It picks identity, sequence or hilo depending upon the capabilities of the underlying database.

	Assigned
	lets the application to assign an identifier to the object before save() is called. This is the default strategy if no <generator> element is specified.

	Select
	retrieves a primary key assigned by a database trigger by selecting the row by some unique key and retrieving the primary key value.

	Foreign
	uses the identifier of another associated object. Usually used in conjunction with a <one-to-one> primary key association.

Click Finish when done. Now let’s see what the result of the mapping wizard was. Expand src folder, you will notice Faq.hbm.xml file in the list. Go ahead and double click on it and view the XML generated. For those who wish to type the XML by hand, here’s the XML:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" >
<hibernate-mapping package="com.mycompany.faq">

<class

name="Faq"

table="faq"

>

<meta attribute="sync-DAO">false</meta>

<id

name="Id"

type="integer"

column="faq_id"

>

<generator class="native"/>

</id>

<property

name="FaqCategory"

column="faq_category"

type="string"

not-null="false"

length="50"

/>

<property

name="FaqTags"

column="faq_tags"

type="string"

not-null="false"

length="500"

/>

<property

name="FaqQuestion"

column="faq_question"

type="string"

not-null="true"

/>

<property

name="FaqAnswer"

column="faq_answer"

type="string"

not-null="false"

/>

</class>

</hibernate-mapping>
Notice it is mapping each column to a property in the Java class. Wait. What Java class? We have not created any Java class yet. That’s true, we have not and that’s the reason you might see a message and an icon on Faq.hbm.xml file asking you to “Synchronize” the file after you have checked it.

Checking is necessary because HibernateSynchronizer plug-in may not recognize all the database datatypes and may not be able to map it to the correct Java datatype. One example is SQL Anywhere’s “real” datatype. It should really be mapped to Java “float”, but plug-in fails to do so. When it fails to recognize the datatype, it leaves a nice little message for you in the script saying just that.
In our case, plug-in does recognize all columns, so go ahead and “Synchronize” it by right clicking on the Faq.hbm.xml file and selecting Hibernate Synchronizer | Synchronize Files (Figure 11).

[image: image11.png]

Figure 11
As a result of Synchronize, you will see two new classes in the src folder as shown in Figure 12.
[image: image12.png]E-@ src
-8 commycompany. faq
[Faaiava
=18 com.mycompany.faq.base
[BaseFaq.java
il

1) hibernate.cfg.xml

Figure 12
BaseFaq class has the actual code and Faq class is inherited from BaseFaq. It would be a good idea to take a look at code in these classes at this time.
Telling Hibernate about Persistent Class

Now that we have created our persistent class (Faq), we will have to add it to the Hibernate Configuration file. Open hibernate.cfg.xml file and add this code under <session-factory>:

<!-- Mapping files -->

<mapping resource="Faq.hbm.xml"/>
Hibernate Session and Startup
This is the last setup step before we create JSP to access data in the database using Hibernate.

This step can be a little difficult to digest, but once you complete the tutorial, you will have much better understand of it. So even if you do not completely understand the purpose of the class that we are going to build next, don’t worry.

Note for PowerBuilder programmers: before proceeding, think SQLCA. It is not really SQLCA, but it will be less confusing if you think of it as SQLCA and later when you have a better idea call me stupid for calling HibernateUtil (the class that we will build in a minute) SQLCA.
Hibernate’s unit-of-work is referred as Session. Any commands we execute in Hibernate is executed within a Session. It is the persistence manager that we will use to store and retrieve the data from the database. In order to get Session, we will need to instantiate SessionFactory. A SessionFactory can open up a new Session. This statement from Hibernate’s help docs might help you understand better:

“A Session represents a single-threaded unit of work; the SessionFactory is a thread-safe global object, instantiated once.”

This means we need to instantiate SessionFactory during startup and we need some kind of singleton to store the SessionFactory.
The HibernateUtil class that we will build will provide both of these functionalities. Here’s the code for HibernateUtil:

package com.mycompany.util;

import org.hibernate.*;

import org.hibernate.cfg.*;

public class HibernateUtil {

 private static final SessionFactory sessionFactory;

 static {

 try {

 // Create the SessionFactory from hibernate.cfg.xml

 sessionFactory = new Configuration().configure().buildSessionFactory();

 } catch (Throwable ex) {

 // Make sure you log the exception, as it might be swallowed

 System.err.println("Initial SessionFactory creation failed."+ex);

 throw new ExceptionInInitializerError(ex);

 }

 }

 public static SessionFactory getSessionFactory() {

 return sessionFactory;

 }

}

To create the class, right click on src folder and click New | Class. Enter the package name as com.mycompany.util, class name as HibernateUtil and click Finish (Figure 13).
[image: image13.png]€ New Java Class

Java Class

Create anew Java dass.

Source folder:

Package:

fagjsrc

com.mycompany.utl

Bromse.

Browse,

HbernateUtl
G oablc O odefat prite
I~ abstract [~ final [~ static

j2va.Jang.Object

Wihich method stubs would you ke to create?

I~ public static void main(Stringl] args)
T~ Constructors from superclass
[Inherited abstract methods

€ protested

Remove

D0 you want to 2dd comments as configured in the properties of the current project?

I™ Generate comments

(oo | o |

Figure 13
Now type/ paste the code shown above in this class, save and close.

Create JSP to Insert Data
Does it seem a little odd that I am talking about Insert before Retrieve? Well, the reason is that we do not have any data in the table right now to retrieve and insert JSP is a little e easier to understand. Feel free to jump to the retrieve section in case you wish to retrieve first.
Create a new JSP – insertfaq.jsp.
Type in this code at the top of the JSP (at this point, it does not really matter where you type it though):
<%
try {

org.hibernate.Session hibSession = com.mycompany.util.HibernateUtil.getSessionFactory().getCurrentSession();
hibSession.beginTransaction();

com.mycompany.faq.Faq faq = new com.mycompany.faq.Faq ();

faq.setFaqQuestion("Who was inventor of Java?");

faq.setFaqAnswer("James Gosling");

faq.setFaqTags("java,inventor");

faq.setFaqCategory("Java");

hibSession.save (faq);

hibSession.getTransaction().commit();

com.mycompany.util.HibernateUtil.getSessionFactory().close ();
}catch (Exception e) {

out.println (e.getMessage());

e.printStackTrace();
}
%>
First save the JSP and run it – just to see things in action, then we will talk about what’s going on here. When you run it, you will not see any result on browser window, but in the console you will see the insert SQL being issued by Hibernate.
What did we do in the code above?

1. We got handle to the Hibernate Session.

2. We created an instance of the Faq class.

3. We set the properties on Faq.

4. We handed off the Faq object to Hibernate Session to create a record in the database.

What we did not do?

1. We did not connect to database directly.

2. We did not issue any SQLs directly (insert sql in the case above).

If you are wondering why there is no user interface is provided, it is done intentionally to simplify this step of the tutorial. We will be building a user interface for this page in a while.

Let’s understand what SessionFactory.getCurrentSession () does. The getCurrentSession() method always returns the "current" unit of work. Remember that we switched the configuration option for this mechanism to "thread" in hibernate.cfg.xml? Hence, the scope of the current unit of work is the current Java thread that executes our application.
However, this is not the full truth. A Session begins when it is first needed, when the first call to getCurrentSession() is made. It is then bound by Hibernate to the current thread. When the transaction ends, either committed or rolled back, Hibernate also unbinds the Session from the thread and closes it for you. If you call getCurrentSession() again, you get a new Session and can start a new unit of work. This thread-bound programming model is the most popular way of using Hibernate.
Retrieving and Displaying the Data

Create a new JSP – faqlist.jsp

Type the code below in the JSP and run it.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<%
java.util.List result = new java.util.Vector();
try {

org.hibernate.Session hibSession = com.mycompany.util.HibernateUtil.getSessionFactory().getCurrentSession();

hibSession.beginTransaction();

// Get the list of FAQs

result = hibSession.createQuery("from Faq").list();

// Close Hibernate Session

com.mycompany.util.HibernateUtil.getSessionFactory().close ();
}catch (Exception e) {

out.println (e.getMessage());

e.printStackTrace();
}
%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>FAQ List</title>
</head>
<body>

<table>

<tr>

<th>FAQ ID</th>

<th>Category</th>

<th>Question</th>

<th>Answer</th>

</tr>
<%
 for (int i = 0; i < result.size(); i++) {

com.mycompany.faq.Faq faq = (com.mycompany.faq.Faq)result.get(i) ;
%>

<tr>

<td><%=faq.getId()%></td>

<td><%=faq.getFaqCategory()%></td>

<td><%=faq.getFaqQuestion()%></td>

<td><%=faq.getFaqAnswer()%></td>

</tr>
<%

 }
%>

</table>
</body>
</html>
The most important line of code above is:

result = hibSession.createQuery("from Faq").list();
We have used the HQL (Hibernate Query Language) here to retrieve the data. We get the data back in a List (java.util.List) as a result of executing the query. We loop through the list to display the results in an HTML table.
Building User Interface for the Insert FAQ Page

Let’s build the user interface for the Insert FAQ page that we have built previously. We would like to provide a way for user to enter the question, answer, category and tags for the FAQ. If the save is successful, we would like to redirect to the FAQ List page. We would also like a link on the FAQ List page named “New FAQ” to open the Insert FAQ Page.

First, let’s put the link on the FAQ List page. Here’s the code for that, place it at appropriate place in the FAQ List JSP.

Create New FAQ
Now let’s go to the insertfaq.jsp. Here’s the modified code for the JSP:
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<%

String sQuestion = request.getParameter ("question");

if (sQuestion != null) {

try {

org.hibernate.Session hibSession = com.mycompany.util.HibernateUtil.getSessionFactory().getCurrentSession();

hibSession.beginTransaction();

com.mycompany.faq.Faq faq = new com.mycompany.faq.Faq ();

faq.setFaqQuestion(sQuestion);

faq.setFaqAnswer(request.getParameter ("answer"));

faq.setFaqTags(request.getParameter ("tags"));

faq.setFaqCategory(request.getParameter ("category"));

hibSession.save (faq);

hibSession.getTransaction().commit();

com.mycompany.util.HibernateUtil.getSessionFactory().close ();

response.sendRedirect("faqlist.jsp");

}catch (Exception e) {

out.println (e.getMessage());

e.printStackTrace();

}

}
%>
<html>
<head>
<title>New FAQ</title>
</head>
<body>

<p>Create New FAQ</p>

<form method="post">

<div style="width:70%">

Question:<textarea name="question" cols="50"></textarea>

Answer:<textarea name="answer" cols="50"></textarea>

Tags:<input type="text" name="tags"/>

Category:<input type="text" name="category"/>

<input type="submit" value="Submit"/>

</div>

</form>
</body>
</html>
Notice that we have replaced the hard coded values with the request.getParameter (“…”) function calls.

faq.setFaqQuestion(sQuestion);

faq.setFaqAnswer(request.getParameter ("answer"));

faq.setFaqTags(request.getParameter ("tags"));

faq.setFaqCategory(request.getParameter ("category"));
Also notice after the successful insert to the database, we redirect to the FAQ List page.

response.sendRedirect("faqlist.jsp");
Note: The UI you will get out of this code could win the ugliest UI contest. If you are new to web programming, this is your chance to learn some CSS and make the UI pretty.

Update FAQ
To be able to update an FAQ, first we would have to create a link on the FAQ List page on the FAQ ID that we wish to update.

Note: It is not necessary that link be on FAQ ID, you can create link on any column you wish to, but it is a good idea to create link on the column that you are sure will not be null at any time.

<td>

<a href="updatefaq.jsp?id=<%=faq.getId()%>">

<%=faq.getId()%>

</td>
In the code above, we have simply put a link on ID to updatefaq.jsp page and we are passing the FAQ ID as a parameter to the page.

Create new updatefaq.jsp. In this JSP, we would have to do following:

1. Retrieve the FAQ row based on ID passed.

2. Display the data to the user. Let user modify and submit the data.

3. Update the data to the database and redirect if successful.

Here’s the complete code for updatefaq.jsp:
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<%
com.mycompany.faq.Faq faq = null;
try {

org.hibernate.Session hibSession = com.mycompany.util.HibernateUtil.getSessionFactory().getCurrentSession();

hibSession.beginTransaction();

// Get FAQ for ID passed

int id = Integer.parseInt (request.getParameter ("id"));

faq = (com.mycompany.faq.Faq) hibSession.load (com.mycompany.faq.Faq.class, id);

// Only try to update if user submitted the data, else just display the data

String sQuestion = request.getParameter ("question");

if (sQuestion != null) {

faq.setFaqQuestion(sQuestion);

faq.setFaqAnswer(request.getParameter ("answer"));

faq.setFaqTags(request.getParameter ("tags"));

faq.setFaqCategory(request.getParameter ("category"));

// Update to database

hibSession.update(faq);

// Redirect to FAQ list

response.sendRedirect("faqlist.jsp");

}
}catch (Exception e) {

out.println (e.getMessage());

e.printStackTrace();
}finally{

// Close Hibernate Session

com.mycompany.util.HibernateUtil.getSessionFactory().close ();

}
%>
<html>
<head>
<title>Modify FAQ</title>
</head>
<body>

<p>Modify FAQ</p>

<form method="post">

<div style="width:70%">

Question:<textarea name="question" cols="50"><%=faq.getFaqQuestion() %></textarea>

Answer:<textarea name="answer" cols="50"><%=faq.getFaqAnswer() %></textarea>

Tags:<input type="text" name="tags" value="<%=faq.getFaqTags() %>"/>

Category:<input type="text" name="category" value="<%=faq.getFaqCategory() %>"/>

<input type="submit" value="Submit"/>

</div>

</form>
</body>
</html>
Let’s discuss how we achieved the objectives we had for this JSP. First was to retrieve based in ID passed by the list. We used Hibernate Session’s load function to load the data up.

faq = (com.mycompany.faq.Faq) hibSession.load (com.mycompany.faq.Faq.class, id);
Second was display part, which looks pretty much same as insert JSP, except that the values are being assigned from the Faq class.

Lastly, update the submitted data. Here’s the code we used for update:

faq.setFaqQuestion(sQuestion);

faq.setFaqAnswer(request.getParameter ("answer"));

faq.setFaqTags(request.getParameter ("tags"));

faq.setFaqCategory(request.getParameter ("category"));

// Update to database

hibSession.update(faq);
Update method of Hibernate Session object accepts the persistent class (faq in our case) and issues the SQL.

PAGE
2

