
Tutorial: Build an Application Using the C++ Component

Contents

1 Introduction 1

2 Lesson 1: Connect to the database 2

3 Lesson 2: Insert data into the database 6

4 Lesson 3: Select the rows from the table 7

5 Lesson 4: Add synchronization to your application 8

6 Lesson 5: Deploy to a Windows CE device 9

About this tutorial

This tutorial guides you through the process of building a simple UltraLite C++ Component application. The
application is built for Windows operating systems, and runs at a command prompt. This tutorial uses Visual Studio
to edit the C++ file. You can also use any C++ development environment or text editor.

1 Introduction

Timing

The tutorial takes about 30 minutes if you copy and paste the code. If you enter the code yourself, it takes
significantly longer.

Competencies and experience

This tutorial assumes:

♦ you are familiar with the C++ programming language

♦ you have a C++ compiler installed on your computer

♦ you know how to create an UltraLite schema using the UltraLite Schema Painter

Goals

The goals for the tutorial are to gain competence and familiarity with the process of developing an UltraLite C++
Component application.

1

Tutorial: Build an Application Using the C++ Component

2 Lesson 1: Connect to the database

In the first procedure, you create a database schema. You then write, compile, and run a C++ application that
creates a database using the schema you have created.

❖ To create a database schema

1. Create a directory to hold the files you create in this tutorial.

The remainder of this tutorial assumes that this directory isc:\tutorial\cpp. If you create a directory with a
different name, use that directory instead ofc:\tutorial\cppthroughout the tutorial.

2. Using the UltraLite Schema Painter, create a database schema in your new directory with the following
characteristics.

Schema file name:tutcustomer.usm

Table name:customer

Columns in customer:

Column Name Data Type (Size) Column allows NULL

values?

Default value

id integer No autoincrement

fname char(15) No None

lname char(20) No None

city char(20) Yes None

phone char(12) Yes 555-1234

Primary key: ascendingid

❖ To connect to an UltraLite database

1. In Microsoft Visual C++, choose File➤ New.

2. On the Files tab, choose C++ Source File.

3. Save the file ascustomer.cppin your tutorial directory.

4. Import the UltraLite libraries and use the UltraLite namespace.

Copy the code below intocustomer.cpp.

#include "uliface.h"
#include <stdio.h>
#include <tchar.h>
#include <assert.h>
using namespace UltraLite;
#define MAX_NAME_LEN 100
ULSqlca Sqlca;

5. Define connection parameters to connect to the database. In this example, the parameters are the location of the
database and schema files.

April 6, 2005 2

Tutorial: Build an Application Using the C++ Component

In the following code, these locations are hard coded. In a real application, the locations would be specified at
runtime. In addition, these connection parameters are sufficient only for connections in the development
environment; additional parameters are needed for the application to run on a Windows CE device.

Copy the code below intocustomer.cpp.

static ul_char const * ConnectionParms =
UL_TEXT("UID=DBA;PWD=SQL")
UL_TEXT(";DBF=tutcustomer.udb")
UL_TEXT(";schema_file=tutcustomer.usm");

6. Define a method for error handling.

UltraLite provides a callback mechanism to notify the application of errors.

This is a sample callback function.

enum { ERROR_MSG_LEN = 140,
ERROR_CONTEXT_LEN = 20,
ERROR_CALLBACK_BUF_LEN = 80 };

ul_error_action UL_GENNED_FN_MOD MyErrorCallBack(
SQLCA * sqlca,
ul_void * user_data,
ul_char * buffer)

{
ul_error_action action;

(void) user_data;
(void) buffer;

switch(sqlca->sqlcode){
// The following errors are used for flow control,
// and we don’t want to report them here.
case SQLE_NOTFOUND:
case SQLE_ULTRALITE_DATABASE_NOT_FOUND:

// Suppress these warnings.
action = UL_ERROR_ACTION_DEFAULT;
break;

case SQLE_CANNOT_ACCESS_SCHEMA_FILE:
_tprintf(_TEXT(
"Error %ld; UltraLite schema file not found \n"),
sqlca->sqlcode);
action = UL_ERROR_ACTION_CANCEL;
break;

case SQLE_COMMUNICATIONS_ERROR:
_tprintf(_TEXT(
"Error %ld: Communications error \n"),

sqlca->sqlcode);
action = UL_ERROR_ACTION_DEFAULT;
break;

default:
_tprintf(_TEXT(
"Error %ld: \n"),
sqlca->sqlcode);
action = UL_ERROR_ACTION_DEFAULT;
break;

}
return action;

}

April 6, 2005 3

Tutorial: Build an Application Using the C++ Component

In UltraLite, two errors are used to control application flow. The
SQLE_ULTRALITE_DATABASE_NOT_FOUND error is signaled on the first connection attempt (when only
the schema file is present), and is used to prompt the application to create a database from the schema file. The
SQLE_NOTFOUND error marks the end of a loop over a result set.

7. Define a method to open a connection to a database.

If the database file does not exist, a SQLException is thrown. The schema file is used to create a new database
and establish a connection to it.

If the database file exists, a connection is established.

Connection * open_conn(DatabaseManager * dm)
{

Connection * conn;

conn = dm->OpenConnection(Sqlca, ConnectionParms);
if(conn == NULL) {

if(Sqlca.GetSQLCode() == SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
// The database doesn’t exist yet --
// create it using the schema file.
conn = dm->CreateAndOpenDatabase(Sqlca, ConnectionParms);

_tprintf(_TEXT("Connected to a new database. \n"));
}

} else {
_tprintf(_TEXT("Connected to an existing database. \n"));

}
return conn;

}

8. Implement the main() method.

The main method carries out the following tasks.

♦ Instantiates a DatabaseManager object. All UltraLite objects are created from the DatabaseManager object.

♦ Registers the error handling function.

♦ Opens a connection to the database.

♦ Closes the connection and shuts down the database manager.

int main()
{

DatabaseManager * dm;
Connection * conn;
ul_char buffer[ERROR_CALLBACK_BUF_LEN];

Sqlca.Initialize();
ULRegisterErrorCallback(

Sqlca.GetCA(),
&MyErrorCallBack,
UL_NULL,
buffer,
ERROR_CALLBACK_BUF_LEN);

dm = ULInitDatabaseManager(Sqlca);
if(dm == UL_NULL){

// You may have mismatched UNICODE vs. ANSI runtimes.
Sqlca.Finalize();
return 1;

}

April 6, 2005 4

Tutorial: Build an Application Using the C++ Component

conn = open_conn(dm);
if(conn == UL_NULL){

dm->Shutdown(Sqlca);
Sqlca.Finalize();
return 1;

}

conn->Release();
dm->Shutdown(Sqlca);
Sqlca.Finalize();
return 0;

}

9. Compile and link the Customer class.

The method you use to compile the class depends on your compiler. The following instructions are for the
Microsoft Visual C++ command line compiler using a makefile.

♦ From a command prompt, browse to your tutorial directory.

♦ Create a makefile namedmakefile.

♦ In the makefile, add directories to your include path as follows.

IncludeFolders= \
/I"$(ASANY9) \h"

♦ In the makefile, add directories to your libraries path as follows.

LibraryFolders= \
/LIBPATH:"$(ASANY9) \ultralite \win32 \386\lib"

♦ In the makefile, add libraries to your linker command line options as follows.

Libraries= \
ulimp.lib

The UltraLite runtime library,ulimp.lib, is an ASCII version of the library. If you choose the Unicode
version,ulimpw.lib, you should add /DUNICODE to the compiler options.

♦ In the makefile, set the following compiler options all on one line.

CompileOptions=/c /nologo /W3 /Od /Zi /DWIN32 /DUL_USE_DLL

♦ In the makefile, add an instruction for linking the application.

customer.exe: customer.obj
link /NOLOGO /DEBUG customer.obj $(LibraryFolders) $(Libraries)

♦ In the makefile, add an instruction for compiling the application.

customer.obj: customer.cpp
cl $(CompileOptions) $(IncludeFolders) customer.cpp

♦ Add an instruction to create a preprocessed version of the file. This step is included for debugging purposes.

customer.i: customer.cpp
cl $(CompileOptions) $(IncludeFolders) customer.cpp -P

♦ Run the makefile as follows:

nmake

An executable namedcustomer.exeis created.

April 6, 2005 5

Tutorial: Build an Application Using the C++ Component

10. Run the application.

At the command prompt, entercustomer.

3 Lesson 2: Insert data into the database

The following procedures demonstrate how to add data to a database.

❖ To add rows to your database

1. Add procedure below tocustomer.cpp, immediately before the main method.

This procedure carries out the following tasks.

♦ Opens the table using theconnection- >OpenTable() method. You must open a Table object to carry out
operations on the table.

♦ Obtains identifiers for the required columns of the table. The other columns in the table can accept NULL
values or have a default value.

♦ If the table is empty, adds two rows. To insert each row, the code changes to insert mode using the InsertBegin
method, sets values for each required column, and executes an insert to add the rows to the database.

The commit method is only required when you turn off autocommit. By default, autocommit is enabled but it
may be disabled for better performance, or for multi-operation transactions.

♦ If the table is not empty, reports the number of rows in the table.

♦ Closes the Table object.

♦ Returns a boolean indicating whether the operation was completed.

bool do_insert(Connection * conn)
{

Table * table = conn->OpenTable(_TEXT("customer"));
if(table == NULL) {

return false;
}

if(table->GetRowCount() == 0) {
_tprintf(_TEXT("Inserting two rows. \n"));
table->InsertBegin();
table->Set(_TEXT("fname"), _TEXT("Penny"));
table->Set(_TEXT("lname"), _TEXT("Stamp"));
table->Insert();

table->InsertBegin();
table->Set(_TEXT("fname"), _TEXT("Gene"));
table->Set(_TEXT("lname"), _TEXT("Poole"));
table->Insert();

conn->Commit();
} else {

_tprintf(_TEXT("The table has %lu rows \n"), table->GetRowCount());
}
table->Release();
return true;

}

April 6, 2005 6

Tutorial: Build an Application Using the C++ Component

2. Call the do_insert method you have created.

Add the following line to themain() method, immediately after the call to open_conn.

do_insert(conn);

3. Compile your application by runningnmake.

4. Run your application by typingcustomerat the command prompt.

4 Lesson 3: Select the rows from the table

The following procedure retrieves rows from the table and prints them on the command line.

❖ To list the rows in the table

1. Add the method below tocustomer.cpp. This method carries out the following tasks.

♦ Opens the Table object.

♦ Retrieves the column identifiers.

♦ Sets the current position before the first row of the table.

Any operations on a table are carried out at the current position. The position may be before the first row, on
one of the rows of the table, or after the last row. By default, as in this case, the rows are ordered by their
primary key value (id). To order rows in a different way, you can add an index to an UltraLite database and
open a table using that index.

♦ For each row, the id and name are written out. The loop carries on until the Next method returns false, which
occurs after the final row.

♦ Closes the Table object.

bool do_select(Connection * conn)
{

Table * table = conn->OpenTable(_TEXT("customer"));
if(table == NULL) {

return false;
}

TableSchema * schema = table->GetSchema();
if(schema == NULL) {

table->Release();
return false;

}

ul_column_num id_cid = schema->GetColumnID(_TEXT("id"));
ul_column_num fname_cid = schema->GetColumnID(_TEXT("fname"));
ul_column_num lname_cid = schema->GetColumnID(_TEXT("lname"));
schema->Release();

while(table->Next()){
char fname[MAX_NAME_LEN];
char lname[MAX_NAME_LEN];

April 6, 2005 7

Tutorial: Build an Application Using the C++ Component

table->Get(fname_cid).GetString(fname, MAX_NAME_LEN);
table->Get(lname_cid).GetString(lname, MAX_NAME_LEN);
_tprintf("id=%d, name=%s %s \n", (int)table->Get(id_cid),

fname, lname);
}
table->Release();
return true;

}

2. Add the following line to themain() method, immediately after the call to the insert method:

do_select(conn);

3. Compile your application by runningnmake.

4. Run your application by typingcustomerat the command prompt.

5 Lesson 4: Add synchronization to your application

This lesson synchronizes your application with a consolidated database running on your computer.

The following procedures add synchronization code to your application, start the MobiLink synchronization server,
and run your application to synchronize.

Note
This lesson uses MobiLink synchronization, which is part of SQL Anywhere Studio. You must have SQL Any-
where Studio installed on your computer to carry out this lesson.

The UltraLite database you created in the previous lessons synchronizes with the UltraLite 9.0 Sample database.
The UltraLite 9.0 sample database has a ULCustomer table whose columns match those in the customer table of
your UltraLite database.

This lesson assumes that you are familiar with MobiLink synchronization.

❖ To add synchronization to your application

1. Add the method below tocustomer.cpp. This method carries out the following tasks.

♦ Sets the synchronization stream to TCP/IP. Synchronization can also be carried out over HTTP, ActiveSync,
or HTTPS.

♦ Sets the script version. MobiLink synchronization is controlled by scripts stored in the consolidated database.
The script version identifies which set of scripts to use.

♦ Sets sendColumnNames to true so the MobiLink synchronization server can generate synchronization scripts
automatically.

♦ Sets the MobiLink user name. This value is used for authentication at the MobiLink synchronization server. It
is distinct from the UltraLite database user ID, although in some applications you may wish to give them the
same value.

♦ Sets the download_only parameter to true. By default, MobiLink synchronization is two-way. This
application uses download-only synchronization so that the rows in your table do not get uploaded to the
sample database.

April 6, 2005 8

Tutorial: Build an Application Using the C++ Component

bool do_sync(Connection * conn)
{

ul_synch_info info;

conn->InitSynchInfo(&info);
info.stream = ULSocketStream();
info.version = UL_TEXT("ul_default");
info.user_name = UL_TEXT("sample");
info.send_column_names = true;
info.download_only = true;
if(!conn->Synchronize(&info)) {

return false;
}
return true;

}

2. Add the following line to themain() method, immediately after the call to the insert method and before the call
to the select method.

do_sync(conn);

3. Compile your application by runningnmake.

❖ To synchronize your data

1. Start the MobiLink synchronization server.

From a command prompt, run the following command.

dbmlsrv9 -c "dsn=UltraLite 9.0 Sample" -v+ -zu+ -za

The-zu+ and-za command line options provide automatic addition of users and generation of synchronization
scripts.

2. Run your application by typingcustomerat the command prompt.

The MobiLink synchronization server window displays status messages indicating the synchronization progress.
If synchronization is successful, the final message displaysSynchronization complete .

6 Lesson 5: Deploy to a Windows CE device

The following procedure demonstrates how to deploy an UltraLite C++ Component application to a Windows CE
device.

❖ To deploy to a Windows CE device

1. Ensure that your device is connected to your computer.

2. Start File Explorer on your device.

Choose Start➤ Programs➤ File Explorer.

3. Create directories to hold the UltraLite runtime and application.

♦ Navigate to the root of the device. The root may be named My Device or My Pocket PC.

♦ Create a directory namedUltraLite.

April 6, 2005 9

Tutorial: Build an Application Using the C++ Component

♦ Open the UltraLite directory and create subdirectories namedlib andCustDB.

\UltraLite\lib is the location for the UltraLite runtime files, and\UltraLite\CustDB is the location for the
application.

4. Copy the UltraLite runtime files to the Windows CE device.

You can now run the application on your Windows CE device. This completes the tutorial.

April 6, 2005 10

	Tutorial: Build an Application Using the C++ Component
	Introduction
	Lesson 1: Connect to the database
	Lesson 2: Insert data into the database
	Lesson 3: Select the rows from the table
	Lesson 4: Add synchronization to your application
	Lesson 5: Deploy to a Windows CE device

